

A general approach to quantum integration of cross-sections in highenergy physics [arXiv:2502.14647]

EPS-HEP 2025: Marseille

Presented by:

Ifan Williams

11/07/25

ifan.williams@quantinuum.com

Introduction

Motivation: quantum computing applications in highenergy physics (HEP)

- Broadly expected to be two domains of application for quantum computing in HEP:
- Theoretical modelling i.e., quantum simulation of intractable classical problems e.g., outof-equilibrium and real-time dynamics, thermalisation and dynamics after quench in lattice gauge theories
- HEP experiments i.e., data analysis, data generation (simulation), detector algorithms, identification and reconstruction algorithms

Focus of this talk

Motivation: computational frontiers HEP

- Collider experiments such as the Large Hadron Collider (LHC) generate enormous volumes of data
- Precise theoretical predictions essential for comparison with experimental data
- Order billions of CPU hours per year consumed by the LHC experiments for generating simulated data
- Requires innovative technological solutionstheme of this talk!

Cross-section calculations

Cross sections

- Cross sections relate to the probability of a certain scattering process $a + b \rightarrow c + d + \cdots$ occurring in some collider experiment
- General form:

$$\sigma = \frac{1}{F} \int d\Phi \ |\mathcal{M}|^2 \Theta(C[\Phi] - C[\Phi_c])$$

Specific form of matrix element integration in a cross-section calculation can be written

$$\sigma = \int \prod_{i=1}^{N_I} dx_i \frac{\sum_{S_k \in I} \alpha_k \prod_{j \in S_k} x_j^{n_j}}{\prod_{p=1}^{N_P} (x_p - M_{op}^2)^2 + M_{op}^2 \Gamma_{op}^2}$$

Multi-dimensional integral with highly peaked structure

Monte Carlo integration

What is classical MCI (reminder)?

$$E[f(X)] = \int f(x)p(x)dx$$

• Expectation of function of random variable can be estimated by averaging samples (let $X \sim p(x)$):

$$E[f(X)] = \sum_{x} f(x)p(x) \approx \frac{1}{q} \sum_{j=1}^{q} f(X_j)$$

f(x) - 'function applied'

p(x) - 'probability distribution'

■ Root mean-squared error (RMSE) scaling of MCI with number of samples *q*:

RMSE
$$\propto \mathcal{O}(1/\sqrt{q})$$

Reduce overall variance using techniques such as:

- Importance sampling
- **Adaptive Monte Carlo**

Quantum Monte Carlo integration (QMCI)

What is QMCI?

RMSE $\propto \mathcal{O}(1/q)$

• Quantum analogue of MCI - starting point is circuit P preparing quantum state $|p\rangle$ encoding probability distribution p(x) such that $|p\rangle = P|\mathbf{0}\rangle$:

$$|p\rangle = \sum_{x} \sqrt{p(x)} |x\rangle$$

• A circuit R that operates on $|p\rangle|0\rangle$:

$$R|p\rangle|0\rangle = \sum_{x} \sqrt{p(x)} |x\rangle \left(\sqrt{1 - f(x)}|0\rangle + \sqrt{f(x)}|1\rangle\right)$$

Probability of measuring 1 on final qubit:

$$\sum_{x} p(x) f(x)$$

Computed using Quantum Amplitude Estimation (QAE) algorithm - quadratic speedup in sample complexity [G. Brassard et al., arXiv:quant-ph/0005055 2000]

Fourier QMCI

Extend function applied to the samples as a piecewise, periodic function, which can then be decomposed as a Fourier series:

$$f(x) = c + \sum_{n=1}^{\infty} a_n \cos(n\omega x) + b_n \sin(n\omega x)$$

Estimate for the expectation is easily estimated on a quantum computer:

$$E[f(X)] = c + \sum_{n=1}^{\infty} a_n \left(\sum_{x} p(x) \cos(n\omega x) \right) + \sum_{n=1}^{\infty} b_n \left(\sum_{x} p(x) \sin(n\omega x) \right)$$

Each of the parenthesised sums can be efficiently estimated using QAE to provide low-depth quantum circuits – appealing for current noisy devices

Quantinuum's QMCI engine

 Quantinuum has developed a QMCI engine which has a theoretically guaranteed quadratic speedup based on Fourier QMCI

Engine architecture has modular framework

Quantinuum's QMCI engine

- Five key features for this talk:
 - 1. Agnostic to data-loading circuit *P* any existing or future data-loading method can simply 'plug in' to engine
 - 2. Enhanced *P* circuit builder ability to automatically construct circuitry to condition the quantity being estimated on thresholds / maxima / minima / products / sums of random variables (implement cut functions)
 - 3. Fourier QMCI decompose integral into minimal depth circuits for a variety of functions applied corresponding to moments or products of moments of random variables
 - 4. Specify target precision perform integral calculations to a specified precision in terms of upper bound on RMSE of estimator
 - 5. Resource quantification builds exact circuits corresponding to computations of interest and exactly quantify quantum resources required for running on given hardware for both noisy-intermediate (NISQ) and fault-tolerant (FT) eras

QMCI for cross-section integration

Implementing a generic cross-section calculation

$$\sigma_1 \propto \int_0^s \frac{\mathrm{dx} \, x^n}{(x - M_o^2)^2 + M_o^2 \Gamma_o^2}$$

- Decompose integral in terms of 'building blocks'
- Treat propagator terms (denominator) as probability distribution $p(x) = \frac{1}{(x-M_o^2)^2 + M_o^2 \Gamma_o^2}$
- Treat monomial terms (numerator) as function applied $f(x) = x^n$

Implementing a generic cross-section calculation

$$\sigma_2 \propto \iint \frac{dx dy \, x^n y^m}{[(x - M_{o1}^2)^2 + M_{o1}^2 \Gamma_{o1}^2][(y - M_{o2}^2)^2 + M_{o2}^2 \Gamma_{o2}^2]}$$

$$f(x,y) = x^n y^m$$

$$p(x,y) = \frac{1}{[(x - M_{o1}^2)^2 + M_{o1}^2 \Gamma_{o1}^2][(y - M_{o2}^2)^2 + M_{o2}^2 \Gamma_{o2}^2]}$$

- Probability distribution is a product of single-variable relativistic Breit-Wigner (BW) distributions
- Need efficient methods for preparing quantum states representing BW distributions for each of the relevant resonances in the Standard Model (W, Z, t, H)
- We propose and explore two different methods in our article (won't discuss here)

Implementing a generic cross-section calculation

$$\int_{0}^{c(x,y)} \dots dxdy = \int \dots \Theta(C(x,y)) dxdy$$

Implement cuts via the QMCI engine's thresholding operations

Example application

Tau decay example

$$\tau^- \rightarrow \nu_{\tau} e^- \overline{\nu_e}$$

$$p = k_1 + k_2 + k_3$$
$$s_1 = (p_1 + p_3)^2$$
$$s_2 = (p_2 + p_3)^2$$

$$|\mathcal{M}|^2 = -\frac{\alpha^2 \pi^2}{\sin^4 \theta_W} \frac{s_1^2 - M_\tau^2 s_1}{(s_2 - M_W^2)^2 + \Gamma_W M_W}$$

Tau decay example: methodology

Example calculation (excluding integration over angles and constant factors)

$$\sigma \propto \int_0^s \int_0^{s-s_2} ds_1 ds_2 \frac{s_1^2 - s_1 M_\tau^2}{(s_2 - M_W^2)^2 + (M_W \Gamma_W)^2}$$
 $\sqrt{s_{\text{max}}} = 100 \text{GeV}$

Rewrite expression

$$p(s_{1}, s_{2}) = U(s_{1})BW(s_{2}) \quad f(s_{1}, s_{2}) = s_{1}^{2}$$

$$\sigma$$

$$\propto \int_{0}^{s} \int_{0}^{s} ds_{1} ds_{2} \frac{1}{(s_{2} - M_{W}^{2})^{2} + (M_{W}\Gamma_{W})^{2}} s_{1}^{2}C(s_{1}, s_{2})$$

$$- M_{\tau}^{2} \int_{0}^{s} \int_{0}^{s} ds_{1} ds_{2} \frac{1}{(s_{2} - M_{W}^{2})^{2} + (M_{W}\Gamma_{W})^{2}} s_{1}C(s_{1}, s_{2})$$

$$p(s_{1}, s_{2}) = U(s_{1})BW(s_{2}) \quad f(s_{1}, s_{2}) = s_{1}$$

$$C(s_{1}, s_{2}) = 1 \text{ if } s_{1} + s_{2} < s,$$
else = 0

Tau decay example - results

Compilation	Resource	Metric	Precision		
			10%	1%	0.1%
NISQ	Number of qubits	Largest across circuits	28	28	28
	CX gates	Total number across circuits Total depth across circuits Number in largest circuit Depth of largest circuit	1.34×10^{7} 7.88×10^{6} 4.86×10^{6} 2.85×10^{6}	1.44×10^{8} 8.43×10^{7} 6.32×10^{7} 3.71×10^{7}	1.49×10^9 8.74×10^8 7.48×10^8 4.39×10^8
	All gates	Total number across circuits Total depth across circuits Number in largest circuit Depth of largest circuit	2.72×10^{7} 1.45×10^{7} 9.84×10^{6} 5.27×10^{6}	2.91×10^{8} 1.56×10^{8} 1.28×10^{8} 6.85×10^{7}	3.02×10^9 1.62×10^9 1.51×10^9 8.11×10^8
Fault tolerant	Number of qubits	Largest across circuits	41	41	41
	T gates	Total number across circuits Total depth across circuits Number in largest circuit Depth of largest circuit	5.37×10^{8} 5.21×10^{8} 2.18×10^{8} 2.11×10^{8}	6.97×10^9 6.75×10^9 3.08×10^9 2.99×10^9	8.23×10^{10} 7.98×10^{10} 4.21×10^{10} 4.08×10^{10}

 $\sigma = 3.162 \times 10^8$

Conclusions

Conclusions

- HEP's massive computational demands make quantum technology a promising path to tackling classical bottlenecks.
- Developed a general quantum integration framework using Fourier QMCI via Quantinuum's engine
 adaptable to any cross section with modular structure.
- FT hardware needs are high now but expected to drop as FT compilation techniques advance.
- Promising enhancements or efficiency improvements for HEP applications beyond integration from resonance modelling to event sampling based on underlying distributions.

Joint work with Mathieu Pellen (mathieu.pellen@physik.uni-freiburg.de)
Article at arXiv:2502.14647

QUANTINUUM

Backup

Cross-section calculations

Cross sections

- Event selections in experimental analyses restrict the domain of integration to that physically accessible in the experiment
- Represented by a `cut function' C (which may not have a closed-form expression)

$$\sigma = \frac{1}{F} \int d\Phi \ |\mathcal{M}|^2 \Theta(C[\Phi] - C[\Phi_c])$$

Scalability

- Number of integration variables scales as 3n-4 for a 2 $\rightarrow n$ scattering process
- Number of propagator terms depends on process (potentially all possible massive internal particles)

Example

$$pp \to \mu^- \overline{\nu_\mu} e^+ \nu_e \overline{b} b \overline{b} b$$

20 integration variables O(1000) propagators

Monte Carlo integration

Monte Carlo integration (MCI) for HEP

- Numerical Monte Carlo techniques such as MCI 'workhorse' of theoretical HEP calculations
- Efficiently handle:
- Cut functions without closed form.
- Intractability of analytical calculations at large multiplicities
- 3. Automation
- 4. Parton distribution functions defined on grid
- Measurements of cross section as function of other observables

Quantum Monte Carlo integration (QMCI)

Fourier QMCI

■ The 'natural' quantity to estimate on a quantum computer is:

$$E(\sin^2(mX+c)) = \sum_{x} p(x)\sin^2(mx+c)$$

Can be achieved using a bank of R_y rotation gates

Fourier QMCI

 Costly quantum arithmetic operations replaced by bank of controlled rotation gates implementing trigonometric functions

Quantinuum's QMCI engine

 We have developed a QMCI engine which has a theoretically guaranteed quadratic speed-up based on the Fourier QMCI method

Method	Computes	MSE	Arithmetic
Classical MCI	$\mathbb{E}(f(X))$	$\Theta(q^{-1})$	Classical
Quantum MCI	$\mathbb{E}(f(X))$	$\Theta(q^{-2})$	Quantum & classical
Rescaled QMCI [1, 2]	$\mathbb{E}(X)$	$\Theta(q^{-4/3})$	Classical only
Fourier QMCI	$\mathbb{E}(f(X))$	$\Theta(q^{-2})$	Classical only

Quantum amplitude estimation convergence

- Characterise convergence of QAE in terms of mean-squared error (MSE) of estimate
- If q is either number of quantum queries or number of classical samples then MSE scaling is (up to)

QAE

 $\mathcal{O}(q^{-2})$

Quadratic advantage!

Classical

 $\mathcal{O}(q^{-1})$

State preparation of relativistic Breit-Wigner distributions

State preparation of probability distributions

- Preparing arbitrary probability distributions on a quantum computer thought to be computationally hard in general - no 'silver bullet' methodology
- Bottleneck for many quantum algorithms

Problem

Load distribution into amplitude of n-qubit quantum state:

$$|p\rangle = \sum_{x} \sqrt{p(x)} |x\rangle$$

• Distribution discretised and truncated to $N=2^n$ support points over [a,b], with steps $\Delta=(b-a)/N$ and $x_0=a+\frac{\Delta}{2}$, $x_i=x_0+i\Delta$

Systematic errors

Discretisation error

1.
$$\epsilon_d = \left| \int_{x_i}^{x_u} f(x) p(x) dx - \sum_{i=0}^{N-1} f(x_i) p(x) (x_i) \Delta \right|$$

Normalisation error

2.
$$\epsilon_n = \sum_{i=0}^{N-1} |f(x_i)(p(x_i)\Delta - \tilde{p}(x_i))|$$

Thresholding error

3.
$$\epsilon_{th} = |E[X \Theta(X \ge V_{Th})] - E[X \Theta(X \ge x_i)]|$$

State-preparation error

4.
$$\epsilon_s^{\text{CMSE}} = \frac{1}{N} \sum_{i=1}^{N} \left(\tilde{P}(x_i) - P^s(x_i) \right)^2$$

Relativistic Breit-Wigner distributions

- For a given n, a sub-range of the full support of the BW distribution will exist where ϵ_d and ϵ_n are sufficiently minimised to give negligible impact
- Real calculation only performed for a given centre-of-mass (CoM) energy, s_{max} , corresponding to integrating over a sub-range of the full support $[s_{min} = 0 \text{ GeV}^2, s_{max} = S \text{ GeV}^2]$

Strategy

- 1. Generate circuits that prepare BW distributions for the resonances W, Z, t
- 2. Choose a range of supports spanning a range of different CoM energies
- 3. Set qubit numbers to sufficiently suppress systematic errors in each case

Systematic uncertainty scaling

$s_{\text{max}} = 200 \text{ GeV}^2$

State-preparation methods

Variational

- Quantum machine-learning (QML) approach
 - train parameterised quantum circuit to generate target distribution
- Flexible, small circuits fast training
- Limited scalability due to trainability issues in QML – works well for small-scale systems

Fourier expansion

- Decompose distribution into Fourier series and use linear combination of unitary operations to form weighted Fourier sum
- Scalable method for larger systems larger resource requirements
- Probabilistic preparation requires postselection

Performance comparison

$s_{\text{max}} = 200 \text{ GeV}^2$

Variational

Performance comparison

$s_{\text{max}} = 200 \text{ GeV}^2$

Fourier expansion

Performance comparison

Circuit used for example applications

$\sqrt{s_{max}}$	Method	Res	Accuracy	n	g_{1q}	g_{2q}	$\epsilon_s^{ extbf{CMSE}}$	JSD	$p_{ m success}$
•	Variational	W	Optimised	6	186	150	1.22×10^{-4}	3.31×10^{-6}	N/A
$100\mathrm{GeV}$	Fourier	W	Matched $(d=250)$	15	1592	1638	1.22×10^{-4}	6.73×10^{-5}	3.12%
$200\mathrm{GeV}$		W	Optimised	9	180	152	4.01×10^{-4}	0.029	N/A
	Variational	\mathbf{Z}	Optimised	9	234	200	4.77×10^{-3}	0.024	N/A
		t	Optimised	9	126	104	8.16×10^{-3}	0.070	N/A
		W	Matched $(d = 175)$	18	1576	1684	3.28×10^{-5}	0.032	0.9%
	7		More $(d = 250)$	18	1602	1686	2.13×10^{-6}	0.003	0.9%
	Fourier	Z	Matched $(d = 130)$	18	1591	1692	3.28×10^{-5}	0.031	1.1%
	rouriei		More $(d = 170)$	18	1601	1686	2.58×10^{-6}	0.014	1.2%
		t	Matched $(d = 85)$	17	825	906	3.41×10^{-5}	0.070	1.4%
			More $(d = 180)$	18	1593	1692	2.45×10^{-6}	0.010	1.2%

Example application

Simplified 1D integration

Simplified example, considering only numerator of the matrix element (excluding phase-space integral)

$$\sigma \propto \int_0^s ds_2 \int_0^{s-s_2} ds_1 (s_1^2 - s_1 M_\tau^2) \qquad \sqrt{s_{\text{max}}} = M_\tau = 1.776 \text{GeV}$$

• Rewrite expression (pre-calculating trivial integration over s_2) as

$$C(s_{1}, s_{2}) = 1 \text{ if } s_{1} + s_{2} < s, \qquad C(s_{1}, s_{2}) = 1 \text{ if } s_{1} + s_{2} < s, \\ \text{else} = 0$$

$$\sigma \propto S \left(\int_{0}^{s} ds_{1} s_{1}^{2} C(s_{1}, s_{2}) - M_{\tau}^{2} \int_{0}^{s} ds_{1} s_{1} C(s_{1}, s_{2}) \right)$$

$$f(s_{1}, s_{2}) = s_{1}^{2} \qquad f(s_{1}, s_{2}) = s_{1}$$

$$p(s_{1}, s_{2}) = U(s_{1})U(s_{2}) \qquad p(s_{1}, s_{2}) = U(s_{1})U(s_{2})$$

Simplified 1D integration

Compilation	Resource	Metric	Precision			
			10%	1%	0.1%	
NISQ	Number of qubits	Largest across circuits	24	24	24	
	CX gates	Total number across circuits Total depth across circuits Number in largest circuit Depth of largest circuit	3.99×10^{6} 2.52×10^{6} 1.80×10^{6} 1.13×10^{6}	4.68×10^{7} 2.94×10^{7} 1.14×10^{7} 7.18×10^{6}	6.26×10^{8} 3.93×10^{8} 1.69×10^{8} 1.06×10^{8}	
	All gates	Total number across circuits Total depth across circuits Number in largest circuit Depth of largest circuit	7.97×10^{6} 4.71×10^{6} 3.59×10^{6} 2.12×10^{6}	9.34×10^{7} 5.51×10^{7} 2.28×10^{7} 1.35×10^{7}	1.25×10^9 7.37×10^8 3.37×10^8 1.99×10^8	
Fault tolerant	Number of qubits	Largest across circuits	35	35	35	
	T gates	Total number across circuits Total depth across circuits Number in largest circuit Depth of largest circuit	8.62×10^{6} 7.21×10^{6} 3.83×10^{6} 3.21×10^{6}	3.49×10^{8} 2.92×10^{8} 9.62×10^{7} 8.06×10^{7}	5.85×10^9 4.89×10^9 1.71×10^9 1.43×10^9	

$$\sigma = -8.248$$

Non-separable 2D integration

Extension increasing complexity of the problem and mimicing more general case of multivariate integration

$$\sigma \propto \int_0^s \int_0^{s-s_2} ds_1 ds_2 \frac{s_1^2 s - s_1 M_{\tau}^2 s + s_1 M_{\tau}^2 s_2}{(s_2 - M_W^2)^2 + (M_W \Gamma_W)^2}$$

 $\sqrt{s_{\text{max}}} = 100 \text{GeV}$

Amounts to computing additional multivariate term

$$I_1 = \int_0^s \int_0^{s-s_2} ds_1 ds_2 \frac{s_1 M_\tau^2 s_2}{(s_2 - M_W^2)^2 + (M_W \Gamma_W)^2}$$

Non-separable 2D integration

Compilation	Resource	Metric		Precision	
			10%	1%	0.1%
NISQ	Number of qubits	Largest across circuits	28	28	28
	CX gates	Total number across circuits Total depth across circuits Number in largest circuit Depth of largest circuit	7.39×10^{7} 4.34×10^{7} 3.39×10^{7} 1.99×10^{7}	6.15×10^{8} 3.61×10^{8} 2.71×10^{8} 1.59×10^{8}	5.09×10^9 2.99×10^9 1.20×10^9 7.03×10^8
	All gates	Total number across circuits Total depth across circuits Number in largest circuit Depth of largest circuit	1.50×10^{8} 8.02×10^{7} 6.86×10^{7} 3.68×10^{7}	1.24×10^9 6.67×10^8 5.49×10^8 2.94×10^8	1.03×10^{10} 5.52×10^{9} 2.42×10^{9} 1.30×10^{9}
Fault tolerant	Number of qubits	Largest across circuits	41	41	41
	T gates	Total number across circuits Total depth across circuits Number in largest circuit Depth of largest circuit	3.39×10^9 3.29×10^9 1.65×10^9 1.60×10^9	4.08×10^{10} 3.95×10^{10} 2.14×10^{10} 2.07×10^{10}	$\begin{array}{c} 2.72\times10^{11}\\ 2.63\times10^{11}\\ 6.97\times10^{10}\\ 6.75\times10^{10} \end{array}$

$$\sigma = 3.179 \times 10^{12}$$

Conclusions

Current limitations

- Currently practical only for 2D integrals scalability to higher dimensions remains a major hurdle (based on current FQMCI methods)
- Uniform spacing for representing underlying probability distributions with qubits limits flexibility and efficiency
- Complex kinematic cuts and realistic phase spaces remain largely unexplored
- Approach restricted to specific cross-section integrand forms generalisation is still lacking
- Accuracy bottlenecked by state-preparation fidelity for Breit-Wigner distributions tailored methods are needed
- Systematic errors in state preparation not yet fully understood a barrier to precision
- Resource estimates indicate that even simple tree-level cases require FT hardware impractical
 for near-term quantum devices, especially for high-dimensional problems encountered in state-ofthe-art classical calculations