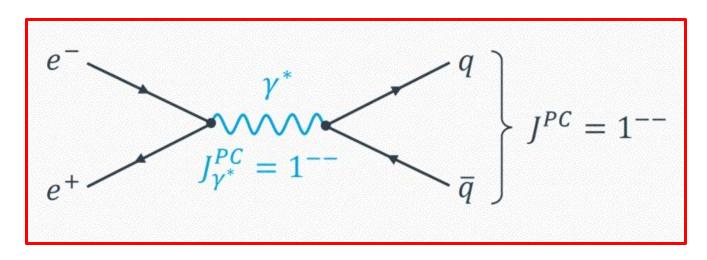
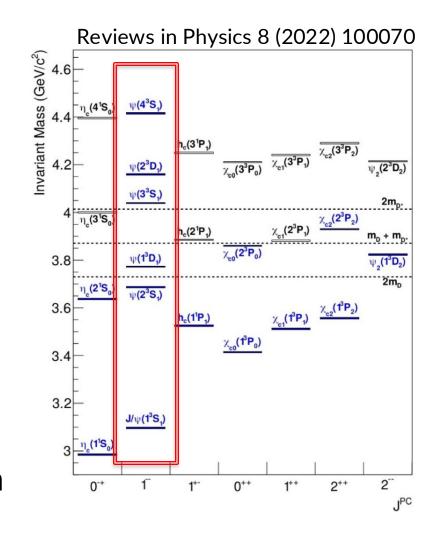


Recent Highlights on

Charmonium-(like) Physics at BESIII

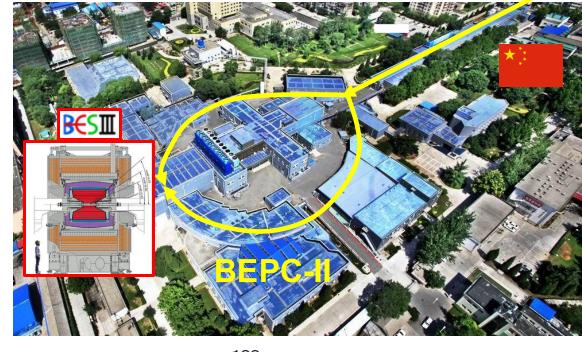
UNIVERSITÀ DI TORINO


on behalf of BESIII Collaboration 8 July 2025

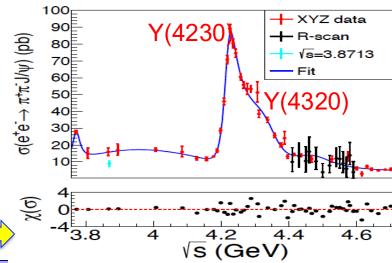

Istituto Nazionale di Fisica Nucleare

Hadron production in e⁺e⁻ collisions

- > e⁺e⁻ pairs mainly annihilate into one virtual photon
- > The virtual photon can decay into quark-antiquark pairs
- \triangleright Direct production of vector meson states with $J^{PC} = 1^{-1}$
- > Energy scan to estimate the line shape and decay width

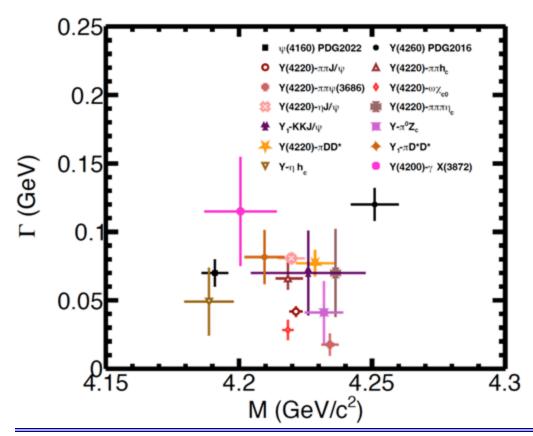

e⁺e⁻ collisions with BEPC-II and BESIII

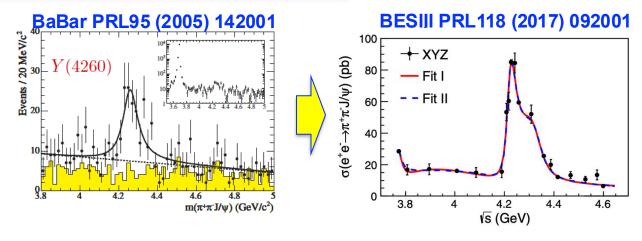
 $E_{CM} = 2 - 4.95 \text{ GeV (so far)}$


 $L_{peak} = 1.0 \times 10^{33} / \text{cm}^2 \text{s}^{-1}$

Charmonium Spectroscopy

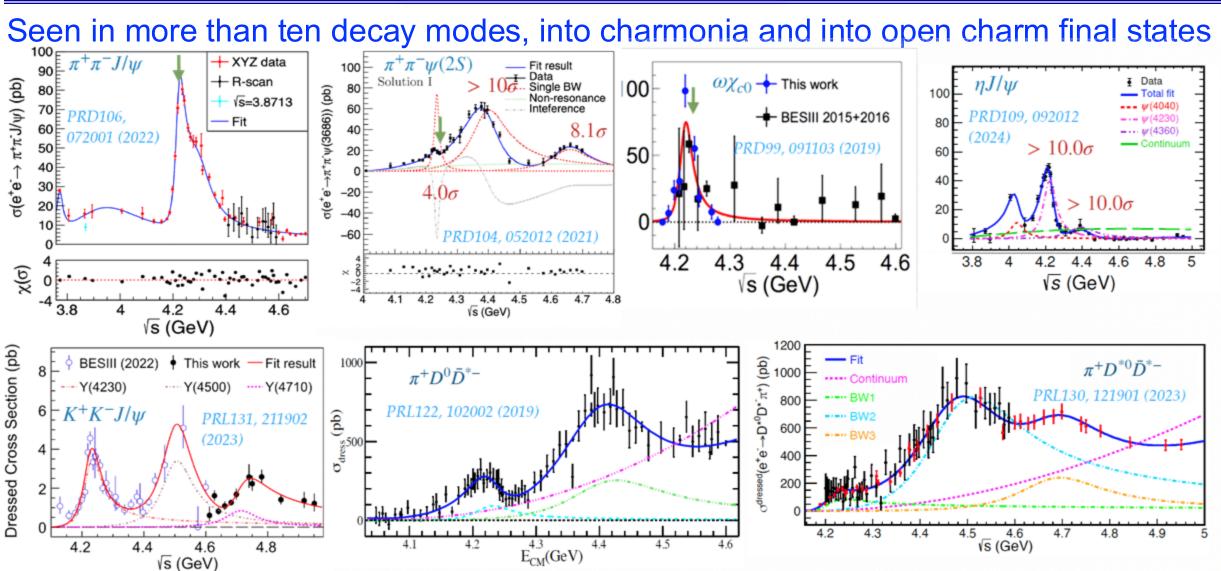
Conventional & Unconventional




Spectroscopy of 1⁻⁻ Charmonium(-like) states

Y(4260) firstly seen by BaBar searching for X(3872), afterwards split into two states Y(4230) and Y(4360) by BESIII

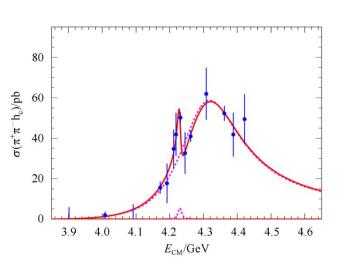
...now called $\psi(4230)$ and $\psi(4360)$ by PDG



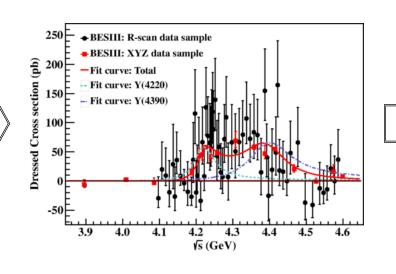
- ➤ Inconsistent with all 1⁻⁻ quark model states
- Very suppressed open charm decays
- Candidates for exotic matter
 - ? Hybrids?
 - ? Tetraquark?
 - ? Hadronic molecules?
- Well established
- Experimentally easy to produce using e⁺e⁻ collisions → Initial State Radiation

Searching for what is still missing

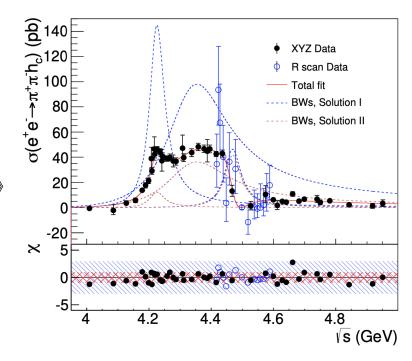
Precise Measurement of $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$



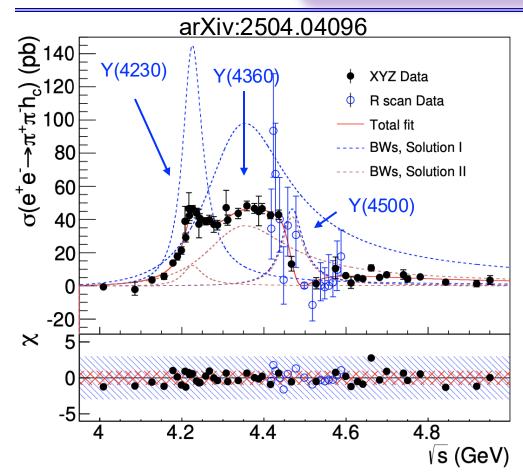
Initially observed by CLEO-c at √s=4.17 GeV PRL107, 041803 (2011)


 $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$ cross section by BESIII at \sqrt{s} =3.9-4.6 GeV, found two structures

PRL118, 092002 (2017)


New data collected by BESIII √s=4.18-4.95 GeV (27 data samples)

PRL118, 092002 (2017) - BESIII



arXiv:2504.04096 - BESIII

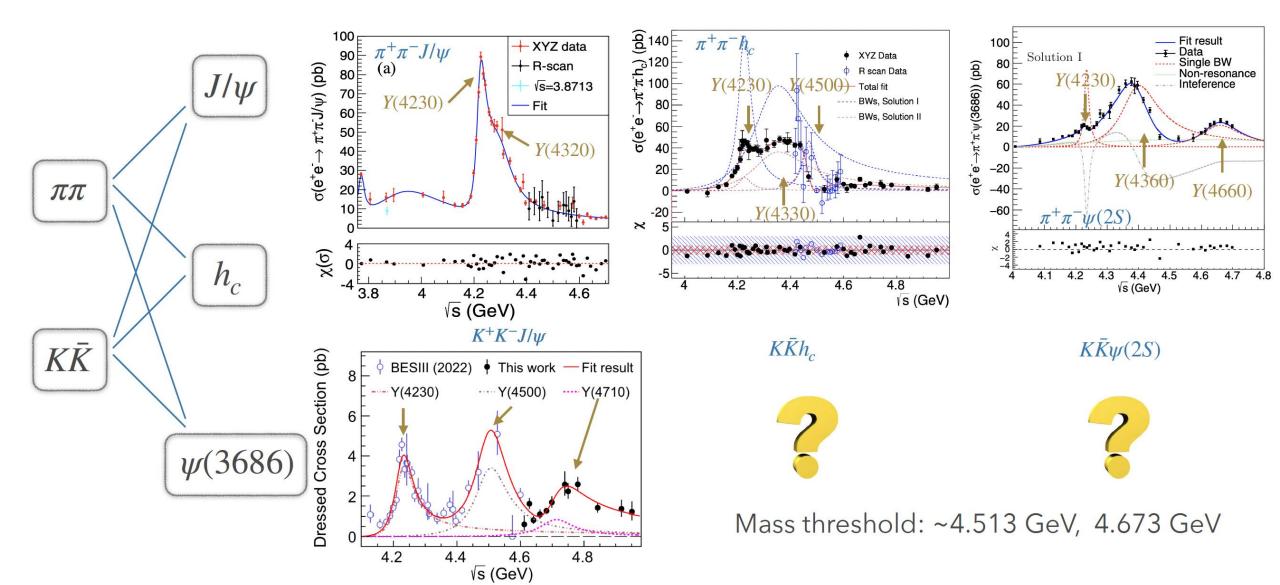
Precise Measurement of $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$

- > Tested different combinations of resonance structures
- Starting from two BWs, adding more BWs and continuum
- Checked significance of each additional term

Best description: coherent sum of three BW functions

	Y(4230)	Y(4360)	>5σ Y(4500)
Parameter	R_1	R_2	R_3
$M ({ m MeV/c^2})$	$4223.6_{-3.7-2.9}^{+3.6+2.6}$	$4327.4_{-18.8-9.3}^{+20.1+10.7}$	$4467.4^{+7.2+3.2}_{-5.4-2.7}$
$\Gamma \; ({ m MeV})$	$58.5^{+10.8+6.7}_{-11.4-6.5}$	$\begin{array}{c} 4327.4_{-18.8-9.3}^{+20.1+10.7} \\ 244.1_{-27.1-18.3}^{+34.0+24.2} \end{array}$	$62.8_{-14.4-7.0}^{+19.2+9.9}$
		a bit larger width	
		$\Gamma_{Y(4360)} = 120 \pm 21 \text{ MeV}$,
		1 Y(4360) = 120121 WCV	

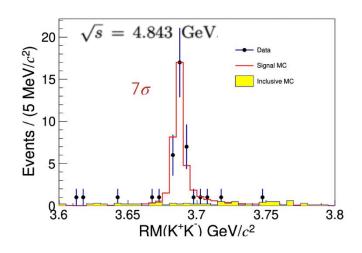
No Y(4660) structure present in data, in tension with P-wave tetraquark assumption EPJC78, 29(2018)


In S-D mixing scheme, 4S-3D, 5D - 4D states located in this region, observed only three PRD99, 114003 (2019)

Checking strange content of charmonium-like states?

Measurement of $e^+e^- \rightarrow K\overline{K}\psi(3686)$, $e^+e^- \rightarrow K\overline{K}h_c(1P)$

Partial reconstruction to improve signal efficiency

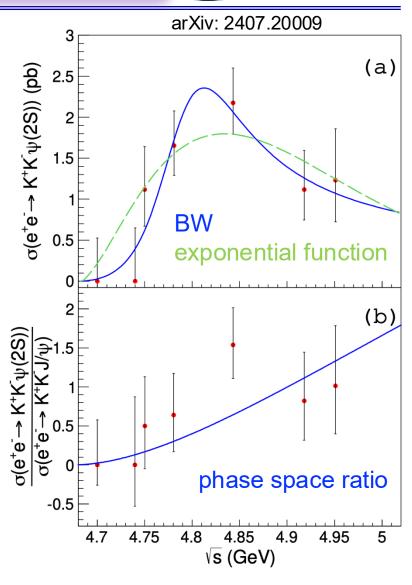

- $= K^+K^-\psi(3686)$: data sample at $\sqrt{s} = 4.669$ to 4.951 GeV, $2.5~{\rm fb^{-1}}$
 - $*e^+e^- \to K^+K^-\psi(3686), \ \psi(3686) \to J/\psi + X, \ J/\psi \to l^+l^-$
 - $*e^+e^- \to K^+K^-\psi(3686), \ \psi(3686) \to J/\psi\pi^+\pi^-, \ J/\psi \to l^+l^-, \ {
 m missing one \ Kaon}$
 - $*e^+e^- \to K^+K^-\psi(3686), \psi(3686) \to l^+l^-$
 - $\not\simeq e^+e^- \to K^+K^-\psi(3686), \, \psi(3686) \to l^+l^-, \,$ missing one Kaon
- $W = K_S^0 K_S^0 \psi(3686)$: data sample at $\sqrt{s} = 4.682$ to 4.951 GeV, 4.1 fb^{-1}
 - $\star e^+e^- \to K_S^0K_S^0\psi(3686), \ \psi(3686) \to J/\psi + X, \ J/\psi \to l^+l^-, \ K_S^0 \to \pi^+\pi^-$
- $G_S^0K_S^0h_c$: data sample at $\sqrt{s}=4.6$ to 4.951 GeV, 6.4 fb⁻¹
 - $*e^+e^- \rightarrow K_S^0K_S^0 + h_c, h_c \rightarrow \gamma\eta_{c'} \log K_S^0K_S^0 + \gamma$

Measurement of $e^+e^- \rightarrow K^+K^-\psi(3686)$ cross section

Clear $e^+e^- \rightarrow K^+K^-\psi(3686)$ signal

The cross section can be fitted similarly:

> either assuming the decay of a vector state (BW)


$$M = 4787.7 \pm 17.7 \text{ MeV}/c^2$$

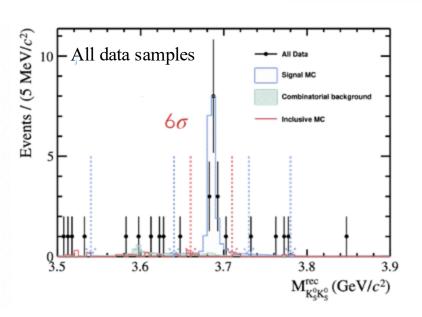
 $\Gamma = 110.3 \pm 33.9 \text{ MeV}$

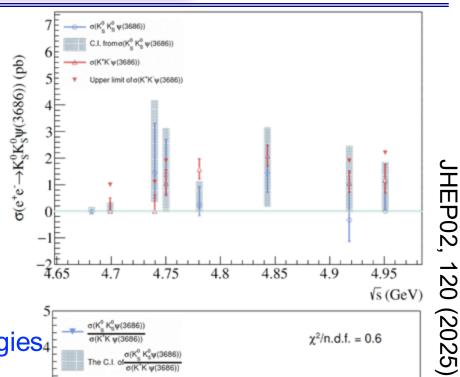
 \triangleright either as a tail of the decay of a lower mass resonance (Y(4710)?)

$$\sigma(\sqrt{s}) = p_1 \cdot \Phi(\sqrt{s}) e^{p_0(\sqrt{s} - M_{\rm th})}$$

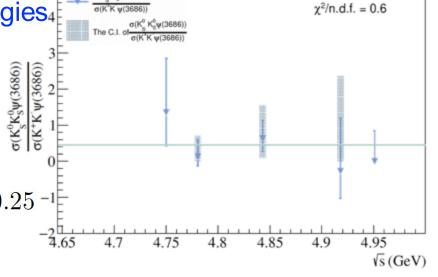
Cross section ratio K+K-ψ(3686) / K+K-J/ψ above phase space of ~2σ

Hint that some different production mechanism could be present





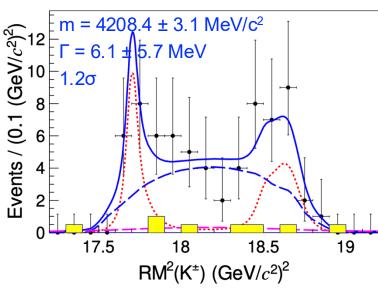
Measurement of $e^+e^- \rightarrow K\overline{K}\psi(3686)$ cross section

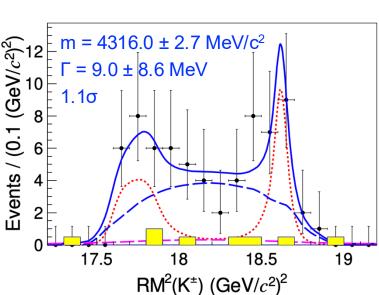


- \triangleright First measurement of $K\overline{K}\psi(3686)$ cross section at different energies₄
- > Significance 6.3σ summing up the complete data sample
- ightharpoonup Cross section ratio $K\overline{K}\psi(3686)/K^+K^-\psi(3686)$ consistent

with isospin expectations

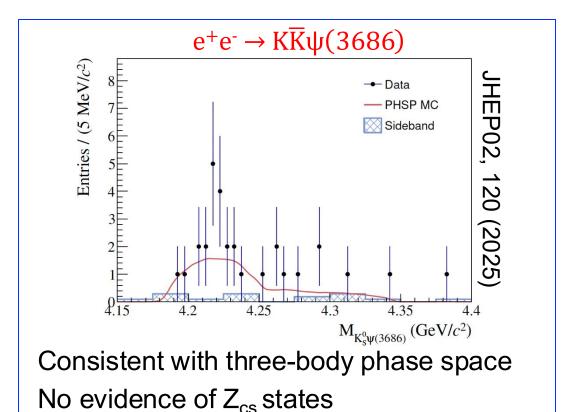
$$\mathcal{R} = \sigma(e^+e^- \to K_S^0 K_S^0 \psi(3686)) / \sigma(e^+e^- \to K^+ K^- \psi(3686)) = 0.45 \pm 0.25 \pm$$




2407.20009

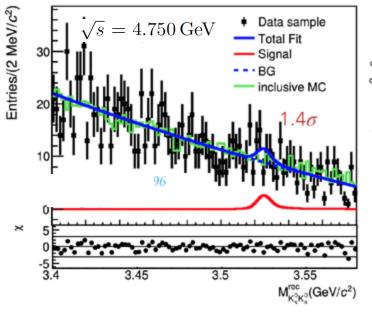
arXiv:

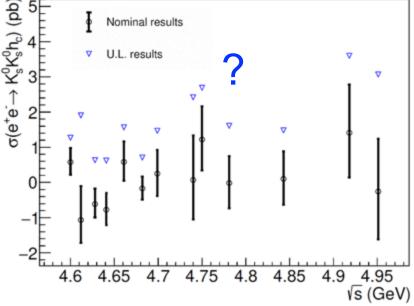
Searching for strange tetraquark states Z_{cs}

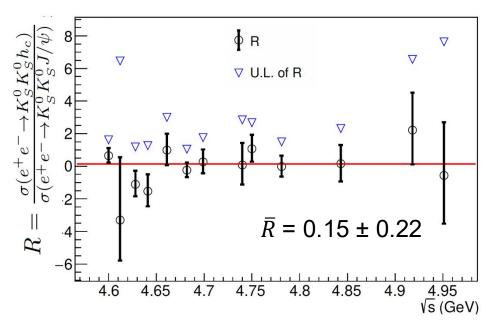


$e^+e^- \to K^+K^-\psi(3686)$

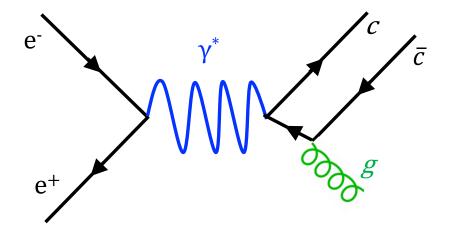
- Two best fit results assuming the presence of a Z_{cs} structure
- > Z[±]_{cs} masses around 4.208 GeV/c² and 4.315 GeV/c²
- \gt Structure around 4.208 GeV/c² close to Z_{cs}(4220) reported by LHCb
- ~1σ significance




Measurement of $e^+e^- \rightarrow K\overline{K}h_c(1P)$



- ➤ Search for $e^+e^- \rightarrow K\overline{K}h_c$ using 13 energy points at \sqrt{s} =4.60-4.95 GeV
- > Significance below 2σ for each energy point, estimated upper limits
- > Slight enhancement at 4.75 GeV but no definitive conclusions
- Cross section ratio $\sigma(e^+e^- \to K\overline{K}h_c)/\sigma(e^+e^- \to K\overline{K}J/\psi)$ quite small, different from $\sigma(e^+e^- \to \pi^+\pi^-h_c)/\sigma(e^+e^- \to \pi^+\pi^-J/\psi)$ measured at $4.2 < \sqrt{s} < 4.4$ GeV



Prompt inclusive charmonium production

Nonrelativistic QCD can describe charmonium production

- \triangleright Perturbative short-term coefficients describe the $c\bar{c}$ production
- Nonperturbative Long-Distance Matrix Elements define the probability to evolve in a defined state

- Double-charmonium production cross section from B-factories larger than expected
- Pelow the J/ $\psi c\bar{c}$ threshold (~6 GeV) check of the contribution from color-octet Non-zero if σ > 10 pb at \sqrt{s} = 4.6~5.6 GeV EPJC77(2017)597
- Search for unknown states/processes

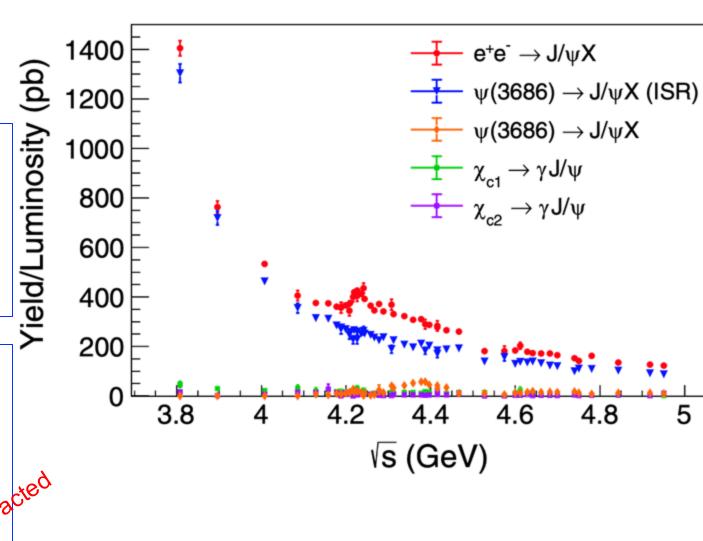
Prompt inclusive J/ ψ and ψ (3686) production

Data:
$$\mathcal{L} = 22 \text{ fb}^{-1}$$

 $\sqrt{s} = 3.81 - 4.95 \text{ GeV}$

Signal channels

- \rightarrow J/ ψ X, J/ $\psi \rightarrow \mu^{+}\mu^{-}$
- $ightharpoonup \psi(3686)X, \psi(3686) \to \pi^+\pi^-J/\psi,$ $J/\psi \to \mu^+\mu^-/e^+e^-$


Non prompt background

J/ψ from conventional charmonia

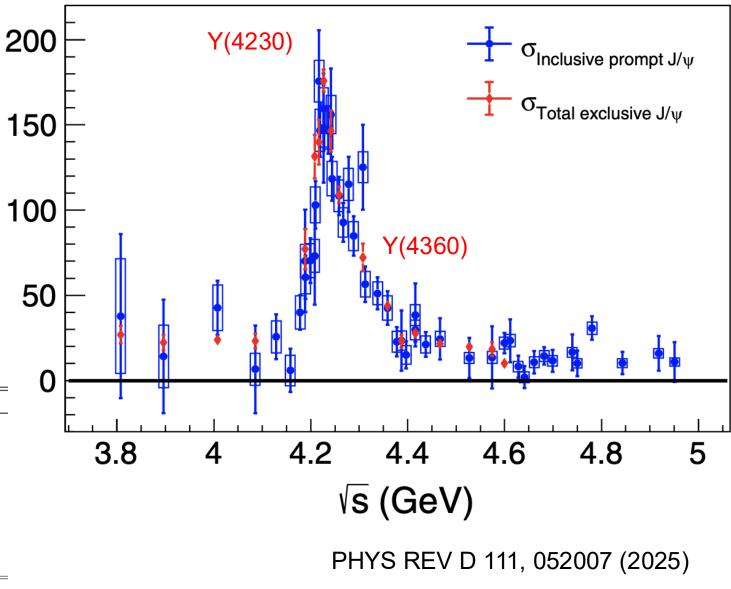
 $\rightarrow \psi(3686) \rightarrow \pi^+\pi^- J/\psi$, $\chi_{c1,2} \rightarrow \gamma J/\psi$, etc.

ISR production

 $\triangleright \gamma_{ISR} J/\psi; \gamma_{ISR} \psi(3686)$

PHYS REV D 111, 052007 (2025)

Inclusive and exclusive J/ψ production



no evidence of hidden decays involving the J/ψ meson

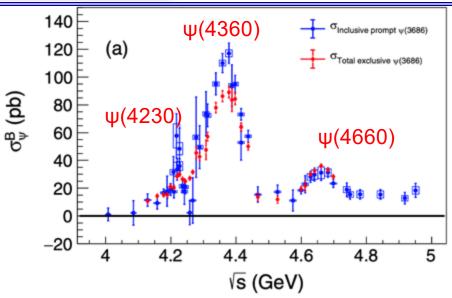
Average value of J/ ψ cross section in the region \sqrt{s} =4.53 to 4.95 GeV σ = 14.0 ± 1.7_{stat} ± 3.1_{syst} pb (in the no-resonance hypothesis)

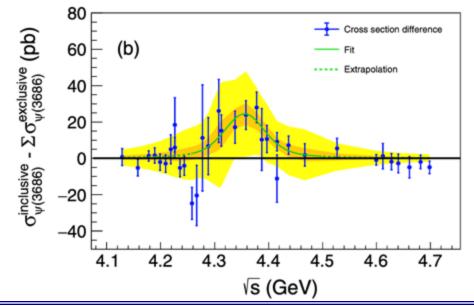
7	(DD)
В	_ } }

$c\bar{c}$ Meson	Mass (MeV)	Width (MeV)	Decays into J/ψ
$\chi_{c1}(3872)$	3871.7 ± 0.1	1.2 ± 0.2	$\pi^+\pi^-J/\psi,\omega J/\psi,\gamma J/\psi$
$Z_c(3900)$	3887.1 ± 2.6	28.4 ± 2.6	$\pi J/\psi$
$\chi_{c0}(3915)$	3921.7 ± 1.8	18.8 ± 3.5	$\omega J/\psi$
$\psi(4040)$	4039.0 ± 1.0	80 ± 10	$\eta J/\psi$
X(4160)	4153 ± 23	136 ± 60	$\phi J/\psi$
$\psi(4230)$	4222.7 ± 2.6	49.0 ± 8.0	$\pi\pi J/\psi, KKJ/\psi, \eta J/\psi$
X(4350)	4350.6 ± 5.2	13 ± 18	$\phi J/\psi$
ψ(4360)	4372.0 ± 9.0	115 ± 13	$\pi^+\pi^-J/\psi, \eta J/\psi$
Y(4500)	4485 ± 28	111 ± 34	K^+K^-J/ψ
ψ(4660)	4630.0 ± 6.0	72 ± 14	
Y(4710)	4704 ± 87	183 ± 149	K^0K^0J/ψ

Inclusive and exclusive $\psi(3686)$ production

Missing exclusive processes around the $\psi(4360)$ region

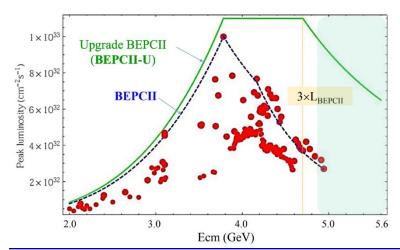

Excess ~ 23% of the $\psi(4360)_{prompt}$ inclusive cross section


Average value of $\psi(3686)$ cross section in the region \sqrt{s} =4.84 to 4.95 GeV

 $\sigma = 15.3 \pm 3.0 \text{ pb}$

(in the no-resonance hypothesis)

$c\bar{c}$ Meson	Mass (MeV)	Width (MeV)	Decays into $\psi(3686)$
$\chi_{c1}(3872)$	3871.7 ± 0.1	1.2 ± 0.2	γψ(3686)
$Z_c(3900)$	3887.1 ± 2.6	28.4 ± 2.6	•••
$\chi_{c0}(3915)$	3921.7 ± 1.8	18.8 ± 3.5	
$\psi(4040)$	4039.0 ± 1.0	80 ± 10	
X(4160)	4153 ± 23	136 ± 60	
$\psi(4230)$	4222.7 ± 2.6	49.0 ± 8.0	$\pi^{+}\pi^{-}\psi(3686)$
X(4350)	4350.6 ± 5.2	13 ± 18	•••
$\psi(4360)$	4372.0 ± 9.0	115 ± 13	$\pi^{+}\pi^{-}\psi(3686)$
Y(4500)	4485 ± 28	111 ± 34	•••
$\psi(4660)$	4630.0 ± 6.0	72 ± 14	$\pi^{+}\pi^{-}\psi(3686)$
Y(4710)	4704 ± 87	183 ± 149	


In Summary

Fine energy scan at BESIII from \sqrt{s} =3.8 to 4.95 GeV studying J^{PC} = 1- states

- ► Improved precision in $e^+e^- \to \pi^+\pi^-h_c(1P)$ cross section measurement,

 plateau-like shape between 4.3 and 4.5 GeV
- First measurement of $e^+e^- \rightarrow K^+K^-\psi(3686)$ and $e^+e^- \rightarrow K\overline{K}\psi(3686)$ processes
- ightharpoonup Search for Z_{cs} states in $K\overline{K} + c\overline{c}$ final states, more statistics is needed
- ➤ Search for $e^+e^- \to K\overline{K}h_c(1P)$, no significant signal observed
- > Prompt inclusive charmonium production measurements for testing theory of strong interaction

Starting from this year improved BESIII capabilities with crucial updates

- ➤ Increase in maximum CMS energy up to 5.6 GeV
- ➤ Increase in integrated luminosity in XYZ region
- ➤ New CGEM inner tracker