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Motivation: quantum computing applications in high-
energy physics (HEP)

= Broadly expected to be two domains of application for quantum computing in HEP:

1. Theoretical modelling i.e., quantum simulation of intractable classical problems e.g., out-

of-equilibrium and real-time dynamics, thermalisation and dynamics after quench in lattice
gauge theories

2. HEP experiments i.e., data analysis, data generation (simulation), detector algorithms,
identification and reconstruction algorithms t

Focus of this talk
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Motivation: computational frontiers HEP

= Collider experiments such as the Large
Hadron Collider (LHC) generate enormous
volumes of data

= Precise theoretical predictions essential for
comparison with experimental data

= Order billions of CPU hours per year
consumed by the LHC experiments for
generating simulated data

= Requires innovative technological solutions
— theme of this talk!

D
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Cross-section calculations



Cross sections

= Cross sections relate to the probability of a certain scattering processa+b - c+d + -
occurring in some collider experiment

= General form:

;- %jdcb M2 O(C[®] — C[d,])

= Specific form of matrix element integration in a cross-section calculation can be written

N nj
=

o 1—I[ - 2.5 el A HjESk X
N lHNP ( o MZ )2 + MZ FZ
p=1\*p op op" op

1

Multi-dimensional integral with highly peaked structure
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Monte Carlo integration
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What is classical MCI (reminder)? E[F(X)] = jf(x)p(x)dx

= Expectation of function of random variable can be estimated by averaging samples (let X ~ p(x)):

f (x) - function applied’

&
E[f(X)] = zx: f)p(x) = E;f (X;) »(x) - ‘probability distribution’

= Root mean-squared error (RMSE) scaling of MCI with number of samples g:

Reduce overall variance using techniques
such as:

RMSE « 0(1/\/6) 1. Importance sampling
2. Adaptive Monte Carlo

D
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What is QMCI? RMSE « 0(1/q)

= Quantum analogue of MCI - starting point is circuit P preparing quantum state |p) encoding
probability distribution p(x) such that |p) = P|0):

p) =) VPl

X
= A circuit r that operates on |p)|0):

RIp)I0) = ) p() 1) (VT = FGI0) +F(ID)

= Probability of measuring 1 on final qubit:

> PG

Computed using Quantum Amplitude Estimation (QAE) algorithm - quadratic speedup in sample
complexity [G. Brassard et al., arXiv:quant-ph/0005055 2000] "
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S. Herbert, arxiv.org:2105.09100 (2022)

Fourier QMCI

= Extend function applied to the samples as a piecewise, periodic function, which can then be
decomposed as a Fourier series:

(00]

f(x)=c+ z a,cos(nwx) + b,sin(nwx)

n=1

= Estimate for the expectation is easily estimated on a quantum computer:

(00)

E[f(X)]=c+ Z a, (2 p(x)cos(nwx)) + z b, (Z p(x)sin(nwx))
n=1 X X

n=1

Each of the parenthesised sums can be efficiently estimated using QAE to provide low-depth
quantum circuits — appealing for current noisy devices
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Quantinuum’s QMCI engine

l. Y. Akhalwaya et al., arxiv:2308.06081 (2023)

= Quantinuum has developed a QMCI engine which has a theoretically guaranteed quadratic speed-

= Engine architecture has modular framework

Q

up based on Fourier QMCI

Distribution loader Enhanced P-Builder Function Applied ? QAE
LCU
—
Threshor
= = =
I] = Ny F
o x| < aoa
L 1 1 1
Systematic Resource Quantification

We are looking for beta users so please get in touch if interested!

<>
Resource Estimates
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|. Y. Akhalwaya et al., arxiv:2308.06081 (2023)

Quantinuum’s QMCI engine

= Five key features for this talk:

D

1.

Agnostic to data-loading circuit P — any existing or future data-loading method can simply 'plug in’ to
engine
Enhanced P circuit builder — ability to automatically construct circuitry to condition the quantity being

estimated on thresholds / maxima / minima / products / sums of random variables (implement cut
functions)

Fourier QMCI — decompose integral into minimal depth circuits for a variety of functions applied
corresponding to moments or products of moments of random variables

Specify target precision — perform integral calculations to a specified precision in terms of upper bound on
RMSE of estimator

Resource quantification — builds exact circuits corresponding to computations of interest and exactly

quantify quantum resources required for running on given hardware for both noisy-intermediate (NISQ)
and fault-tolerant (FT) eras

13
© 2025 Quantinuum. All rights reserved.


https://arxiv.org/abs/2308.06081

QMCI for cross-section integration



Implementing a generic cross-section calculation

n

JS dx x
04 X
)y e = M2)2 + M2T?

= Decompose integral in terms of "building blocks’

= Treat propagator terms (denominator) as probability distribution - p(x) = :

(x-MZ)"+M3T3

= Treat monomial terms (numerator) as function applied - f(x) = x™

D
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Implementing a generic cross-section calculation

ff dxdy x"y
0O, X
’ [(x — M2)2 + M2 T4 ]1[(y — M2,)? + M2,T’2,]

1
(x = M§1)2 + Mo T 1y — M33)2 + Mg,T5,]

flx,y) =x"y™ p(x,y) = :

= Probability distribution is a product of single-variable relativistic Breit-Wigner (BW) distributions

= Need efficient methods for preparing quantum states representing BW distributions for each of
the relevant resonances in the Standard Model (W, Z, ¢, H)

= \We propose and explore two different methods in our article (won’t discuss here)

D
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Implementing a generic cross-section calculation

c(x.y)
j .dxdy = f 0(C(x,y)) dxdy
0

= Implement cuts via the QMCI engine’s thresholding operations

D
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Example application




Tau decay example

p — kl + k2 + k3
s1 = (p1 +p3)?
sy = (po + p3)?

D

T Ve v,
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Tau decay example: methodology

= Example calculation (excluding integration over angles and constant factors)

o X S.1AaS Smax = e
0 Jo L (s, — M§)? + (My,Ty)?

= Rewrite expression
p(s1,52) = U(s))BW(s2) f(s1,82) = sf

o ) FAW
5 (s | 1 | .
x dsids, s2C(sq1,53)
j() J0 (52 — MI%/)Z + (MWFW)Z ' _ C(s1,82) =1ifs; +5, <5,

S rS 1 else =0
—Mrzf f dsldsz( s1C(sy,S;)
0 Jo
\

Sy — My5)?% + (My,Ty,)? —

—

p(s1,82) = U(s1)BW(sz)  f(51,82) = 51
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Tau decay example - results

4.01

Compilation Resource Metric Precision
10% 1% 0.1%
3.5 1
NISQ Number of qubits Largest across circuits 28 28 28
CX gates Total number across circuits 1.34 x 107 1.44 x 108 1.49 x 10°

3.0 1
Total depth across circuits ~ 7.88 x 105  8.43 x 107  8.74 x 10%

Number in largest circuit 4.86 x 106 6.32 x 107 7.48 x 108

> 257 Depth of largest circuit 2.85 x10% 3.71 x 107 4.39 x 108
§ All gates Total number across circuits 2.72 x 107 2.91 x 108 3.02 x 10°
S 2.0 1 Total depth across circuits  1.45 x 107 1.56 x 108 1.62 x 10°
& Number in largest circuit ~ 9.84 x 10° 1.28 x 10  1.51 x 10°
15 Depth of largest circuit 5.27 x 106 6.85 x 107 8.11 x 108
Fault tolerant Number of qubits Largest across circuits 41 41 41

1.0 T gates Total number across circuits 5.37 x 108 6.97 x 10°  8.23 x 100
Total depth across circuits  5.21 x 108 6.75 x 10  7.98 x 1010
054 Number in largest circuit ~ 2.18 x 108 3.08 x 107  4.21 x 1010
Depth of largest circuit 2.11 x 108 2,99 x 107 4.08 x 10'°

0.0 -

1.0 1.5 2.0 2.5
error (0 — o) 1e7

o=3.162x108
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Conclusions

« HEP’s massive computational demands make quantum technology a promising path to tackling
classical bottlenecks.

» Developed a general quantum integration framework using Fourier QMCI via Quantinuum’s engine
— adaptable to any cross section with modular structure.

* FT hardware needs are high now but expected to drop as FT compilation techniques advance.

* Promising enhancements or efficiency improvements for HEP applications beyond integration —
from resonance modelling to event sampling based on underlying distributions.

Joint work with Mathieu Pellen (mathieu.pellen@physik.uni-freiburg.de)
Article at arXiv:2502.14647

universitatfreiburg DFG Deutsche

Forschungsgemeinschaft
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Cross-section calculations



Cross sections

= Event selections in experimental analyses restrict the domain of integration to that physically
accessible in the experiment

= Represented by a "cut function’ € (which may not have a closed-form expression)

1
o = Fjd(b M2 0(C[P] — C[P,])

27
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Scalability

= Number of integration variables scales as 3n — 4 for a 2 — n scattering process

= Number of propagator terms depends on process (potentially all possible massive internal
particles)

Example

20 integration variables

— 4 1 1. 1.
pp — W Ve vebbbb 0(1000) propagators

D
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Monte Carlo integration
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Monte Carlo integration (MCI) for HEP

D

= Numerical Monte Carlo techniques such as MCI
‘workhorse’ of theoretical HEP calculations

= Efficiently handle:

1. Cut functions without closed form

2. Intractability of analytical calculations at large
multiplicities

3. Automation
4. Parton distribution functions defined on grid

5. Measurements of cross section as function of
other observables

30
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S. Herbert arxiv.org:2105.09100 (2022)

Fourier QMCI

= The ‘natural’ quantity to estimate on a quantum computer is:
E(sin?(mX +¢)) = 2 p(x)sin?(mx + ¢)
X

= Can be achieved using a bank of R, rotation gates

32
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Fourier QMCI

S. Herbert arxiv.org:2105.09100 (2022)

= Costly quantum arithmetic operations replaced by bank of controlled rotation gates implementing

D

trigonometric functions

Nit1

n
, d

]
]

L P
L

]

— Ry(e)

R, (2°0)

R,(2'0)

R, (2™710)

+ n; wires
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|. Akhalwaya et al., arxiv:2308.06081 (2023)

Quantinuum’s QMCI engine

= We have developed a QMCI engine which has a theoretically guaranteed quadratic speed-up
based on the Fourier QMCI method

Method Computes MSE Arithmetic

Classical MCl E(f(X)) ©(¢g~ 1) Classical

Quantum MCI E(f(X)) ©(q—2?) Quantum & classical
Rescaled QMCI [1, 2] E(X) ©(¢—*/3)  Classical only
Fourier QMCI E(f(X)) ©(qg—?) Classical only

[1] arxiv.org:1806.06893 . )
[2] arxiv.org:1905.02666 © 2025 Quantinuum. All rights reserved.
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Quantum amplitude estimation convergence

= Characterise convergence of QAE in terms of mean-squared error (MSE) of estimate

= If g is either number of quantum queries or number of classical samples then MSE scaling is (up
to)

QAE 0(g~%) Quadratic advantage!

Classical O(q_l)

D
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State preparation of relativistic Breit-
Wigner distributions
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State preparation of probability distributions

= Preparing arbitrary probability distributions on
a quantum computer thought to be
computationally hard in general - no 'silver
bullet’ methodology

= Bottleneck for many quantum algorithms

Problem

= Load distribution into amplitude of n-qubit
quantum state:

p) =) Jp@lx)

= Distribution discretised and truncated to N = 2"
support points over [a, b], with steps A =
(b —a)/N and x, =a+§,xi = X + IA

D

Systematic errors

Discretisation error

1. €a = [[2FPp() dx — BN Fx)p(o) (x)
Normalisation error

2. ep = 250D (p(xdA — pxy))|
Thresholding error

3. € =I|E[XOX = Vrp)] - E[XO(X = x;)]|

State-preparation error

) 2
4. LMSE - % M (P(Xi) — Ps(xi))

37
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Relativistic Breit-Wigner distributions

= For a given n, a sub-range of the full support of the BW distribution will exist where ¢, and ¢,, are
sufficiently minimised to give negligible impact

= Real calculation only performed for a given centre-of-mass (CoM) energy, smax, corresponding to
integrating over a sub-range of the full support [s;,i, = 0 GeV?, spax = S GeV?]

Strateqy

1. Generate circuits that prepare BW distributions for the resonances
W,Z,t

2. Choose a range of supports spanning a range of different CoM
energies

3. Set qubit numbers to sufficiently suppress systematic errors in
each case

D

© 2025 Quantinuum. All rights reserved



Systematic uncertainty scaling

Absolute systematic error

D

10° ] --- Discretisation error RN -=- Discretisation error
A R Normalisation error 5 1071 5 \\ """ Normalisation error
10714 ~~< = AN
\\ (O] \
\ L 1072 5 \
102 4 \ © \
\
\
\ GE) 1073 4 \\
1073 4 N @ \
\ x e
Y b 1074 4 \‘\‘
1074 4 A% ot v
“o 2 Vg
o o . . oy,
10-5 4 ~o v 107 4 e
~ Q Q"&r
““'s,“ < Sy
~a 6 Yoy,
1076 4 oo 107" 5 <o,
é é 1'0 12 1'4 é é 1'0 1'2 1'4
n n
(a) W boson (b) Z boson
\\ —--- Discretisation error
5 107 N e Normalisation error
= \
v \
L 10775 \
= \
© 1
_ .
g 1073 4 \“‘
I \:
= L
v 1044 \ : .
[0} e
5 —_———
~3-.
O 1075 4 SRuy,
0 SRy,
2 Sy,
SRy,
107 4 SLn.,
Sy
6 8 10 14
n
(c) t quark

Smax = 200 GeVZ
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M. Rosenkranz et. al., arxiv.org:2405.21058 (2024)

State-preparation methods
Fourier expansion

Variational
= Quantum machine-learning (QML) approach = Decompose distribution into Fourier series
- train parameterised quantum circuit to and use linear combination of unitary
generate target distribution operations to form weighted Fourier sum
= Flexible, small circuits - fast training = Scalable method for larger systems - larger
= Limited scalability due to trainability issues in resource requirements
QML — works well for small-scale systems = Probabilistic preparation — requires post-
selection
_____________________________ B
‘O> — = ~ = | /7< = ancillas for B ®
coefficients [0)®* | 4 c AT — (0™
SRS & . 5 - —
0= = =~ [T = R = blocﬁ:igclj;rfzr|0>®b« — i (0]
— N
b b b (Chebyshev only) | ———7 T — —]
o4 H F 4 H=XE e THE e
main register |[+)° " : H - ) : roc > fa(x) |z)
C Ee— _ — I —
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Performance comparison Smax = 200 GeV?
Variational

w z
101 4 ';' v truth 1071 4 ] v truth
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10-2 4 1072 4
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o o
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Performance comparison

Fourier expansion

D
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Performance comparison

Circuit used for

example

applications /Smax Method Res Accuracy n J1q 92q ESMSE JSD Psuccess
Variational W  Optimised 6 18 150 1.22x107* 331x107% N/A

100GeV o yrier W Matched (d = 250) 15 1592 1638 1.22x10~% 6.73x 1075 3.12%

W  Optimised 9 180 152 4.01 x10~* 0.029 N/A

Variational ~Z  Optimised 9 234 200 4.77 x 1073 0.024 N/A

t  Optimised 9 126 104 8.16 x 1073 0.070 N/A

W Matched (d=175) 18 1576 1684 3.28x 107° 0.032 0.9%

200 GeV More (d = 250) 18 1602 1686 2.13 x 107 0.003 0.9%

Fourior ;,  Matched (d=130) 18 1591 1692 3.28 x 107° 0.031 1.1%

More (d = 170) 18 1601 1686 2.58 x 107 0.014 1.2%

. Matched (d=285) 17 825 906 3.41 x107° 0.070 1.4%

More (d = 180) 18 1593 1692 2.45 x 107 0.010 1.2%

D
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Example application




Simplified 1D integration

= Simplified example, considering only numerator of the matrix element (excluding phase-space
integral)

s S—S,
o X f dSz f dSl(S% — SlM’?) VSmax = M, = 1.776GeV
0 0

= Rewrite expression (pre-calculating trivial integration over s,) as

C(sy,s5,) = 1ifs, + s, <, C(sy,s,) =1ifs; +s, <s,
else = 0 else =0

- -

S S
oS (f d51$12C(Sl, Sz) — M,? f dslslc(sli SZ))
0 0

N :

f(s1,82) = 512 f(s1,82) = 51

p(s1,52) = U(sp)U(s7) p(s1,52) = U(s1)U(s32)

45
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Simplified 1D integration

D

Frequency

12 1

10 1

o]
!

0
-1.5

-1.0

-0.5 0.0
error (0 — o)

o = —8.248

0.5

Compilation Resource Metric Precision
10% 1% 0.1%

NISQ Number of qubits Largest across circuits 24 24 24
CX gates Total number across circuits  3.99 x 106 4.68 x 107  6.26 x 108
Total depth across circuits ~ 2.52 x 106 2.94 x 107  3.93 x 10%
Number in largest circuit 1.80 x 106 1.14 x 107  1.69 x 108
Depth of largest circuit 1.13 x 108 7.18 x 10° 1.06 x 10®
All gates Total number across circuits 7.97 x 106 9.34 x 107 1.25 x 10°
Total depth across circuits ~ 4.71 x 105 5.51 x 10  7.37 x 108
Number in largest circuit 3.59 x 106 2.28 x 107 3.37 x 108
Depth of largest circuit 2.12 x 10 1.35 x 107 1.99 x 108

Fault tolerant Number of qubits Largest across circuits 35 35 35
T gates Total number across circuits 8.62 x 106  3.49 x 108 5.85 x 10°
Total depth across circuits ~ 7.21 x 106 2.92 x 10®  4.89 x 10°
Number in largest circuit  3.83 x 10°  9.62 x 10" 1.71 x 10°
Depth of largest circuit 3.21 x 10%  8.06 x 107  1.43 x 10°

46
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Non-separable 2D integration

= Extension increasing complexity of the problem and mimicing more general case of multivariate
integration

— s;M?s + s{M?s,
\/ =1
o X j J dSldSZ MZ )2 + (MWFW)Z Smax 00GeV

= Amounts to computing additional multivariate term

I js fs_szd ] s1MZs,
= s.ds
! 0o Jo L (s, — M§)? + (My,Ty)?

D
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Non-separable 2D integration

2.00

=
N
v

Frequency

©
N
o

0.50 A

0.25 A1

0.00 -

D

1.00 1

Compilation Resource Metric Precision
10% 1% 0.1%

NISQ Number of qubits Largest across circuits 28 28 28
CX gates Total number across circuits  7.39 x 107 6.15 x 10%  5.09 x 10°
Total depth across circuits  4.34 x 107 3.61 x 108 2.99 x 10°
Number in largest circuit  3.39 x 107  2.71 x 10®  1.20 x 10°
Depth of largest circuit 1.99 x 107 1.59 x 10®  7.03 x 108
All gates Total number across circuits 1.50 x 10 1.24 x 10°  1.03 x 10%°
Total depth across circuits ~ 8.02 x 107  6.67 x 108 5.52 x 10?
Number in largest circuit — 6.86 x 107  5.49 x 108 2.42 x 10°
Depth of largest circuit 3.68 x 107  2.94 x 108  1.30 x 10°

Fault tolerant Number of qubits Largest across circuits 41 41 41
T gates Total number across circuits 3.39 x 107  4.08 x 10'° 2.72 x 10"
Total depth across circuits ~ 3.29 x 10° 3.95 x 10'© 2.63 x 10'!
Number in largest circuit ~ 1.65 x 10° 2.14 x 10'0  6.97 x 1010
Depth of largest circuit 1.60 x 10° 2.07 x 10'%  6.75 x 1010

0.6 0.8 1.0 12 1.4 16
error (0 —0) lell

o = 3.179x1012
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Current limitations

 Currently practical only for 2D integrals — scalability to higher dimensions remains a major hurdle
(based on current FQMCI methods)

 Uniform spacing for representing underlying probability distributions with qubits limits flexibility and
efficiency

« Complex kinematic cuts and realistic phase spaces remain largely unexplored
» Approach restricted to specific cross-section integrand forms — generalisation is still lacking

 Accuracy bottlenecked by state-preparation fidelity for Breit-Wigner distributions — tailored
methods are needed

« Systematic errors in state preparation not yet fully understood — a barrier to precision

* Resource estimates indicate that even simple tree-level cases require FT hardware — impractical
for near-term quantum devices, especially for high-dimensional problems encountered in state-of-
the-art classical calculations

D
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