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Motivation

▶ Quantum machine learning (QML) offers theoretical speedups with
certain fault-tolerant subroutines or in otherwise contrived cases123

▶ The LHC produces great volumes of high-dimensional collision data,
driving the need for new analysis methods

▶ Actual implementation of QML models on real hardware may often
face the common problem of exponential concentration (Barren
plateaus)

▶ Incorporating domain knowledge (e.g. symmetries of the problem)
can 1) improve the inductive bias of the learning model & 2) reduce
the risk of exponential concentration

1Molteni, Gyurik, and Dunjko, “Exponential quantum advantages in learning quantum observables from classical
data”.

2Liu, Arunachalam, and Temme, “A rigorous and robust quantum speed-up in supervised machine learning”.
3Biamonte et al., “Quantum machine learning”.
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Research Questions

1. What is the impact of incorporating permutation-group
invariance on the i) classification performance and ii)
scalability of the studied fidelity-based quantum kernels?

2. How does kernel-bandwidth-tuning affect the two
aforementioned factors, both in ideal simulations and under
shot noise?

3. To what extent do findings from simulated environments carry
over to real hardware on VTT’s Q50 processor?
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Support Vector Machines
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Intuition Behind Kernel Methods

Figure: Left: original 2D view; Right: its 3D projection.
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Kernel Function
Let a D be a dataset belonging to the data space X (usually,
X ≡ Rn). A kernel function is

κ : X × X → R≥0 (1)

that implicitly defines a feature map

ϕ : X → H (2)

into H (with dim(X ) <dim(H) usually). The kernel function
expressed in this way becomes

κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. (3)

Properties:
▶ symmetric: κ(x, x′) = κ(x′, x)
▶ positive semi-definite: κ(x, x′) ≥ 0.
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Examples of Kernel Functions

▶ Linear:
κ(x, x′) = x⊤x′

▶ Polynomial:
κ(x, x′) = (x⊤x′ + c)d

where c ∈ R, d ∈ Z

▶ Gaussian:
κ(x, x′) = exp

(
−γ∥x − x′∥2)

▶ one of the most widely used kernels in all of machine learning
▶ can approximate any continuous function on a compact set4

▶ here, γ > 0 represents the bandwidth

4Micchelli, Xu, and Zhang, “Universal Kernels”.
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The Gram Matrix in Kernel Methods

▶ Given training set Dtrain = {x(1), . . . , x(N)} and kernel κ, we form the Gram
matrix

Kij = κ
(

x(i), x(j)
)

, i , j = 1, . . . , N.

▶ Key properties:
▶ K is symmetric: Kij = Kji
▶ diagonal entries Kii = κ(x(i), x(i)) are constant under normalization
▶ scales quadratically in the number of datapoints N
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Kernel Method Pipeline

→ κ(x , x ′)
Kernel function

→

Gram matrix

solve SVM−−−−−−→

Solve (linear decision)
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Quantum Fidelity Kernels
|0⟩

U(x) U†(x′)

|0⟩

|0⟩

|0⟩

...
...

▶ Fidelity kernel definition:

κQ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ = Tr
[
ρ(x) ρ(x′)

]
where the feature map is ρ(x) = U(x) (|0⟩⟨0|)⊗n U†(x).

▶ Full trace notation:

κQ(x, x′) = Tr
[
U†(x′) U(x)(|0⟩⟨0|)⊗nU†(x) U(x′)(|0⟩⟨0|)⊗n]

.
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Exponential Concentration in Quantum Kernels

Deterministic Exponential Concentration
Definition from5: a quantity X (α) is exponentially concentrated in
the number of qubits n toward µ if∣∣X (α) − µ

∣∣ ≤ β ∈ O
(
1/bn)

for some b > 1 and all α.

▶ In quantum kernels, X (α) = κQ(x, x′).

5Thanasilp et al., “Exponential concentration in quantum kernel methods”.
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Exponential Concentration in Quantum Kernels

▶ As nqubits grows, off-diagonal kernel values collapse toward µ
exponentially fast.
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Kernel Bandwidth γ - an Important Hyperparameter

▶ The bandwidth γ rescales each data point linearly:

x̃ = γ x, x̃′ = γ x′.

▶ In the fidelity kernel, this enters explicitly in the feature map:

κQ(x, x′) = Tr
[
ρ(x̃) ρ(x̃′)

]
, ρ(x̃) = U(γ x) |0⟩⟨0| U†(γ x).

▶ γ critically affects generalization6.

6Shaydulin and Wild, “Importance of kernel bandwidth in quantum machine learning”.
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The Effect of γ on the Possible States of the QML
Model

Figure: Left: γ = 10−4. Right: γ = 1.5.
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Invariance in ML

▶ Embedding known symmetries can boost data efficiency7

and generalization8.
▶ Classic examples:

▶ CNNs – translation invariance in images.
▶ GNNs – permutation equivariance on graph-structured data.

7Tahmasebi and Jegelka, “The Exact Sample Complexity Gain from Invariances for Kernel Regression”.
8Sokolic et al., “Generalization Error of Invariant Classifiers”.
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Pauli Twirling (Invariance in QML)

(+ given an initial embedding!)
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Vector Boson Scattering

▶ Two quarks emit one electroweak vector boson (W/Z) each, that then scatter
off one another and decay to the detector.

▶ VBS allows us to probe the EWSB and Higgs’ mechanism through polarization
measurements.

▶ Classification problem in this work: VBS WW all-hadronic vs. QCD background.
▶ Permutation symmetry of the two boson-decay jets (and the forward jets) as the

underlying symmetry group.
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HEA – Baseline Model

▶ Baseline model as starting point: the hardware-efficient ansatz (HEA)
▶ Use Pauli twirling to progressively symmetrise the HEA to obtain model variants
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HEA and Its Variants

▶ HEA-SYMM-ROT-ENT: symmetrized rotations and entanglement for qubit
pairs that carry jet-specific information: 1 & 2, 3 & 4, and 5 & 6.

▶ Rest of the encode carry features that are permutation invariant (such as
invariant mass or ∆η)
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HEA and Its Variants

▶ HEA-FULLSYMM: same as HEA-SYMM-ROT-ENT (the one before) but
wihtout the initial RX embedding layer.
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Bivariate Permutation-Invariant Fidelity Quantum
Kernel

Definition (BPINVFQK)
Let κ be an embedding QK on X and Sn a feature-permutation group.
Then

κ(x, x′) = κ
(
π(x), π′(x′)

)
, ∀ π, π′ ∈ Sn

is fully permutation-invariant embedding QK.

Building on the overlap test, define

ξ(x, x′) = Tr
[
U†(x′)U(x) ρ0 U†(x)U(x′) (I ⊗ |0⟩ ⟨0|)

]
,

then symmetrize:

κ(x, x′) = 1
2
[
ξ(x, x′) + ξ(x′, x)

]
.

|0⟩ RX (x1)

Uinv(x) U†
inv(x′)

R†
X (x ′

1)

|0⟩ RX (x2) R†
X (x ′

2)

|0⟩ RX (x3) R†
X (x ′

3)

(a)

|0⟩ RX (x1)

Uinv(x) U†
inv(x′)

R†
X (x ′

1)

|0⟩ RX (x2) R†
X (x ′

2)

|0⟩ RX (x3) R†
X (x ′

3)

(b)

Figure: (a) Full overlap test; (b) BPINVFQK local measurement on qubit 3.
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BPINVFQK

▶ BPINVFQK uses the same feature map as HEA-SYMM-ENT-ROT map but
with a local measurement at the end of the circuit.
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RX Kernel - Sanity Check Benchmark

▶ RX: Quantum baseline model without entanglement included as a sanity check
as inspired by9.

9Bowles, Ahmed, and Schuld, Better than classical? The subtle art of benchmarking quantum machine learning
models.
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Model Types

Model Description
HEA Baseline hardware-efficient ansatz.
RX Pauli-X angle embedding (no entanglement) benchmark.
RBF Classical Gaussian (RBF) kernel.
HEA-FULLSYMM Fully permutation-invariant HEA (HEA-SYMM-ENT-ROT

without the initial RX embedding). No direct functional de-
pendence on all of the features.

BPINVFQK Bivariate permutation-invariant fidelity quantum kernel via
local measurement. Direct functional dependence on all fea-
tures.

HEA-SYMM-ROT HEA with symmetrized single-qubit rotations.
HEA-SYMM-ENT HEA with symmetrized entanglement.
HEA-SYMM-ENT-ROT HEA combining symmetrized entanglement and rotations.
▶ Underlined models are “baseline”.
▶ Bolded models are fully, bivariately permutation-invariant.
▶ The rest are partially symmetrized.
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Experimental Setup (1/2)
▶ Dataset: 2000 train + 2000 test samples, balanced

signal/background, for nqubits = {4, 6, 8, 10, 12, 14}
▶ Feature normalization: set mean to 0, scale to unit variance,

multiply by γ
▶ Remove implicit “lead/trail” ordering by randomizing jet-pair

order
▶ Hyperparameter sweep per qubit-count:

▶ 20 values of γ
▶ multiple λ for L1 regularization
▶ Average performance over 25 seeds
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Experimental Setup (2/2)
▶ Execution backend configurations:

1. Ideal shot-noiseless simulation (PennyLane lightning.qubit)
2. Ideal + shot noise (10000 shots; same backend)
3. Q50 hardware (10000 shots)

▶ Added runs for statistical significance: additional 100 seeds at
best γ for n=10, 12, 14

→ 50B+ circuits
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Results - Shot-noiseless Simulation (AUC)
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Results - Shot-noisy Simulation (AUC)
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AUC vs. Number of Qubits (Shot-noiseless)

▶ Symmetrized models show statistically significant AUC gains over
RBF, HEA, and RX baselines.

▶ Variance remains high, despite mean improvements.
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AUC vs. Number of Qubits (10 000 Shots)

▶ Shot noise largely eliminates the AUC gains of symmetrized models.
▶ Classical RBF strives!
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Results - Shot-noiseless Simulation (Variance)
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Results - Shot-noisy Simulation (Variance)
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Effect of Shot Noise on γ
nqubits Model γ (noiseless) γ (10 000 shots) Relative Diff.

10 HEA 0.030 0.100 2.33
HEA-SYMM-ENT 0.030 0.100 2.33
HEA-SYMM-ROT 0.030 0.075 1.50
HEA-SYMM-ENT-ROT 0.030 0.100 2.33
HEA-FULLSYMM 0.030 0.100 2.33
BPINVFQK 0.030 0.100 2.33

12 HEA 0.030 0.100 2.33
HEA-SYMM-ENT 0.0005 0.100 199.00
HEA-SYMM-ROT 0.010 0.100 9.00
HEA-SYMM-ENT-ROT 0.0005 0.100 199.00
HEA-FULLSYMM 0.010 0.100 9.00
BPINVFQK 0.010 0.100 9.00

14 HEA 0.030 0.100 2.33
HEA-SYMM-ENT 0.010 0.075 6.50
HEA-SYMM-ROT 0.0005 0.075 149.00
HEA-SYMM-ENT-ROT 0.030 0.075 1.50
HEA-FULLSYMM 0.030 0.075 1.50
BPINVFQK 0.030 0.100 2.33

▶ Optimal kernel bandwidth (in terms of AUC) with and without shot noise as well as the
relative difference.
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Concentration Behavior for Some Values of γ
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Geometric Difference vs. Bandwidth (nqubits = 14)

▶ Geometric difference (normalized) as a function of γ at nqubits = 14
▶ GD grows as γ decreases, i.e., as potential for classical simulability

increases
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Q50 Experimental Gram Matrix Results

▶ 30 data points, nqubits = 10, 2-layer HEA vs. HEA-SYMM-ENT-ROT
▶ 465 circuits per model (optimized pulses, dynamical decoupling, Bayesian

readout mitigation10)

Model Condition MSE Median SE
HEA Unmitigated 0.086 0.086

Mitigated 0.041 0.038
HEA-SYMM-ENT-ROT Unmitigated 0.106 0.101

Mitigated 0.058 0.048

10Cosco, Plastina, and Gullo, Bayesian mitigation of measurement errors in multi-qubit experiments.
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Discussion

▶ Symmetry improvements (shot-noiseless): BPINVFQK, HEA-FULLSYMM,
HEA-SYMM-ROT achieve:

▶ Better AUC compared to HEA, RBF, and the RX
▶ Better scalability compared to HEA
▶ BPINVFQK performs well in terms of AUC and scalability

▶ Effect of shot-noise: At 10 000 shots, AUC gains vanish: γ increases from
optimal, obscuring the benefits

▶ γ and concentration: γ ≲ 0.1 anti-concentrates; γ ≳ 0.2 HEA variants
concentrate exponentially, BPINVFQK scales the best at higher γ

▶ Geometric difference: Smaller γ increases separation from RBF while increasing
classical simulability

▶ Hardware results: Q50 experiments show noticeably higher MSE for
symmetrized circuits

▶ Outlook: Classical simulability of the models, noise-resilient symmetry methods,
shot-count scaling; symmetries remain a viable method of introducing inductive
bias and improving scalability of the models
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▶ Effect of shot-noise: At 10 000 shots, AUC gains vanish: γ increases from

optimal, obscuring the benefits
▶ γ and concentration: γ ≲ 0.1 anti-concentrates; γ ≳ 0.2 HEA variants

concentrate exponentially, BPINVFQK scales the best at higher γ

▶ Geometric difference: Smaller γ increases separation from RBF while increasing
classical simulability

▶ Hardware results: Q50 experiments show noticeably higher MSE for
symmetrized circuits

▶ Outlook: Classical simulability of the models, noise-resilient symmetry methods,
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Take-home message

▶ Shot count matters in kernels

▶ Optimizing γ matters a lot in terms of model performance; implications for
classical simulability and minimum required shot count

▶ Incorporating symmetries (and/or using the BPINVFQK scheme) may help
fight the concentration problem at least at higher γ

https://urn.fi/URN:NBN:fi:aalto-202506174894
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Geometric Difference

Definition (Geometric Difference)
For two Gram matrices KC (classical) and KQ (quantum), and regularization λ,

gd(KC , KQ) =
√∥∥ √

KC
√

KQ (KQ + λI)−2
√

KQ
√

KC
∥∥

∞
.

11 Here ∥M∥∞ = maxi
∑

j |Mij |.

▶ If gd(KC , KQ) ≳
√

Ntrain, a necessary (though not sufficient) condition for
quantum advantage holds.

▶ Quantifies how “far apart” the quantum and classical feature spaces are.
▶ Widely used to assess a quantum kernel’s potential to outperform classical

counterparts.

11Huang et al., “Power of data in quantum machine learning”.
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Statistical Significance (nqubits = 10)

Comparison t p Signif.
HEA vs HEA-SYMM-ROT 2.48 0.022 *
HEA vs HEA-FULLSYMM 8.62 3.7 × 10−14 ***
HEA vs BPINVFQK 6.80 4.8 × 10−10 ***
RBF vs HEA-SYMM-ROT 2.00 0.047 *
RBF vs HEA-FULLSYMM 2.30 0.023 *
RBF vs BPINVFQK 2.02 0.044 *
RX vs HEA-SYMM-ROT 22.63 1.5 × 10−44 ***
RX vs HEA-FULLSYMM 22.73 9.9 × 10−45 ***
RX vs BPINVFQK 22.67 1.3 × 10−44 ***

Table: Paired t-tests and p-values for n = 10. Significance codes: *
p < 0.05, ** p < 0.01, *** p < 0.001.
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Statistical Significance (nqubits = 12)

Comparison t p Signif.
HEA vs HEA-SYMM-ROT 2.48 0.022 *
HEA vs HEA-FULLSYMM 2.05 0.043 *
HEA vs BPINVFQK 2.05 0.046 *
RBF vs HEA-SYMM-ROT 2.85 5.2 × 10−4 ***
RBF vs HEA-FULLSYMM 3.95 1.4 × 10−4 ***
RBF vs BPINVFQK 3.58 5.1 × 10−4 ***
RX vs HEA-SYMM-ROT 19.45 3.1 × 10−37 ***
RX vs HEA-FULLSYMM 19.48 2.7 × 10−37 ***
RX vs BPINVFQK 19.44 3.2 × 10−37 ***

Table: Paired t-tests and p-values for n = 12. Significance codes: *
p < 0.05, ** p < 0.01, *** p < 0.001.
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Statistical Significance (nqubits = 14)

Comparison t p Signif.
HEA vs HEA-SYMM-ROT 5.05 7.1 × 10−6 ***
HEA vs HEA-FULLSYMM 5.05 7.1 × 10−6 ***
HEA vs BPINVFQK 8.72 1.1 × 10−15 ***
RBF vs HEA-SYMM-ROT 1.99 0.049 *
RBF vs HEA-FULLSYMM 2.50 0.043 *
RBF vs BPINVFQK 3.58 5.1 × 10−4 ***
RX vs HEA-SYMM-ROT 36.43 1.2 × 10−87 ***
RX vs HEA-FULLSYMM 37.37 4.9 × 10−90 ***
RX vs BPINVFQK 37.27 7.5 × 10−90 ***

Table: Paired t-tests and p-values for n = 14. Significance codes: *
p < 0.05, ** p < 0.01, *** p < 0.001.
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Hyperparameter Ranges

Hyperparameter Values
C = 1/λ 107, 106, 105, 104, 103, 750, 500, 300, 150, 100, 75, 50,

25, 15, 10, 5, 1, 0.75, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.05,
0.01

γ 0.0001, 0.0005, 0.001, 0.003, 0.005, 0.01, 0.02, 0.03,
0.04, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 2

Table: Hyperparameter values used for the simulated results in this work.
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Off-Diagonal Variance of the Gram Matrix Elements
(Linear Scale)

Off-diagonal variance of the models for qubit counts nq = 4, 8, 12, 14 from experiment
configuration (2). RBF included for reference.
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ParticleNetMD QCD Score Distributions

*QCD (lead) *QCD (trail)
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ParticleNetMD Xqq Score Distributions

*Xqq (lead) *Xqq (trail)



M.Sc. thesis presentation
July 11, 2025

85/91

τ4 (N-subjettiness)

*τ4 (lead) *τ4 (trail)
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pT Distributions

*pT (lead) *pT (trail)
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Tag Jet Quark/Gluon Likelihood

*q/g (lead) *q/g (trail)
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Tag Jet Dijet Mass

*mjj
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Tag Jet Rapidity Gap

*∆ηjj
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VBS System Observables

*∆ηVBS *mVV
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Model Feature Sets by Numer of Features = nqubits
Model Features
4 features VBS_particleNetMD_QCD_lead, VBS_particleNetMD_QCD_trail,

pt_TagJet_mjj, VBS_mVV

6 features VBS_particleNetMD_QCD_lead, VBS_particleNetMD_QCD_trail,
VBS_particleNetMD_Xqq_lead, VBS_particleNetMD_Xqq_trail,
pt_TagJet_mjj, VBS_mVV

8 features VBS_particleNetMD_QCD_lead, VBS_particleNetMD_QCD_trail,
VBS_particleNetMD_Xqq_lead, VBS_particleNetMD_Xqq_trail,
VBS_deltaEta, pt_TagJet_mjj, pt_TagJet_deltaEta, VBS_mVV

10 features VBS_particleNetMD_QCD_lead, VBS_particleNetMD_QCD_trail,
VBS_particleNetMD_Xqq_lead, VBS_particleNetMD_Xqq_trail,
VBS_tau4_lead, VBS_tau4_trail, VBS_deltaEta, pt_TagJet_mjj,
pt_TagJet_deltaEta, VBS_mVV

12 features VBS_particleNetMD_QCD_lead, VBS_particleNetMD_QCD_trail,
VBS_particleNetMD_Xqq_lead, VBS_particleNetMD_Xqq_trail,
VBS_tau4_lead, VBS_tau4_trail, VBS_pt_lead, VBS_pt_trail,
VBS_deltaEta, pt_TagJet_mjj, pt_TagJet_deltaEta, VBS_mVV

14 features VBS_particleNetMD_QCD_lead, VBS_particleNetMD_QCD_trail,
VBS_particleNetMD_Xqq_lead, VBS_particleNetMD_Xqq_trail,
VBS_tau4_lead, VBS_tau4_trail, VBS_pt_lead, VBS_pt_trail,
pt_TagJet_qgl_trail, pt_TagJet_qgl_lead, VBS_deltaEta,
pt_TagJet_mjj, pt_TagJet_deltaEta, VBS_mVV
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