Top and Electroweak physics at the LHeC

Circles in a circle W Kandinsky

Top and Electroweak Physics at the LHeC

Christian Schwanenberger DESY

- **University of Hamburg CLUSTER OF EXCELLENCE QUANTUM UNIVERSE**
- **European Physical Society Conference on High Energy Physics EPS-HEP 2025**
 - Marseille, France 11 July 2025

Linac-Ring Collider, LHeC and FCC-eh

FCC-eh (60 GeV electron beams) *E_{cms}* = 3.5 TeV, described in CDR of the FCC

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

"Bridge" between current and future major collider @ CERN

Current flagship (27km) *impressive program up to 2041*

Top and Electroweak Physics at the LHeC

Future Circular Collider (FCC) big sister future ambition (90km), beyond 2048

"Bridge" between current and future major collider @ CERN

Current flagship (27km) *impressive program up to 2041*

cost ~2 BCHF ⊕ one detector operational cost similar to HL-LHC

Top and Electroweak Physics at the LHeC

DESY.

- Christian Schwanenberger -

Future Circular Collider (FCC) big sister future ambition (90km), beyond 2048

arXiv: 2503.17727 [hep-ex]

EPS-HEP 2025, Marseille, France

UH <u>
</u>
Universität Hamburg

The LHeC in ECFA EPPSU

Potential for development: future 10 TeV parton-scale collider options

DESY.

talk by **Karl Jakobs**

5

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

Deep Inelastic Scattering at the Energy Frontier

Top and Electroweak Physics at the LHeC

direct searches for new physics

unique environment: eq only EW interactions e.g. heavy v, dark γ , axion-like particles

EW, Higgs and top quark physics $\Delta m_{\rm W} \sim 3$ MeV, $\Delta |V_{\rm tb}| \sim 1\%$, top-quark FCNC $\Delta sin^2 \theta_w^{eff} \sim 0.0002$ (full scale-dependency) weak neutral couplings to light quarks ~ 1% Higgs couplings largely improved wrt HL-LHC improved SMEFT fits (accuracy & degeneracy)

precision QCD physics

 $\Delta \alpha_{\rm s} \sim 0.14\%$ & running of $\alpha_{\rm s}$ PDFs covering a vast kinematic range

non-linear QCD physics

a new discovery frontier

х

Deep Inelastic Scattering at the Energy Frontier

Top and Electroweak Physics at the LHeC

1.2 TeV ep collisions cover the (Q^2 ,x) plane \rightarrow General Purpose Experiment

direct searches for new physics

unique environment: eq only EW interactions e.g. heavy v, dark v, axion-like particles

EW, Higgs and top quark physics $\Delta m_{W} \sim 3$ MeV, $\Delta |V_{tb}| \sim 1\%$, top-quark FCNC $\Delta sin^2 \theta_w^{eff} \sim 0.0002$ (full scale-dependency) weak neutral couplings to light quarks ~ 1% Higgs couplings largely improved wrt HL-LHC improved SMEFT fits (accuracy & degeneracy)

precision QCD physics

 $\Delta \alpha_{\rm s} \sim 0.14\%$ & running of $\alpha_{\rm s}$ PDFs covering a vast kinematic range

non-linear QCD physics

a new discovery frontier

х

The Large Hadron-Electron Collider at the HL-LHC

ISSN 0954-3899

Journal of Physics G **Nuclear and Particle Physics**

ECFA European Committee for F

Volume 48 Number 11 November 2021 Article 110501

The Large Hadron-Electron Collider at the HL-LHC LHeC Study Group

J. Phys. G 48, 11, 110501 (2021)

iopscience.org/jphysg

IOP Publishing

https://cds.cern.ch/record/2729018/files/ECFA-Newsletter-5-Summer2020.pdf Bridge project: 2503.17727

DESY.

5 pages summary:

ECFA Newsletter #5

O. Brüning, M. Klein Following the Plenary ECFA meeting, 13 July 2020 https://indico.cern.ch/event/933318/ **Summer 2020**

An Experiment for Electron-Hadron Scattering at the LHC

- K. D. J. André¹¹², L. Aperio Bella³, N. Armesto^{a4}, S. A. Bogacz⁵,
- D. Britzger⁶, O. S. Brüning¹, M. D'Onofrio², E. G. Ferreiro⁴, O. Fischer²,
- C. Gwenlan⁷, B. J. Holzer¹, M. Klein², U. Klein², F. Kocak⁸, P. Kostka²,
- M. Kumar⁹, B. Mellado⁹¹⁰, J. G. Milhano¹¹¹², P. R. Newman¹³,
- K. Piotrzkowski¹⁴, A. Polini¹⁵, X. Ruan⁹, S. Russenschuk¹,
- C. Schwanenberger³, E. Vilella-Figueras², Y. Yamazaki¹⁶
- ¹CERN, Esplanade des particules 1, 1211 Geneva 23, CH
- ²University of Liverpool, Oxford Street, UK-L69 7ZE Liverpool, United Kingdom
- ³Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22769 Hamburg, Germany
- ⁴Instituto Galego de Física de Altas Enerxías IGFAE, Universidade de Santiago de Compostela, 15782 Santiago de \bigcirc Compostela, Galicia-Spain
- ⁵JLab, Newport News, Virginia, USA
- ⁶Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany
- ⁷Department of Physics, The University of Oxford, Oxford, OX1 3PU, United Kingdom
- ⁸Bursa Uludag University, Bursa, Turkey
- ⁹School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa.
- ¹⁰iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, South Africa.
- ¹Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
- ¹²LIP, Av. Prof. Gama Pinto, 2, P-1649-003 Lisboa, Portugal
- ¹³School of Physics and Astronomy, University of Birmingham, UK
- **D** ¹⁴Université Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology, 1348 Louvain-la-Neuve, O Belgium
- ¹⁵Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bologna, Bologna, Italy
- ¹⁶Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, 657-8501 Kobe, Japan

novel concept of a detector to alternately serve eh and hh collisions/physics

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

Deep Inelastic Scattering and EKW observables

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

LHeC/FCC-eh are unique facilities for testing EW theory: NC+CC, two e-beam charge and polarisation states, p or isoscalar targets

EPS-HEP 2025, Marseille, France

Electroweak Fermion Couplings and SMEFT couplings

Electroweak Fermion Couplings and SMEFT couplings

Electroweak Fermion Couplings and SMEFT couplings

Top and Electroweak Physics at the LHeC

DESY.

Scale Dependence of sin²0w

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

14

Constraints on New Physics: EFT operators

high sensitivity to NP

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

Impact on W mass and effective EWK mixing angle @ HL-LHC

W mass uncertainty prospects @ HL-LHC

Top and Electroweak Physics at the LHeC

Impact on W mass and effective EWK mixing angle @ HL-LHC

W mass uncertainty prospects @ HL-LHC

Top and Electroweak Physics at the LHeC

Impact on W mass and effective EWK mixing angle @ HL-LHC

W mass uncertainty prospects @ HL-LHC

Top and Electroweak Physics at the LHeC

sin² Θ_W prospects @ HL-LHC

	· · · ·	_
-		_
		\neg
232		

Precision of W mass and effective electroweak mixing angle

W mass uncertainty prospects @ HL-LHC

LHeC PDFs will shrink uncertainties in HL-LHC measurements of many (not only electroweak) parameters dramatically

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

sin² Θ_W prospects @ HL-LHC

EPS-HEP 2025, Marseille, France

 ·
-
_
-+
\neg

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Top and Electroweak Physics at the LHeC

Expected measurements of Wtb couplings

Kumar, Ruan, to be publ.

DESY.

Top and Electroweak Physics at the LHeC

Expected measurements of Wtb couplings

arXiv:1307.1688 Kumar, Ruan, to be publ.

Anomalous Wtb Coupling	f_R^1	f_L^2	•
HL-LHC, $3000 \mathrm{fb}^{-1}$ ($\mathcal{R}e$)	[-0.28, 0.32]	[-0.17, 0.19]	[-0.0
HL-LHC, $3000 \mathrm{fb}^{-1}$ ($\mathcal{I}m$)	[-0.30, 0.32]	[-0.19, 0.18]	[0.1]
LHeC, $1000 \mathrm{fb}^{-1}$ ($\mathcal{R}e$)	[-0.13,0.14]	[-0.05, 0.04]	[-0.1
-	Anomalous Wtb CouplingHL-LHC, 3000fb^{-1} ($\mathcal{R}e$)HL-LHC, 3000fb^{-1} ($\mathcal{I}m$)LHeC, 1000fb^{-1} ($\mathcal{R}e$)	Anomalous Wtb Coupling f_R^1 HL-LHC, 3000 fb^{-1} ($\mathcal{R}e$)[-0.28,0.32]HL-LHC, 3000 fb^{-1} ($\mathcal{I}m$)[-0.30,0.32]LHeC, 1000 fb^{-1} ($\mathcal{R}e$)[-0.13,0.14]	Anomalous Wtb Coupling f_R^1 f_L^2 HL-LHC, 3000 fb^{-1} ($\mathcal{R}e$)[-0.28,0.32][-0.17,0.19]HL-LHC, 3000 fb^{-1} ($\mathcal{I}m$)[-0.30,0.32][-0.19,0.18]LHeC, 1000 fb^{-1} ($\mathcal{R}e$)[-0.13,0.14][-0.05,0.04]

<0.09 0.05 **< 0.04** <0.01

Kumar, Ruan, to be publ.

Top and Electroweak Physics at the LHeC

Expected measurements of Wtb couplings

	Anomalous Wtb Coupling	f_R^1	f_L^2	f_R^2
	HL-LHC, $3000 \mathrm{fb}^{-1}$ ($\mathcal{R}e$)	[-0.28, 0.32]	[-0.17, 0.19]	[-0.05, 0.02]
C	HL-LHC, $3000 \mathrm{fb}^{-1}$ ($\mathcal{I}m$)	[-0.30, 0.32]	[-0.19, 0.18]	[0.11, 0.10]
	LHeC, $1000 \text{fb}^{-1} (\mathcal{R}e)$	[-0.13, 0.14]	[-0.05, 0.04]	[-0.10, 0.09]

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

Universität Hamburg Der Forschung | Der Lehre | Der Bildung

Search for Anomalous tty Couplings

Bouzas, Larios, Physical Review D 88, 094007 (2013)

Top and Electroweak Physics at the LHeC

Search for Anomalous ttZ Couplings

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

24

Top Quark Yukawa Coupling and CP Nature

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

Conclusions

- LHeC great potential for a compelling and competitive physics programme
- This includes electroweak and top quark measurements
- An electron-proton facility represents a seminal opportunity on its own but also in particular in combination of pp with ep
- here only some examples of the studies carried out are presented

Top and Electroweak Physics at the LHeC

The **LHeC** offers an achievable bridging project for CERN, with an impactful physics programme, including further empowerment of the HL-LHC

Top and Electroweak Physics at the LHeC

Backup

EPS-HEP 2025, Marseille, France

Anomalous FCNC tuy, tuZ Couplings

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

FCC CDR, Eur. Phys. J. C 79, no. 6, 474 (2019)

Top and Electroweak Physics at the LHeC

FCNC Top Quark Couplings

Determination of the strong coupling

Top and Electroweak Physics at the LHeC

DESY.

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

Status of the facility: Energy Recovery Linacs (ERL)

• Demonstrating ERL: scalability is critical path Prototype (PERLE @ IJCLab / Orsay) implementation started • First stage (one turn) by 2028, 3 turns in 2029

Top and Electroweak Physics at the LHeC

Electron DC-gun

DESY.

 \rightarrow first 10 MW **ERL facility** HV tanks

- Christian Schwanenberger -

multi-turn ERL based on SRF technology (3-turns, 500 MeV, 20 mA)

EPS-HEP 2025, Marseille, France

R&D Need: Detector Design

Compact 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)

Hermetic

DESY.

- 1° tracking acceptance forward & backward

Beamline also well instrumented

Could be built now, but many open questions:

- possibly lacking components for some ep/eA physics (e.g. Particle ID)
- not particularly well integrated or optimized

synergies with EIC, LHCb, ALICE3, future lepton colliders still to be explored

- a snapshot in time, borrowing heavily from (HL)-LHC (particularly ATLAS)

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

Estimates of sustainability

LHeC (>50 GeV electron beams) $E_{cms} = 0.2 - 1.3$ TeV, (Q^2 ,x) range far beyond HERA run ep/pp together with the HL-LHC (\geq Run5)

P3.2 P3.3

EXISTING INFRASTRUCTURES

HL-L

LHeC

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

 $\sim 100 \text{ MW}$ (similar to

EPS-HEP 2025, Marseille, France 34

CERN-ACC-2018-0061, ATS report approved by director of accelerators, Frederick Bordry

Budget Item	Cost 30GeV	→ 50GeV
SRF System	402MCHF	+268MCHF
SRF R&D and Proto Typing	31MCHF	
Injector	40MCHF	
Magnet and Vacuum System	103MCHF	
SC IR magnets	105MCHF	
Dump System and Source	5MCHF	
Cryogenic Infrastructure	41.5MCHF	+28MCHF
General Infrastructure and installation	58MCHF	
Civil Engineering	289MCHF	
Total	1075MCHF	→ 1371MCHF
		costs: 2018

- 1–1.8 BCHF: in 10 years means $\sim 8-14\%$ of the **CERN** annual budget
- detector: ~few x 100 MCHF, presumably mostly coming from contributions via an experimental collaboration, so not core CERN funds
- Considering electricity price of 0.1CHF/kWh: additional operation cost for the LHeC at around 15MCHF to 30MCHF per year (similar to LHC)
- accelerator implementation: total personpower need of ca. 2500 Person Years (2300 of CERN) staff plus personpower from international collaborations)
- operating the LHeC: with only one experimental insertion of one proton beam and ERL facility is comparable to the needs of to HL-LHC with two proton beams and 4 experimental insertions

Effective electroweak mixing angle

Measurement of |Vtd|

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

Universität Hamburg der forschung | der Lehre | der Bildung

Measurement of Vtd

Top and Electroweak Physics at the LHeC

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

UH iti Universität Hamburg

using simply e-beam axis: polarisation: $P_t = 96\%$

TESLA+HERAp:

 $\sqrt{s} = 1.6 \text{ TeV}$ $L_{int} = 20 \, fb^{-1}$

19.7 fb⁻¹:
$$A_{\uparrow\downarrow} = 0.26 \pm 0.26$$

JHEP 04 (2016) 073

DESY.

Atag, Sahin, PRD 73, 074001 (2006)

$\cos\theta$: angle between charged lepton and spin quantisation axis in top rest frame

39

Top Quark Parton Density Function

parton momentum fraction

need to understand what a "top PDF" is in the framework of parton model

LHeC offers new field of research for top quark PDF

Top and Electroweak Physics at the LHeC

DESY.

LHeC CDR, J.Phys. G39, 075001 (2012)

• in 6 flavour number scheme, top receives at $Q^2 \sim m_t^2$ certain fraction of the proton's momentum

- Christian Schwanenberger -

EPS-HEP 2025, Marseille, France

Top Quark Structure Function

Boroun, Phys. Lett. B744, 142 (2015)

Lint=10 fb⁻¹ $E_e = 60 \text{ GeV}$

variable flavour number scheme for top quark

t

t

Top and Electroweak Physics at the LHeC

g

DESY.

- Christian Schwanenberger -

\rightarrow LHeC/FCC-ep opens up a new field of top quark PDFs and to unveil the complete flavour structure of the proton

EPS-HEP 2025, Marseille, France

Search for Anomalous ttZ Couplings

Top and Electroweak Physics at the LHeC

Bouzas, Larios,

EPS-HEP 2025, Marseille, France

UH iii Universität Hamburg