

LEVERHULME TRUST

Phokhara at the frontier of NNLO

Pau Petit Rosàs

On behalf of the Phokhara development team, based on [PPR, Torres Bobadilla (2507.XXXX)]

Introduction – The new $(g-2)\mu$ landscape

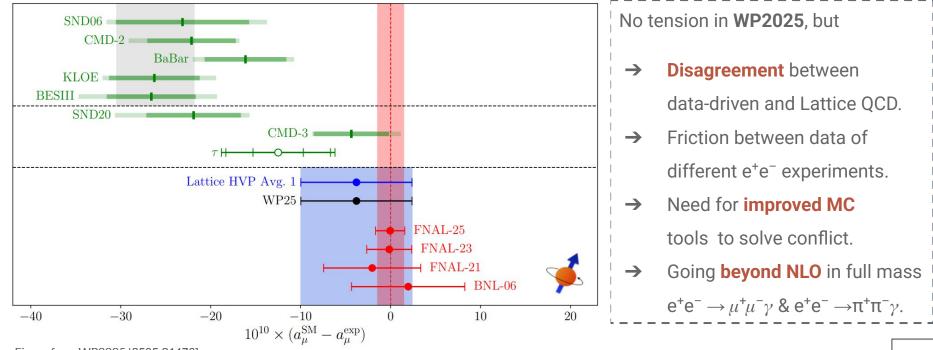
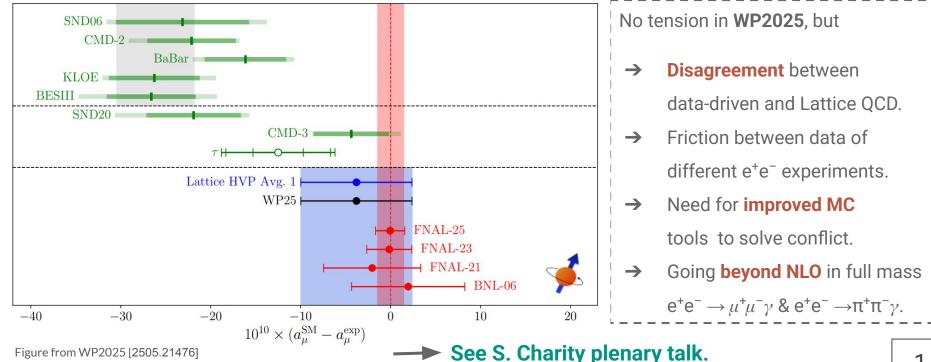



Figure from WP2025 [2505.21476]

Introduction – The new $(g-2)\mu$ landscape

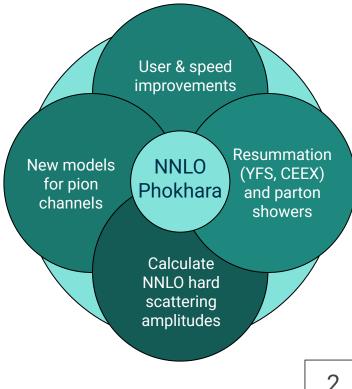
Phokhara – Past, Present & Future

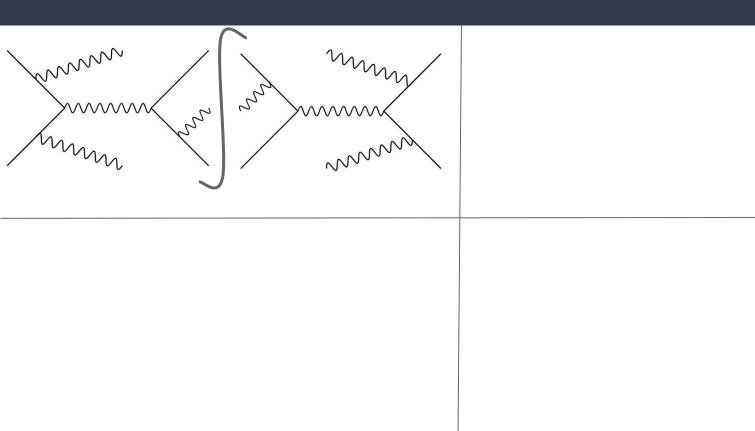
- Phokhara, MC generator for low energy e⁺e⁻ colliders, with +20 years of development. [PhysRevD.100.076004]
- Mostly used in **2 to 3** processes with massive leptons and hadrons, widely used by the community.
- Recently updated with quality of life improvements, and **compared** against other MC in **[SciPost 10.21468].**

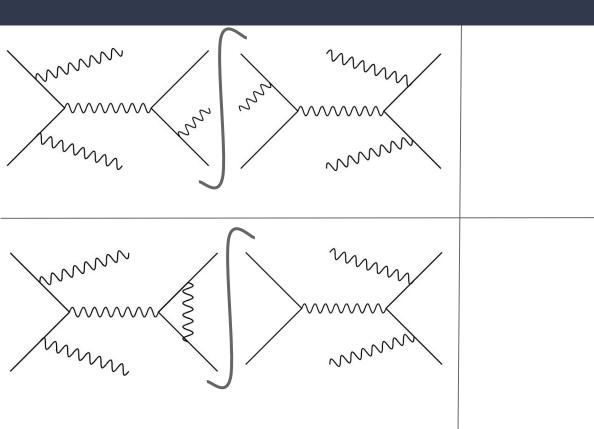
$e^+e^- ightarrow$	Order	VP	VFF	Extras	
$\mu^+\mu^-$	LO	alphaQED,		Narrow resonances	
u^+u^-	NLO with full	from [320, 321]	2	of J/ψ and $\psi(2S)$	
$\mu^+\mu^-\gamma$	mass dependence	or NSK			
$\pi^+\pi^-$	LO	alphaQED,	F×sQED	Narrow resonances	
$\pi^+\pi^-$	NLO with full	from [320, 321]	choice of	of J/ψ and $\psi(2S)$	
$\pi^+\pi^-\gamma$	mass dependence	or NSK	3 VFF	Radiative ϕ decays	
X	$X \in 2\pi^0 \pi^+ \pi^-, 2\pi^+ 2\pi^-, p\bar{p}, n\bar{n}, K^+ K^-, K^0 \bar{K}^0, \pi^+ \pi^- \pi^0, \Lambda(\to \pi^- p) \bar{\Lambda}(\to \pi^+ \bar{p}),$				
л	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				

Phokhara – Past, Present & Future

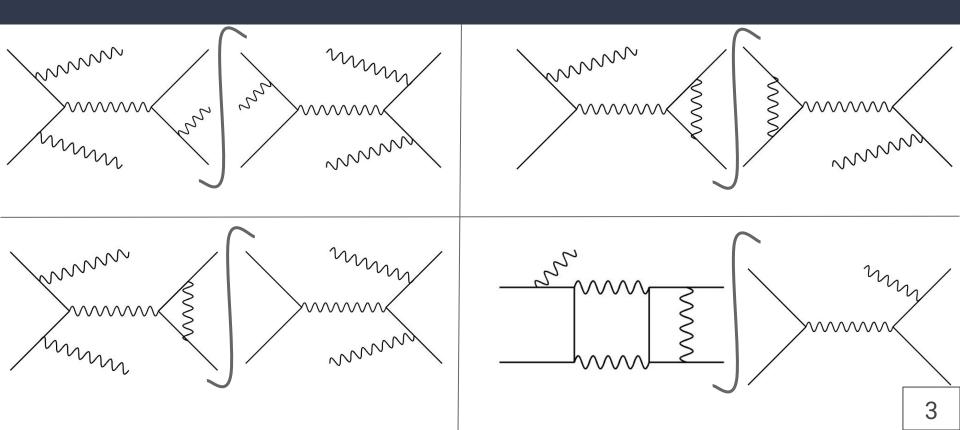
- <u>Phokhara</u>, MC generator for low energy e⁺e⁻ colliders, with +20 years of development. [PhysRevD.100.076004]
- Mostly used in 2 to 3 processes with massive leptons and hadrons, widely used by the community.
- Recently updated with quality of life improvements, and **compared** against other MC in **[SciPost 10.21468].**

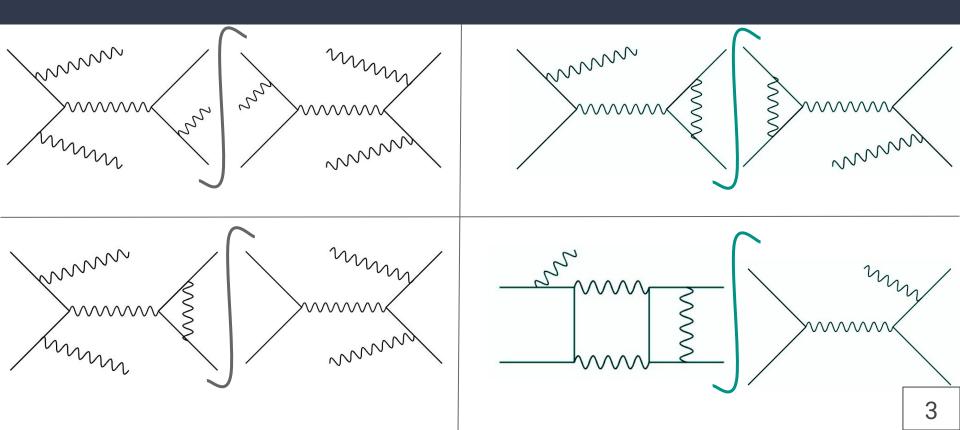

$e^+e^- \rightarrow$	Order	VP	VFF	Extras		
$\mu^+\mu^-$	LO	alphaQED,		Narrow resonances		
$\mu^+\mu^-\gamma$	NLO with full	from [320, 321]	-	of J/ψ and $\psi(2S)$		
	mass dependence	or NSK				
$\pi^+\pi^-$	LO	alphaQED,	F×sQED	Narrow resonances		
$\pi^+\pi^-\alpha$	NLO with full	from [320, 321]	choice of	of J/ψ and $\psi(2S)$		
$\pi^+\pi^-\gamma$	mass dependence	or NSK	3 VFF	Radiative ϕ decays		
X	$X \in 2\pi^0\pi^+\pi^-, 2\pi^+2\pi^-, p\bar{p}, n\bar{n}, K^+K^-, K^0\bar{K}^0, \pi^+\pi^-\pi^0, \Lambda(\to\pi^-p)\bar{\Lambda}(\to\pi^+\bar{p}),$					
Λ	$ \qquad \qquad$					


See J. Paltrinieri talk.


Phokhara – Past, Present & Future

- **Phokhara**, MC generator for low energy e⁺e⁻ colliders, with +20 years of development. [PhysRevD.100.076004]
- Mostly used in 2 to 3 processes with massive leptons and hadrons, widely used by the community.
- Recently updated with quality of life improvements, and compared against other MC in [SciPost 10.21468].


$e^+e^- ightarrow$	Order	VP	VFF	Extras	
$\mu^+\mu^-$	LO	alphaQED,		Narrow resonances	
$\mu^+\mu^-\gamma$	NLO with full	from [320, 321]	-	of J/ψ and $\psi(2S)$	
μμι	mass dependence	or NSK			
$\pi^+\pi^-$	LO	alphaQED,	F×sQED	Narrow resonances	
$\pi^+\pi^-\gamma$	NLO with full	from [320, 321]	choice of	of J/ψ and $\psi(2S)$	
л л <i>ү</i>	mass dependence	or NSK	3 VFF	Radiative ϕ decays	
X	$X \in 2\pi^0 \pi^+ \pi^-, 2\pi^+ 2\pi^-, p\bar{p}, n\bar{n}, K^+ K^-, K^0 \bar{K}^0, \pi^+ \pi^- \pi^0, \Lambda(\to \pi^- p) \bar{\Lambda}(\to \pi^+ \bar{p}),$				
Λ	$ \qquad \qquad$				



furn funn MM 22 ~~~~~ rn n ~~~~~ mm mm mm furm Mun ~~~~~ \sim mm mm 3

Challenges of $2 \rightarrow 3$ amplitudes

Qgraf, Recola, FeynRules, FORM, FeynCalc, Tapir,...

Challenges of $2 \rightarrow 3$ amplitudes

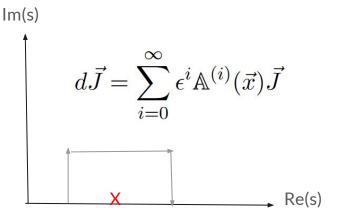
Amplitude generation		Reduction to MIs		
	Qgraf, Recola, FeynRules, FORM, FeynCalc, Tapir,		Kira, Fire, Blade, LiteRed, NeatIBP, Reduze,	

Challenges of $2 \rightarrow 3$ amplitudes

Amplitude generation	Reduction to MIs	Evaluation of MIs
Qgraf, Recola, FeynRules, FORM, FeynCalc, Tapir,	Kira, Fire, Blade, LiteRed, NeatIBP, Reduze,	AMFlow, pySecDec, DiffExp, Collier,SeaSyde,

Need for an integrator or a fast generation of grids

[PPR, Torres Bobadilla (2507.XXXX)]

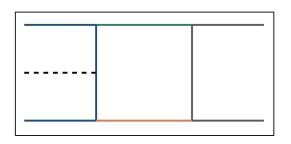

The differential equation method

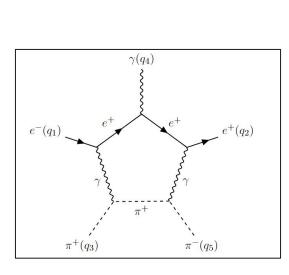
- Feynman integrals can be cast into differential form.
- Highly non trivial or impossible to obtain canonical form for some processes, but
 - once obtained, nice analytic structure.
 - Packages to solve the system of differential equations via the Frobenius method.
- However, packages are in Mathematica → slow for a MC, costly to generate grids with high dimensionality, hard to parallelize.
- What about solving the differential equations numerically?

[PPR, Torres Bobadilla (2507.XXXX)]

The differential equation method

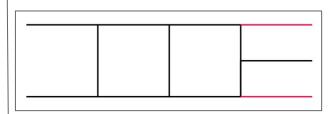
- Feynman integrals can be cast into differential form.
- Highly non trivial or impossible to obtain canonical form for some processes, but
 - once obtained, nice analytic structure.
 - Packages to solve the system of differential equations via the Frobenius method.
- However, packages are in Mathematica → slow for a MC, costly to generate grids with high dimensionality, hard to parallelize.
- What about solving the differential equations numerically?

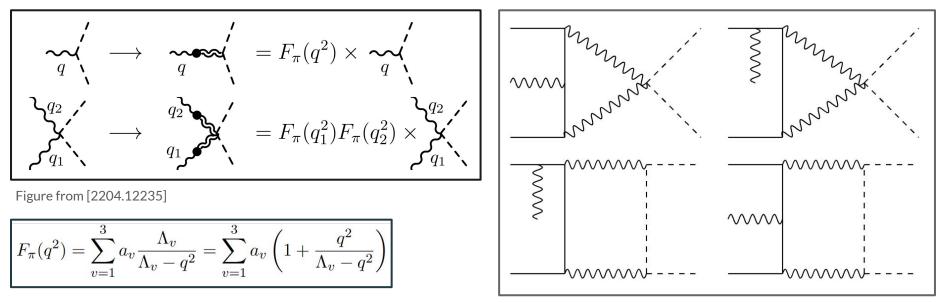

C++ integrator


A new integrator

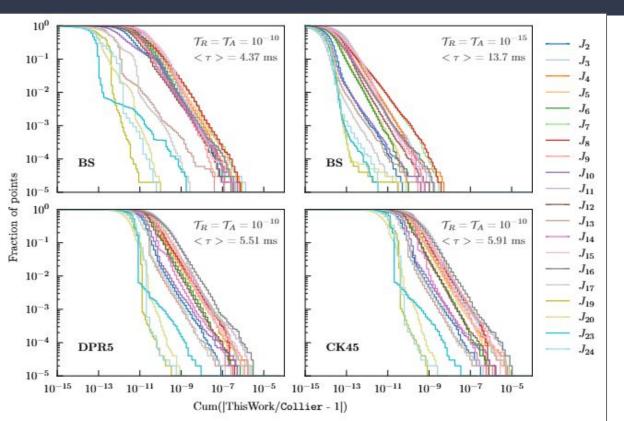
- 1. Input partial DE w.r.t. each kinematic variable.
- 2. Input boundary values for MIs at a non-singular point.
- 3. Input analytic expressions for singularities and branch cuts.
- 4. Find optimal path between origin and desired final point for each kin. var.
- 5. Evolve the DE variable by variable in that path:
 - a. Multiply the boundary values by square roots defined in terms of the current variable.
 - b. Solve the coupled partial DE with controlled stepper from Boost Odeint library.
 - c. Divide out the canonical factors from the solution.
- 6. If desired, use the final result to go to a new final point.

A few examples


New models for pion final states

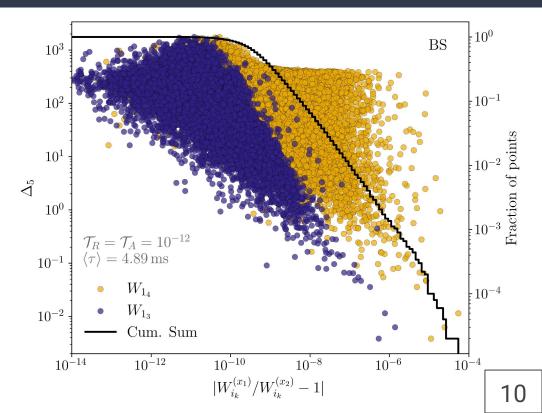

One-loop at $\Theta(\epsilon^2)$

Two-Loop five point two massive final states

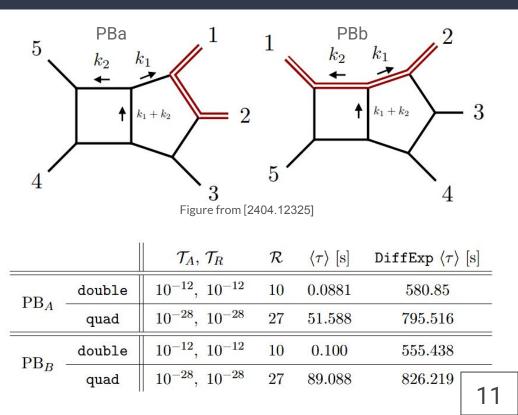


One-Loop with 9 scales

The GVMD model


One-Loop with 9 scales

- 29 MIs and two orders in the dimensional regulator.
- 100k arbitrary points.
- Process with 9 kinematic scales, two complex masses.
- Good precision and reasonable speed, slower than Collier.
- Fast and precise enough to use for evaluating integrals at higher order in the dimensional regulator.


One-Loop at $\Theta(\epsilon^2)$

- 21 MIs with four orders in the dimensional regulator.
- 50k points generated with
 Phokhara for a B-factory scenario.
- When close to singular kinematic points, precision worsens.
- Might need higher precision types, extrapolation, or explore other solutions.

Two-Loop pp→ttj

- Test integrator with two-loop one mass process. 88 and 121 MIs respectively, expanded in four orders in epsilon.
- Differential equation built in **[2404.12325]**. No canonical form for PBb, but polynomial in dim. regulator.
- Fast in double precision, might not be enough.
- However, quad precision still faster than
 DiffExp and easy to parallelize generation of grids.

Conclusions

- Need for NNLO Monte Carlos for low energy e⁺e⁻ colliders.
- Work ongoing for improving Phokhara at different frontiers:
 - **Resummation** of soft photon logs and QED parton showers.
 - Explore new models of the pion final states.
- Fast evaluation of Feynman integrals is needed.
- Built an **integrator** capable of evaluating such integrals, either on-the-fly or with grids.
- Several improvements possible for the integrator, targeting optimization and precision.

Conclusions

- Need for NNLO Monte Carlos for low energy e⁺e⁻ colliders.
- Work ongoing for improving Phokhara at different frontiers:
 - **Resummation** of soft photon logs and QED parton showers.
 - Explore new models of the pion final states.
- Fast evaluation of Feynman integrals is needed.
- Built an **integrator** capable of evaluating such integrals, either on-the-fly or with grids.
- Several improvements possible for the integrator, targeting optimization and precision.