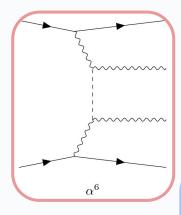


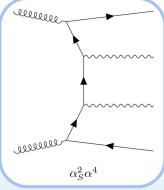
Vector Boson Scattering at the LHC: A Combined Measurement with CMS Run 2 Data

Marseille - EPS HEP 2025 8 July 2025

Andrea Claudio Maria Bulla¹ on the behalf of the CMS Collaboration

¹ Università di Cagliari, INFN di Padova

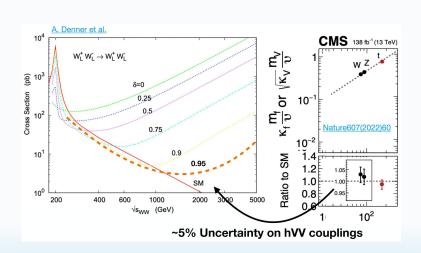

Vector Boson Scattering

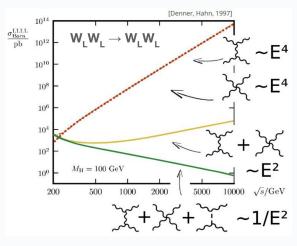


Vector boson scattering (VBS) happens at the LHC when the two incoming partons radiate electroweak vector bosons that interact with each other

- At LO, the pure EWK signal is $\sim \alpha^6$, while the mixed QCD induced $\sim \alpha_c^2 \alpha^4$ and the interference is $\sim \alpha_c \alpha^5$
- Without photons, VBS presents a 6-fermions final state:
 2 jets coming from the initial state partons, 4 coming from the scattered bosons
- 2 highly energetic jets ("tagging" jets):
 - o large gap in **η** (**|Δη_{::}|)**
 - o high jet invariant mass (m_{ii})
- leptons (lv or 2l) from the boson are emitted centrally with respect to the tagging jets ($\mathbf{Z}_{\mathbf{v}}$)

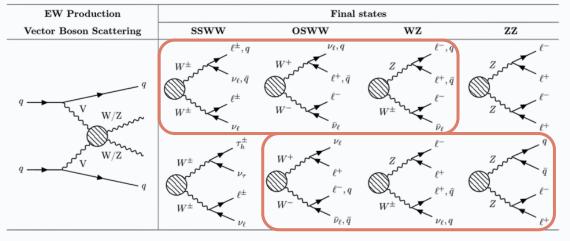
$$Z_X = \eta_X - \frac{1}{2}(\eta_{j_1} + \eta_{j_2})$$




Vector Boson Scattering

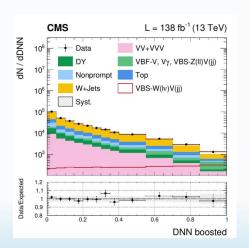
VBS is a fundamental probe to understand the electroweak symmetry breaking (Brout-Englert-Higgs) mechanism

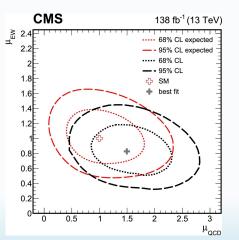
The presence of the Higgs field regularizes the VBS cross-section cancelling exactly the ~E² divergence of bosonic-only processes

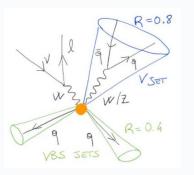


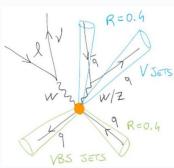
This is a very delicate equilibrium: if H boson is **not** the SM one (δ), cancellation is only partial, expected divergence of $V_L V_L \rightarrow V_L V_L$ cross section (a) high energies \rightarrow New physics

Shorthand name	Production modes	Final state	N. ℓ	Reference
WV	$pp ightarrow W^+W^-jj, W^\pm W^\pm jj, W^\pm Zjj$	ℓu jjjj	1	[1]
SSWW (e, μ)	pp $ ightarrow$ W $^\pm$ W $^\pm$ jj	$\ell^{\pm}\ell^{\pm}$ 2 $ u$ jj	2	[2]
OSWW	$pp o W^+W^-jj$	$\ell^+\ell^-$ 2 $ u$ jj	2	[3]
ZV	$pp o W^\pm Zjj, ZZjj$	2 <i>ℓjjjj</i> j	2	[4]
SSWW ($ au_{h}$)	$pp o W^\pm W^\pm jj$	$\ell^{\pm} au_{h}^{\pm}$ 2 $ u$ jj	2	[5]
WZ	$p p ightarrow W^\pm Z j j$	3ℓvjj	3	[2]
ZZ(4ℓ)	pp → ZZjj	4 ℓjj	4	[6]




1 lepton

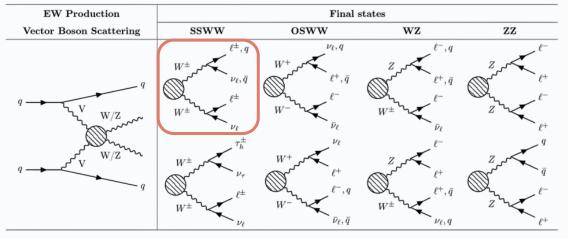



First evidence for WW/WZ semileptonic VBS. Final state requires 1 charged lepton + MET and 4(3) jets.

- Resolved regime: 4 AK4 jets
- Boosted regime: 2 AK4 + 1 AK8 (boosted decay of the V boson)
- DNN trained in each regime to improve performance

Results include a 2D fit for the pure EWK and mixed-QCD production of a W + jets

$$\mu_{EW} = 0.85 \pm 0.12(stat)^{+0.19}_{-0.17}(syst) = 0.85^{+0.23}_{-0.21}$$


$$\mu_{EW+QCD} = 0.97 \pm 0.06(stat)^{+0.19}_{-0.21}(syst) = 0.97^{+0.20}_{-0.22}$$

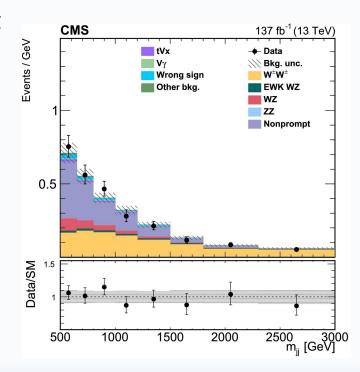
in agreement with the SM expectations

Shorthand na	me	Production modes	Final state	N. ℓ	Reference
WV		$pp o W^+W^-jj$, $W^\pm W^\pm jj$, $W^\pm Zjj$	ℓu jjjj	1	[1]
SSWW (e , μ	.)	pp $ ightarrow$ W $^\pm$ W $^\pm$ jj	$\ell^{\pm}\ell^{\pm}$ 2 $ u$ jj	2	[2]
OSWW		pp $ ightarrow$ W $^+$ W $^-$ jj	$\ell^+\ell^-$ 2 $ u$ jj	2	[3]
ZV		$pp o W^\pm Zjj, ZZjj$	2 <i>ℓjjjj</i> j	2	[4]
SSWW ($ au_{h}$)		$pp o W^\pm W^\pm jj$	$\ell^{\pm} au_{h}^{\pm}$ 2 $ u$ jj	2	[5]
WZ		$pp o W^\pm Zjj$	3ℓvjj	3	[2]
ZZ(4ℓ)		pp → ZZjj	4 ℓjj	4	[6]

2 leptons (I)

SSWW VBS final state: 2 (VBS) jets and 2 isolated lepton + MET.

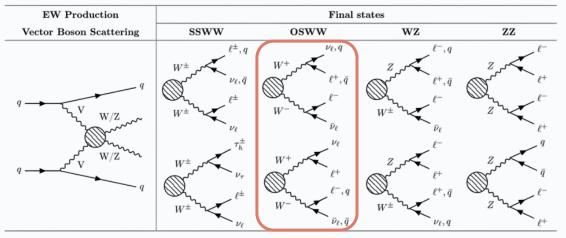
Significant contribution from VBS-WZ (with 1 lepton lost) → W[±]W[±] and WZ cross-section measurement is simultaneous


Other backgrounds:

- Non-prompt: tight-to-loose ratio relaxing one lepton requirements
- Wrong-sign: efficiency correction factors estimated in Z events
- QCD-induced W[±]W[±] + 2 jets, W[±]Z + 2 jets
- QCD and EW ZZ + 2 jets

Observables:

- EW W[±]W[±] signal is extracted with a 2D fit $m_{ij} \times m_{jj}$ (8x4 bins)
- m_{ii} used to constrain QCD-WZ and ZZ normalizations

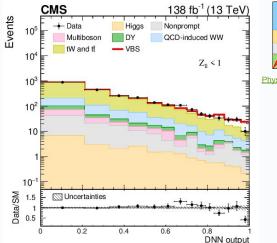

VBS EW production of $W^{\pm}W^{\pm}$ is observed with a significance >> 5σ

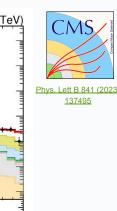
Shorthand name	Production modes	Final state	N. ℓ	Reference
WV	$pp o W^+W^-jj, W^\pm W^\pm jj, W^\pm Zjj$	ℓu jjjj	1	[1]
SSWW (e, μ)	$pp o W^\pm W^\pm jj$	$\ell^{\pm}\ell^{\pm}$ 2 $ u$ jj	2	[2]
OSWW	$pp o W^+W^-jj$	$\ell^+\ell^-$ 2 $ u$ jj	2	[3]
ZV	pp → W [±] Zjj, ZZjj	2 ℓjjjj	2	[4]
SSWW ($ au_h$)	$pp ightarrow W^\pm W^\pm jj$	$\ell^{\pm} au_{h}^{\pm}$ 2 $ u$ jj	2	[5]
WZ	$p p ightarrow W^\pm Z j j$	3ℓvjj	3	[2]
ZZ(4ℓ)	pp → ZZjj	4 ℓjj	4	[6]

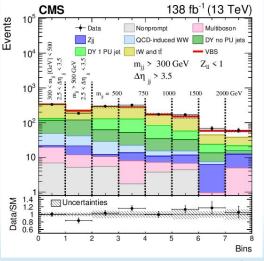
2 leptons (II)

First observation of the EW production of a leptonically decaying W⁺W⁻ pair + jets. Final state requires 2 leptons + MET + 2 (VBS) jets. Different background composition depending on SF / DF channels:

- (SF) ee, μμ: major contribution from DY
- (DF) $e\mu$: reduced DY contribution, leading sensitivity

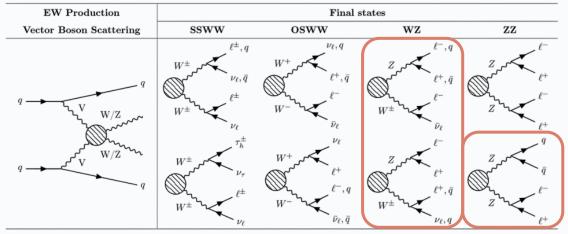

Lepton-flavor dependent signal extraction:


- (SF): 5 m_{jj} bins for m_{jj} \geq 500 and $|\Delta \eta_{jj}| \geq$ 3.5, 3 bins in $|\Delta \eta_{jj}|$ and m_{ij} with low sensitivity
- (DF): DNN trained against main backgrounds. Different model trained depending on Z_{II} value


The leptonic VBS W⁺W⁻ cross section is observed with a significance of 5.6σ (5.2 expected)

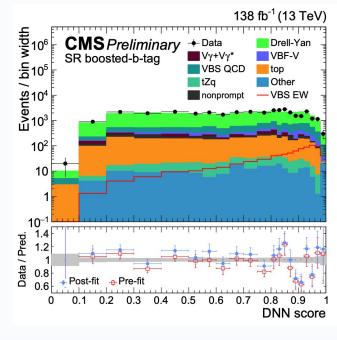
 $\sigma_{EW} = 10.2 \pm 2.0 \text{fb}$

in agreement with the SM expectations (9.1 ± 0.6 fb)



Shorthand name	Production modes	Final state	N. ℓ	Reference
WV	$pp o W^+W^-jj, W^\pm W^\pm jj, W^\pm Zjj$	ℓu jjjj	1	[1]
SSWW (e, μ)	$pp o W^\pm W^\pm jj$	$\ell^{\pm}\ell^{\pm}$ 2 $ u$ jj	2	[2]
OSWW	$pp o W^+W^-jj$	$\ell^+\ell^-$ 2 $ u$ jj	2	[3]
ZV	pp → W [±] Zjj, ZZjj	2 ℓjjjj	2	[4]
SSWW ($ au_h$)	pp $ ightarrow$ W $^\pm$ W $^\pm$ jj	$\ell^{\pm} au_{h}^{\pm}$ 2 $ u$ jj	2	[5]
WZ	$pp o W^\pm Zjj$	3ℓvjj	3	[2]
ZZ(4ℓ)	pp o ZZjj	4 ℓjj	4	[6]

2 leptons (III)

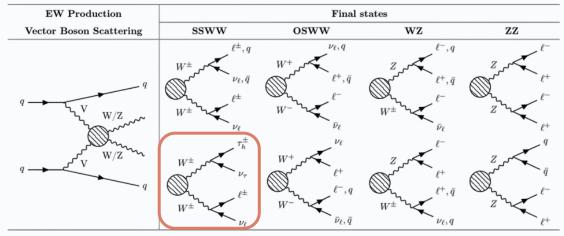


Measurement for ZW/ZZ semileptonic VBS. Final state requires 2 OS charged leptons and 4(3) jets.

- Resolved regime: 4 AK4 jets
- Boosted regime: 2 AK4 + 1 AK8 (boosted decay of the V boson)
- SR splitted in btag/bveto to account for different mismodeling in the DY events
- Multiple DNNs trained in each regime and used to extract the signal cross-section
- $p_T(Z)$ x VBS trialing jet p_T is used in the DY CRs to constrain and correct the main background

The semileptonic VBS ZV cross section is measured with a significance of 1.3 σ (1.8 expected)

$$\mu_{EW} = 0.63^{+0.53}_{-0.51}$$

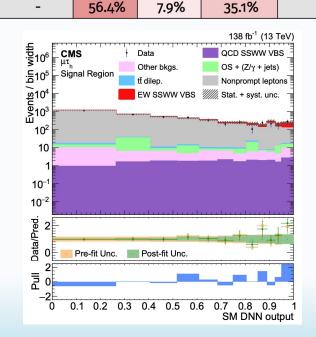

in agreement with the SM expectations

12

Shorthand name	Production modes	Final state	N. ℓ	Reference
WV	$pp o W^+W^-jj, W^\pm W^\pm jj, W^\pm Zjj$	ℓu jjjj	1	[1]
SSWW (e, μ)	$pp o W^\pm W^\pm jj$	$\ell^{\pm}\ell^{\pm}$ 2 $ u$ jj	2	[2]
OSWW	$pp o W^+W^-jj$	$\ell^+\ell^-$ 2 $ u$ jj	2	[3]
ZV	$pp o W^\pm Zjj, ZZjj$	2 ℓjjjj	2	[4]
SSWW ($ au_h$)	$pp o W^\pm W^\pm jj$	$\ell^{\pm} au_{h}^{\pm}$ 2 $ u$ jj	2	[5]
WZ	pp $ ightarrow$ W $^\pm$ Zjj	3 <i>ℓν</i> jj	3	[2]
ZZ(4ℓ)	pp → ZZjj	4 ℓjj	4	[6]

2 leptons (IV)

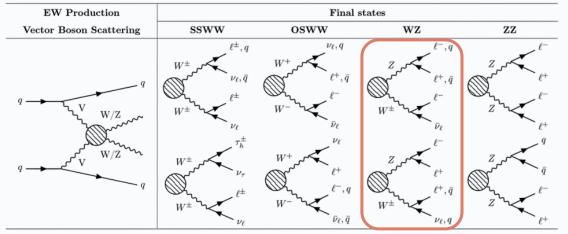
OS CR


- SSWW VBS with 1 tau: $\tau_{\rm h}$ exploited for the first time in VBS. Final state requires 2 (VBS) jets, 1 lepton and 1 $\tau_{\rm h}$ + MET
- τ_h: reconstructed using hadron-plus-strips (HPS) algorithm
 [7]. DeepTau [8] is also used to distinguish them from quarks, gluons or charged leptons.
- DNN trained for enhance signal significance in SR, also used in CRs to boost separation in the fit

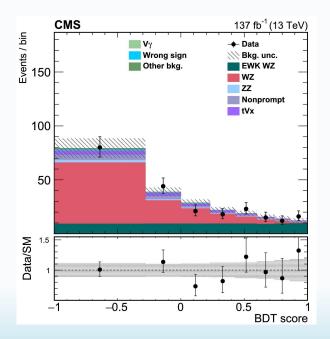
Results include a 2D fit for the pure EWK and mixed-QCD VBS production

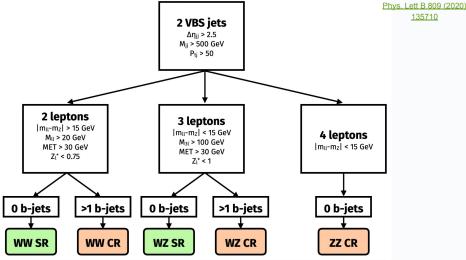
EW W[±]W[±] jj
$$\rightarrow$$
l $au_{
m h}$ 2 au jj significance of 2.7 σ (2.9 EW + QCD)
$$\mu_{EW}=1.44^{+0.63}_{-0.53} \qquad \mu_{EW+QCD}=1.43^{+0.60}_{-0.54}$$

in agreement with the SM expectations


					arXiv:2410.04210
Region	EW-VBS	Fake	tī	OS+ Z/γ	QCD-VBS
SR $e au_h$	3.0%	92.2%	0.9%	2.0%	0.3%
SR $\mu au_{ extsf{h}}$	3.1%	93.3%	0.5%	1.7%	0.3%
t t CR	-	37.1%	61.6%	8.2%	-

Shorthand name	Production modes	Final state	N. ℓ	Reference
WV	$pp o W^+W^-jj, W^\pm W^\pm jj, W^\pm Zjj$	ℓu jjjj	1	[1]
SSWW (e, μ)	$pp o W^\pm W^\pm jj$	$\ell^{\pm}\ell^{\pm}$ 2 $ u$ jj	2	[2]
OSWW	$pp o W^+W^-jj$	$\ell^+\ell^-$ 2 $ u$ jj	2	[3]
ZV	$pp o W^\pm Zjj, ZZjj$	2 <i>ℓjjjj</i> j	2	[4]
SSWW ($ au_h$)	$pp o W^\pm W^\pm jj$	$\ell^{\pm} au_{h}^{\pm}$ 2 $ u$ jj	2	[5]
WZ	$pp o W^\pm Zjj$	3 ℓν j j	3	[2]
ZZ(4ℓ)	pp → ZZjj	4 ℓjj	4	[6]

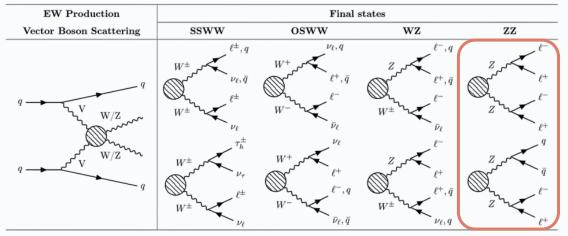




3 leptons

The VBS WZ production is treated as a background for the W[±]W[±] analysis, but since is an interesting process itself, it's measured together with the VBS W[±]W[±]

QCD-WZ induced events are the main background:


BTD is trained in the WZ SR and used to extract the signal

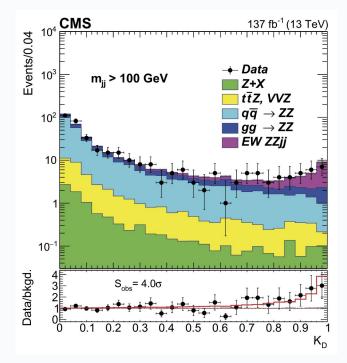
VBS EW production of W $^{\pm}$ Z is observed with a significance of 6.8 σ (5.3 expected)

Shorthand name	Production modes	Final state	N. ℓ	Reference
WV	$pp o W^+W^-jj, W^\pm W^\pm jj, W^\pm Zjj$	ℓu jjjj	1	[1]
SSWW (e, μ)	$pp o W^\pm W^\pm jj$	$\ell^{\pm}\ell^{\pm}$ 2 $ u$ jj	2	[2]
OSWW	$pp o W^+W^-jj$	$\ell^+\ell^-$ 2 $ u$ jj	2	[3]
ZV	$pp o W^\pm Zjj, ZZjj$	2 <i>ℓjjjj</i> j	2	[4]
SSWW ($ au_{h}$)	$pp o W^\pm W^\pm jj$	$\ell^{\pm} au_{h}^{\pm}$ 2 $ u$ jj	2	[5]
WZ	$pp o W^\pm Zjj$	3ℓνjj	3	[2]
ZZ(4ℓ)	pp → ZZjj	4 ℓjj	4	[6]

4 leptons

Evidence for EW production of four charged leptons. Final state with 2 (VBS) jets and two OS same-flavor lepton pairs consistent with Z decays

- ZZ-inclusive region: m_{ii} > 100
- loose VBS-enriched: $|\tilde{\Delta} \eta_{ij}| > 2.4$, $m_{jj} > 400$
- tight VBS-enriched: $|\Delta \eta_{ij}|^2 > 2.4$, $m_{ij}^2 > 1$ TeV
- CR defined inverting one of the loose VBS conditions


Signal is extracted with a Matrix Element Discriminant (K_D) after having check the performances against a BDT.

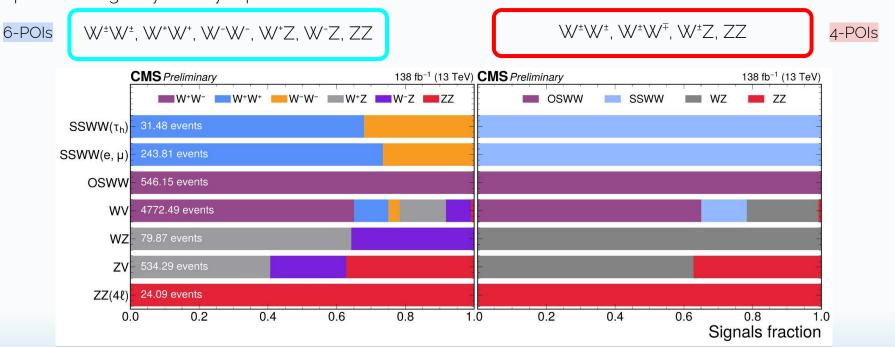
Evidence for VBS EW production of ZZ with 4.0 σ (3.5 expected)

Inclusive region: $\sigma_{EW} = 0.33^{+0.11}_{-0.10}(stat)^{+0.04}_{-0.03}(syst)$ fb

loose VBS-enriched: $\sigma_{EW} = 0.180^{+0.070}_{-0.060}(stat)^{+0.021}_{-0.012}(syst)$ fb

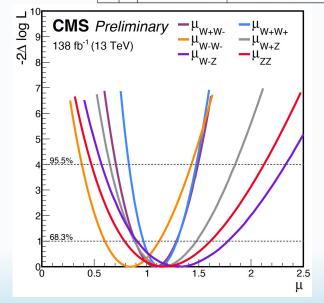
tight VBS-enriched: $\sigma_{EW} = 0.09^{+0.04}_{-0.03}(stat) \pm 0.02(syst)$ fb

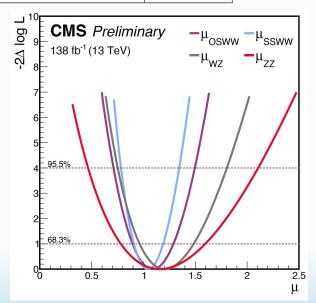
in agreement with the SM expectations



Statistical Model

Two combination models are considered: one with four parameters of interest (4-POIs), providing a global probe of VBS processes, and another with six parameters of interest (6-POIs), which extends the analysis to test the expected charge asymmetry in production.

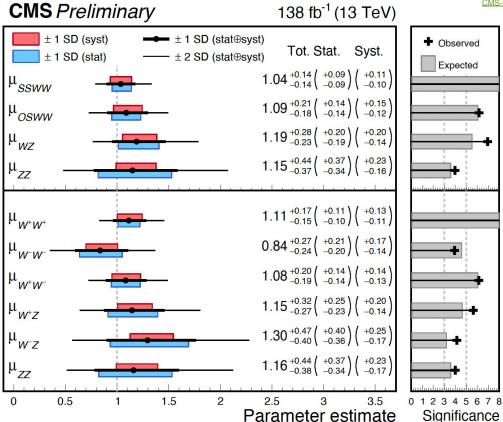




Results

		osww	SS	ww	V	VZ	ZZ
4-POI	μ	1.09 ^{+0.21} _{-0.18} (+0.20)	1.04_0.14 (+0.14)		1.19 ^{+0.2} _{-0.2}	$1.15^{+0.44}_{-0.37} \left(^{+0.44}_{-0.37}\right)$	
	σ	6.2 (6.1)	≫ 5	(≫ 5)	7.0	(5.5)	4.0 (3.6)
		W+W-	W+W+	W^-W^-	W ⁺ Z	W^-Z	ZZ
6-POI	μ	1.08+0.20 (+0.18)	1.11 ^{+0.17} _{-0.15} (+0.14)	$0.84^{+0.27}_{-0.24} \left(^{+0.28}_{-0.25}\right)$	1.15+0.32 (+0.32)	1.30+0.47 (+0.44)	1.16+0.44 (+0.42)
	σ	6.1 (6.1)	≫ 5 (≫ 5)	4.0 (4.6)	5.7 (4.7)	4.2 (3.2)	4.0 (3.6)

Results

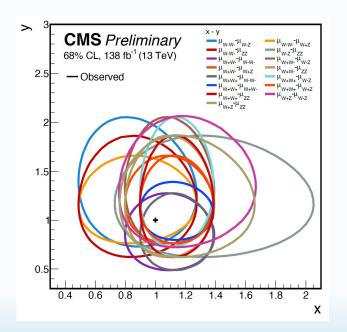


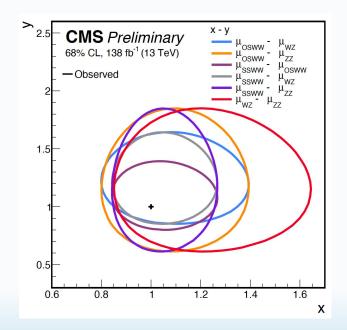
20

Most channels show an excess.

Signal modeling is currently only at LO; NLO corrections can reduce yields by up to 40% in the high-energy tails → even larger excesses are expected

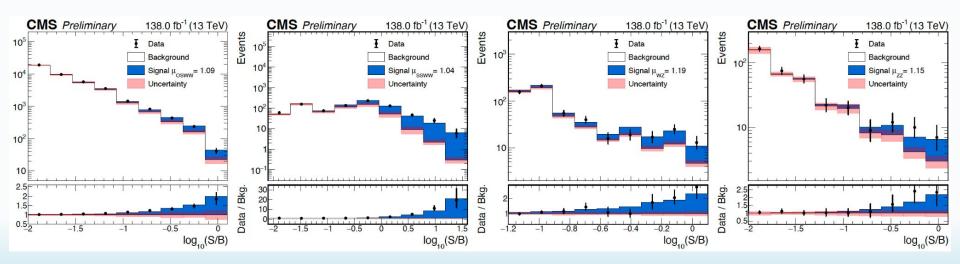
- Several analyses are now equally affected by systematic and statistical uncertainties, opening the door to polarized VBS studies
- All charged coupling coefficients
 have been fitted simultaneously,
 providing individual evidence for each
 and achieving a 5–10% improvement





Results

A simultaneous scan is performed over pairs of signal strengths, with the remaining μ parameters profiled alongside the nuisance parameters. The results show only mild correlations and are in good agreement with SM expectations.



S/B plots

Prefit log(S/B) plots show good agreement with the SM prediction at LO, differentially

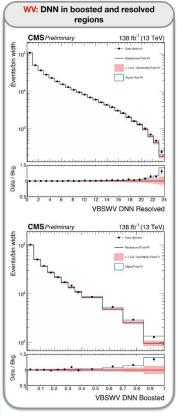
- For all the input templates bins, $log[S(\mu=1)/B]$ is computed
- Postfit yields of signal, backgrounds and data is assigned to the leading S distribution: plots are mutually exclusive (data is not shown twice)
- Uncertainty on the background prediction is computed with 500 toys

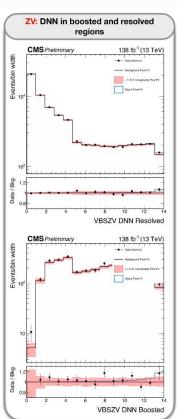
Conclusions

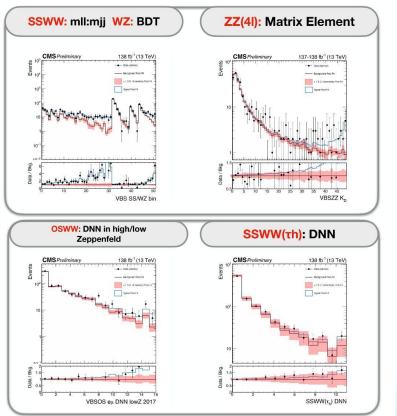
23

- First VBS combination including five fully leptonic and two semileptonic channels
- Two statistical models used: one with 4 and one with 6 parameters of interest
- Results based on 1D and 2D profile likelihood scans show good agreement with the SM, even in log(S/B) bins
- Combined fit improves signal strength $\langle \mu \rangle$ precision by 5–10% over individual analyses
- A mild excess of data observed compared to predictions
- First simultaneous evidence for all six charged VBS parameters

This VBS combination marks a first step toward a global interpretation of VBS processes. Future developments will explore EFT interpretations and polarization-sensitive measurements.




Backup



Overlap (I)

Table 14: Summary table of the signal regions defined in the analyses entering the combination along with some of the selections that make them orthogonal to each other

William Source of the Servetions transfer transfer of the Servetion of the									
Region	n. ℓ	ℓ veto	SF	∑charge	b-veto	m_{ll}	MET	n. AK4	
WV-SR	1	yes	-	1	yes	-	-	(≥ 4) or $(\ge 2 + \ge 1 \text{ AK8})$	
SS-SR	2	yes	-	2	yes	> 20 GeV	> 30 GeV	≥ 2	
OS-SR(SF)	2	yes	Yes	0	yes	> 120 GeV	> 60 GeV	≥ 2	
OS-SR(DF)	2	yes	No	0	yes	> 50 GeV	> 20 GeV	≥ 2	
ZV-SR(btag)	2	yes	Yes	0	no	∈ [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1 \text{ AK8})$	
ZV-SR(bveto)	2	yes	Yes	0	yes	∈ [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1 \text{ AK8})$	
WZ-SR	3	yes	Yes (Z)	1	yes	∈ [76, 106] GeV	> 30 GeV	≥ 2	
ZZ-SR	4	yes	Yes	0	-	∈ [60,120] GeV	-	≥ 2	

Table 15: Summary table of the signal regions defined in the analyses entering the combination along with some of the selections that make them orthogonal to each other

Total William Source of the Source trains attend of the Source of the So									
Region	n. ℓ	ℓ veto	SF	∑charge	b-veto	m_{ll}	MET	n. AK4	
SS-SR	2	yes	-	2	yes	> 20 GeV	> 30 GeV	≥ 2	
OS-SR(SF)	2	yes	Yes	0	yes	> 120 GeV	> 60 GeV	≥ 2	
OS-SR(DF)	2	yes	no	0	yes	> 50 GeV	> 20 GeV	≥ 2	
ZV-Top	2	yes	no	0	-	∈ [76, 106] GeV	-	$(\geq 4) \text{ or } (\geq 2 + \geq 1 \text{ AK8})$	
OS-DY(DF)	2	yes	no	0	yes	∈ [50,80] GeV	> 20 GeV	≥ 2	
OS-DY(SF)	2	yes	yes	0	yes	∈ [76, 106] GeV	> 60 GeV	≥ 2	
ZV-DY(bveto)	2	yes	yes	0	yes	∈ [76, 106] GeV	-	$(\geq 4) \text{ or } (\geq 2 + \geq 1 \text{ AK8})$	
ZV-SR(bveto)	2	yes	yes	0	yes	∈ [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1 \text{ AK8})$	

2 leptons - bveto

2 charged leptons regions (b-vetoed): Negligible overlap

- SSWW SRs orthogonal to all other b-vetoed regions thanks to $|\Sigma|$ charge = 2
- SSWW(τ_h) OS CR only region requiring a τ_h
- ZV Top CR partially overlap with OS-SR(DF), OS-DY(DF) → Removed ZV Top CR
- OSWW DY CR, ZV-DY and ZV-SR different MET requirements and target different kinematic regimes in number of jets: ZV SR $m_V \in [65, 105]$ inverted for ZV DY CR

Region	n. <i>ℓ</i>	ℓ/ au veto	SF	∑ charge	b-veto	m _{ll}	MET	n. AK4
SS-SR	2	yes/yes	-	2	yes	> 20 GeV	> 30 GeV	≥ 2
SS($ au$)-SR	2	yes/no	-	2	yes	-	> 50 GeV	≥ 2
SS($ au$)-OS	2	yes/no	-	o	yes	-	-	≥ 2
OS-SR(SF)	2	yes/-	Yes	o	yes	> 120 GeV	> 60 GeV	≥ 2
OS-SR(DF)	2	yes/-	no	o	yes	> 50 GeV	> 20 GeV	≥ 2
OS-DY(DF)	2	yes/-	no	О	yes	€ [50, 80] GeV	> 20 GeV	≥ 2
OS-DY(SF)	2	yes/-	yes	0	yes	€ [76, 106] GeV	> 60 GeV	≥ 2
ZV-DY(bveto)	2	yes/-	yes	o	yes	∈ [76, 106] GeV	-	(≥ 4) or $(\ge 2 + \ge 1$ AK8)
ZV-SR(bveto)	2	yes/-	yes	o	yes	€ [76, 106] GeV	-	(≥ 4) or $(\ge 2 + \ge 1$ AK8)

2 leptons - btag

Potential overlaps from 2 charged leptons regions (b-tag): <u>Negligible overlap</u>

- SSWW-btag orthogonal to all other b-tag regions thanks to $|\Sigma|$ charge = 2
- SSWW(τ_h) Top CR only region requiring a τ_h
- OSWW(ee, $\mu\mu$) Top CR orthogonal by SF requirements and $m_{_{||}}$ > 120 GeV
- ZV Top CR partially overlap with OS-SR(DF), OS-DY(DF) → Removed ZV Top CR
- ZV Top CR partially overlap with OS-Top CR (e μ) \rightarrow Removed ZV Top CR

Region	n. <i>ℓ</i>	ℓ/ au veto	SF	∑ charge	b-veto	m _{ll}	MET	n. AK4
SS-b	2	yes/yes	-	2	no	> 20 GeV	> 30 GeV	≥ 2
SS($ au$)-Top	2	yes/no	-	О	no	-	> 50 GeV	≥ 2
OS-Top(SF)	2	yes/-	yes	0	no	> 120 GeV	> 60 GeV	≥ 2
ZV-DY(btag)	2	yes/-	yes	o	no	€ [76, 106] GeV	-	(≥ 4) or $(\ge 2 + \ge 1$ AK8)
ZV-SR(btag)	2	yes/-	yes	О	no	€ [76, 106] GeV	-	(≥ 4) or $(\ge 2 + \ge 1$ AK8)
OS-Top(DF)	2	yes/-	no	0	no	> 50 GeV	> 20 GeV	≥ 2

Other regions

Other regions do not show significant overlaps

- WV CR only regions with 1 charged lepton and veto on additional ones
- SSWW/WZ ZZ CR not sensitive to EW ZZ \rightarrow 4 ℓ but used to measure normalization of QCD-induced part \rightarrow Removed ZZ CR

Region	n. <i>ℓ</i>	ℓ/ au veto	SF	∑ charge	b-veto	m _{ll}	MET	n. AK4
WV-Top	1	yes/-	-	1	no	-	-	(≥ 4) or $(\ge 2 + \ge 1$ AK8)
WV-Wjets	1	yes/-	-	1	yes	-	-	(≥ 4) or $(\ge 2 + \ge 1$ AK8)
ZZ-SR	4	yes/-	yes	0	-	€ [60, 120] GeV	1	≥ 2

Overlap (II)

Table 16: Summary table of the signal regions defined in the analyses entering the combination along with some of the selections that make them orthogonal to each other

					/			
Region	n. <i>l</i>	ℓ veto	SF	$ \sum charge $	b-veto	m_{ll}	MET	n. AK4
WV-Top	1	yes	-	1	no	-	-	$(\geq 4) \text{ or } (\geq 2 + \geq 1 \text{ AK8})$
SS-b	2	yes	7	2	no	> 20 GeV	> 30 GeV	≥ 2
WZ-b	3	yes	yes (Z)	1	no	∈ [76,106] GeV	> 30 GeV	≥ 2
OS-Top(SF)	2	yes	yes	0	no	> 120 GeV	> 60 GeV	≥ 2
ZV-DY(btag)	2	yes	yes	0	no	∈ [76,106] GeV	-	$(\geq 4) \text{ or } (\geq 2 + \geq 1 \text{ AK8})$
ZV-SR(btag)	2	yes	yes	0	no	∈ [76,106] GeV	-	$(\geq 4) \text{ or } (\geq 2 + \geq 1 \text{ AK8})$
ZV-Top	2	yes	no	0	-	∈ [76,106] GeV	-	$(\geq 4) \text{ or } (\geq 2 + \geq 1 \text{ AK8})$
OS-Top(DF)	2	yes	no	0	no	> 50 GeV	> 20 GeV	≥ 2

Table 17: Summary table of the signal regions defined in the analyses entering the combination along with some of the selections that make them orthogonal to each other

Region	n. <i>l</i>	ℓ veto	SF	∑charge	b-veto	m_{ll}	MET	n. AK4
WV-Wjets	1	yes	-	1	yes	-	-	$(\geq 4) \text{ or } (\geq 2 + \geq 1 \text{ AK8})$
ZZ-SR	4	yes	yes	0	-	∈ [60,120] GeV	-	≥ 2
SS-ZZ	4	yes	yes	0	-	∈ [76, 106] GeV	-	≥ 2

Correlation table (I)

>	\$\$\$\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	S
v	94.	· > > > > > >
	(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · ·
		<i>,,,,,</i> ,
		S
N.		shape? shape? shape? shape? shape?
CMS.2e2mu.Zjets.2017	OOK STORM AND THE CORE STRENG WAS AND THE CORE STRENG	CMS_cres_j_2018 CMS_scale_pENAsolute_2016 CMS_scale_pENAsolute_2018 CMS_scale_pENAsolute_2018 CMS_scale_pENBECT_2016 CMS_scale_pENBECT_2018 CMS_scale_pENBECT_2018 CMS_scale_pENBECT_2018
> '	***************************************	, , , , , , , ,
	· · · · · · · · · · · · · · · · · · ·	· > > > > > >
		<i>,,,,,</i> ,
		>>>>>
		S
N I		shape shape shape shape shape shape
CMS-2e2mu-Zjets-2016	CORS 1982 Why are and CORS 1983 Why are and 1983 Why ar	CMS.res.j.2017 CMS.scale JESAbsoute CMS.scale JESAbsoute 2017 CMS.scale JESAbsoute 2017 CMS.scale JESBECL 2017 CMS.scale JESBECL 2017 CMS.scale JESECC 2017 CMS.scale JESEC 2017
	200	CORSTSINATION OF THE PROPERTY

Correlation table (II)

,	222222-12-12222-1-1-1-1-12-1-1-1-1-12-12
1	222-1-12-1-1-222-1-1-1-1-1-1-1-1-222-1-12-1-22-1
,	
	and a commentation of the comment of
shape?	
CMS-scale-JESHF	COS Scale JESTE 2017 COS Scale JESTE 2017 COS Scale JESTE 2017 COS Scale JESTE 2017 COS Scale Sc
>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,	555 - 55
,	
	······································
shape	
CMS-scale-JESFlavorQCD	ONS codes in 1911 2015 CORS codes in 1912 CORS codes codes in 1912 CORS codes in 1912 COR
	CMS.scale.IESFlavorOCD shape CMS.scale.IESHF shape?