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Introduction



Motivation: quantum computing applications in high-
energy physics (HEP) 

© 2025 Quantinuum. All rights reserved.

§ Broadly expected to be two domains of application for quantum computing in HEP:

1. Theoretical modelling i.e., quantum simulation of intractable classical problems e.g., out-
of-equilibrium and real-time dynamics, thermalisation and dynamics after quench in lattice 
gauge theories

2. HEP experiments i.e., data analysis, data generation (simulation), detector algorithms, 
identification and reconstruction algorithms

Focus of this talk
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Motivation: computational frontiers HEP

© 2025 Quantinuum. All rights reserved.

§ Collider experiments such as the Large 
Hadron Collider (LHC) generate enormous 
volumes of data

§ Precise theoretical predictions essential for 
comparison with experimental data 

§ Order billions of CPU hours per year 
consumed by the LHC experiments for 
generating simulated data

§ Requires innovative technological solutions 
– theme of this talk!
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Cross-section calculations



Cross sections

© 2025 Quantinuum. All rights reserved.

§ Cross sections relate to the probability of a certain scattering process 𝑎 + 𝑏	 → 𝑐 + 𝑑 +⋯ 
occurring in some collider experiment 

§ General form:

§ Specific form of matrix element integration in a cross-section calculation can be written
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Monte Carlo integration



What is classical MCI (reminder)?

© 2025 Quantinuum. All rights reserved.

§ Expectation of function of random variable can be estimated by averaging samples (let 𝑋 ∼ 𝑝 𝑥 ):

E 𝑓 𝑋 =%
-

𝑓 𝑥 𝑝 𝑥 ≈
1
𝑞
%
./0

1

𝑓 𝑋.

§ Root mean-squared error (RMSE) scaling of MCI with number of samples 𝑞:

RMSE ∝ 𝒪 1/ 𝑞
Reduce overall variance using techniques 
such as:
1. Importance sampling
2. Adaptive Monte Carlo

𝑓 𝑥  - ’function applied’
𝑝 𝑥  - ‘probability distribution’

E 𝑓 𝑋 = %𝑓 𝑥 𝑝 𝑥 𝑑𝑥
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Quantum Monte Carlo integration 
(QMCI)



What is QMCI?

© 2025 Quantinuum. All rights reserved.

§ Quantum analogue of MCI - starting point is circuit 𝑃 preparing quantum state 𝑝  encoding 
probability distribution 𝑝 𝑥  such that 𝑝 = 𝑃 𝟎 :

𝑝 =2
!

𝑝 𝑥 𝑥

§ A circuit 𝑅 that operates on 𝑝 0 :

§ Probability of measuring 1 on final qubit:

2
!

𝑝 𝑥 𝑓 𝑥

Computed using Quantum Amplitude Estimation (QAE) algorithm - quadratic speedup in sample 
complexity

𝑅 𝑝 0 =2
!

𝑝 𝑥 𝑥 1 − 𝑓 𝑥 0 + 𝑓 𝑥 1

RMSE ∝ 𝒪 1/𝑞

[G. Brassard et al., arXiv:quant-ph/0005055 2000] 10
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Fourier QMCI

© 2025 Quantinuum. All rights reserved.

§ Extend function applied to the samples as a piecewise, periodic function, which can then be 
decomposed as a Fourier series:

§ Estimate for the expectation is easily estimated on a quantum computer:

𝑓 𝑥 = 𝑐 +2
"#$

%

𝑎"cos 𝑛𝜔𝑥 + 𝑏"sin 𝑛𝜔𝑥

E 𝑓 𝑋 = 𝑐 +2
"#$

%

𝑎" 2
!

𝑝 𝑥 cos 𝑛𝜔𝑥 +2
"#$

%

𝑏" 2
!

𝑝 𝑥 sin 𝑛𝜔𝑥

Each of the parenthesised sums can be efficiently estimated using QAE to provide low-depth 
quantum circuits – appealing for current noisy devices

arxiv.org:2105.09100S. Herbert,  (2022)
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Quantinuum’s QMCI engine

© 2025 Quantinuum. All rights reserved.

Background results and architecture of the engine

We have patents for the various blocks including in this engine architecture. Fourier QMCI gives us the
optimal way to perform the integration estimation. The resource quantification tool we have works both for
the NIQC and FTQC eras.

§ Engine architecture has modular framework

I. Y. Akhalwaya et al., arxiv:2308.06081 (2023)

§ Quantinuum has developed a QMCI engine which has a theoretically guaranteed quadratic speed-
up based on Fourier QMCI

We are looking for beta users so please get in touch if interested! 12

https://arxiv.org/abs/2308.06081


§ Five key features for this talk:
1. Agnostic to data-loading circuit 𝑃 – any existing or future data-loading method can simply ’plug in’ to 

engine
2. Enhanced 𝑃 circuit builder – ability to automatically construct circuitry to condition the quantity being 

estimated on thresholds / maxima / minima / products / sums of random variables (implement cut 
functions)

3. Fourier QMCI – decompose integral into minimal depth circuits for a variety of functions applied 
corresponding to moments or products of moments of random variables

4. Specify target precision – perform integral calculations to a specified precision in terms of upper bound on 
RMSE of estimator

5. Resource quantification – builds exact circuits corresponding to computations of interest and exactly 
quantify quantum resources required for running on given hardware for both noisy-intermediate (NISQ) 
and fault-tolerant (FT) eras

Quantinuum’s QMCI engine

© 2025 Quantinuum. All rights reserved.

I. Y. Akhalwaya et al., arxiv:2308.06081 (2023)
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QMCI for cross-section integration



Implementing a generic cross-section calculation

© 2025 Quantinuum. All rights reserved.

𝜎! ∝ %
"

# dx 𝑥$

𝑥 −𝑀%
& & +𝑀%

&Γ%&

§ Decompose integral in terms of ’building blocks’
§ Treat propagator terms (denominator) as probability distribution - 𝑝 𝑥  = !

"#$!"
"%$!"&!"

§ Treat monomial terms (numerator) as function applied - 𝑓 𝑥 = 𝑥'
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Implementing a generic cross-section calculation

© 2025 Quantinuum. All rights reserved.
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§ Probability distribution is a product of single-variable relativistic Breit-Wigner (BW) distributions 
§ Need efficient methods for preparing quantum states representing BW distributions for each of 

the relevant resonances in the Standard Model (𝑊, 𝑍, 𝑡, 𝐻)
§ We propose and explore two different methods in our article (won’t discuss here)
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Implementing a generic cross-section calculation

© 2025 Quantinuum. All rights reserved.

§ Implement cuts via the QMCI engine’s thresholding operations

%
"

( ),+
…𝑑𝑥𝑑𝑦 = %…Θ 𝐶 𝑥, 𝑦 𝑑𝑥𝑑𝑦
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Example application



Tau decay example

© 2025 Quantinuum. All rights reserved.

𝜏7 → 𝜈8𝑒7 %𝜈9

ω→

εω

e→

ε̄e

W

Figure 8: Feynman diagram for decay of a tau fermion [see Eq. (29)].

s1, one obtains the following integral

ω =

∫ s

0
ds2

∫ s→s2

0
ds1

(
s21 → s1m

2
ω

)
, (32)

which has analytical value ω = s4

12 →m2
ω
s3

6
In order to implement such a calculation using the QCMI engine, noting that the integral over

s2 trivially gives s, then we encode the calculation as the following one-dimensional integration
with a two-dimensional cut function, C(s1, s2),

ω = s

(∫ s

0
ds1s

2
1C(s1, s2)→m2

ω

∫ s

0
ds1s1C(s1, s2)

)
, (33)

where C(s1, s2) = 1, if s1 + s2 < s, and C(s1, s2) = 0, otherwise. If we compare this to
the general form of the expectation calculated using the QMCI engine in Eq. (7), and identify
s1 = x and s2 = y (this identification will remain for all subsequent examples), we observe
that there is freedom in the integrand separation, in terms of what to define as the probability
distribution, fS1S2(s1, s2), and the function applied g(s1, s2). In this case, for simplicity, we
choose to set fS1S2(s1, s2) = U(s1)U(s2), where U(.) is the uniform distribution, and g(s1, s2) =
s21 or g(s1, s2) = s1.12

As discussed previously in Section 2.3.2, the QMCI engine contains powerful, in-built func-
tionality for performing such a calculation; the cut function can be straightforwardly implemented
using thresholding operations, whilst the engine contains e!cient methods for calculating both
g(s1, s2) = s21 and g(s1, s2) = s1. The QMCI engine can thus be used to build e!cient, low depth
circuits that give estimates of both expectation values on the RHS of Eq. (33).

For this example, and the ones described later in Sections 4.2 and 4.3, we considered three
di"erent levels of expected precision, corresponding to upper bounds on the expected RMSE of
the final estimator of the order 10%, 1%, and 0.1%,13 respectively (not accounting for the sys-
tematic errors related to the state preparation discussed in Section 3). For illustration purposes,
we run noiseless simulations of the circuits for the case of 10% precision.

We considered a decay-like process where ↑
smax = Mω = 1.776GeV, giving an analytical

value ω = →8.248.14 We set n = 5 for each of the dimensions, s1 and s2, respectively. The
12

Note that this choice does not leverage the capabilities of the QMCI engine in terms of decomposing the

integrand into building blocks, as discussed previously—however, that is not the purpose of this initial example.
13

The per-mille precision represents the typical accuracy of classical MCI calculation in HEP.
14

Given that this quantity is a proxy of a cross section, it is not physical, and thus not necessarily positive.

21

𝑝 = 𝑘! + 𝑘& + 𝑘,
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𝑠& = 𝑝& + 𝑝, &

ℳ > = −
𝛼>𝜋>
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𝑠> −𝑀@

> > + Γ@𝑀@
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Tau decay example: methodology

© 2025 Quantinuum. All rights reserved.

§ Example calculation (excluding integration over angles and constant factors)

§ Rewrite expression

𝑝(𝑠#, 𝑠$) = 𝑈 𝑠# 𝐵𝑊(𝑠$)

𝑠max = 100GeV𝜎 ∝ %
"

#
%
"

#-#(
𝑑𝑠!𝑑𝑠&

𝑠!& − 𝑠!𝑀.
&

𝑠& −𝑀/
& & + 𝑀/Γ/ &

𝜎

∝ %
"

#
%
"

#
𝑑𝑠!𝑑𝑠&

1
𝑠& −𝑀/

& & + 𝑀/Γ/ & 𝑠!
&𝐶 𝑠!, 𝑠&

−𝑀.
&%

"

#
%
"

#
𝑑𝑠!𝑑𝑠&

1
𝑠& −𝑀/

& & + 𝑀/Γ/ & 𝑠!𝐶 𝑠!, 𝑠&

𝑝(𝑠#, 𝑠$) = 𝑈 𝑠# 𝐵𝑊(𝑠$)

𝐶 𝑠#, 𝑠$ = 1	if	𝑠# + 𝑠$ < 𝑠,
						else = 0 

𝑓(𝑠#, 𝑠$) = 𝑠#$

𝑓(𝑠#, 𝑠$) = 𝑠#
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Tau decay example - results

© 2025 Quantinuum. All rights reserved.

Figure 10: Histogram of the error for 24 runs of QMCI estimating the RHS of Eq. (36), for an
expected RMSE upper-bound precision of 10%.

bias is approximately an order of magnitude smaller than the required precision, and therefore
negligible. However, for higher levels of precision—such as for 1% and 0.1%—one would require
state-preparation circuits with smaller corresponding systematic errors, in order to still obtain
accurate results.

We used the resource mode to calculate the resources for the three expected levels of precision.
Table 3 gives the resources for NISQ and fault-tolerant compilation. The results are similar to
those found in Section 4.1, and therefore a similar analysis to that described there applies.
However, in this case it is worth noting that due to the more complicated circuit used to prepare
the BW distribution for the s2 dimension, then the qubit counts are slightly larger, and the gate
counts are also approximately an order of magnitude larger.

Table 3: Resources required to estimate the RHS of Eq. (36) using QMCI for various expected
precisions, for both NISQ and fault-tolerant resource mode.

Compilation Resource Metric Precision

10% 1% 0.1%

NISQ Number of qubits Largest across circuits 28 28 28

CX gates Total number across circuits 1.34→ 107 1.44→ 108 1.49→ 109

Total depth across circuits 7.88→ 106 8.43→ 107 8.74→ 108

Number in largest circuit 4.86→ 106 6.32→ 107 7.48→ 108

Depth of largest circuit 2.85→ 106 3.71→ 107 4.39→ 108

All gates Total number across circuits 2.72→ 107 2.91→ 108 3.02→ 109

Total depth across circuits 1.45→ 107 1.56→ 108 1.62→ 109

Number in largest circuit 9.84→ 106 1.28→ 108 1.51→ 109

Depth of largest circuit 5.27→ 106 6.85→ 107 8.11→ 108

Fault tolerant Number of qubits Largest across circuits 41 41 41

T gates Total number across circuits 5.37→ 108 6.97→ 109 8.23→ 1010

Total depth across circuits 5.21→ 108 6.75→ 109 7.98→ 1010

Number in largest circuit 2.18→ 108 3.08→ 109 4.21→ 1010

Depth of largest circuit 2.11→ 108 2.99→ 109 4.08→ 1010
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𝜎 = 3.162×10!
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Conclusions



Conclusions

© 2025 Quantinuum. All rights reserved.

• HEP’s massive computational demands make quantum technology a promising path to tackling 
classical bottlenecks.

• Developed a general quantum integration framework using Fourier QMCI via Quantinuum’s engine 
— adaptable to any cross section with modular structure.

• FT hardware needs are high now but expected to drop as FT compilation techniques advance.
• Promising enhancements or efficiency improvements for HEP applications beyond integration — 

from resonance modelling to event sampling based on underlying distributions.

Joint work with Mathieu Pellen (mathieu.pellen@physik.uni-freiburg.de)
Article at arXiv:2502.14647
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Cross-section calculations



Cross sections

© 2025 Quantinuum. All rights reserved.

§ Event selections in experimental analyses restrict the domain of integration to that physically 
accessible in the experiment

§ Represented by a `cut function’ 𝐶 (which may not have a closed-form expression)

𝜎 =
1
𝐹
#𝑑Φ ℳ - Θ 𝐶 Φ − 𝐶 Φ.

27



Scalability

© 2025 Quantinuum. All rights reserved.

§ Number of integration variables scales as 3𝑛 − 4 for a 2	 → 𝑛 scattering process
§ Number of propagator terms depends on process (potentially all possible massive internal 

particles) 

Example

 
20 integration variables
𝒪 1000  propagators𝑝𝑝 → 𝜇7𝜈=𝑒>𝜈9 (𝑏𝑏(𝑏𝑏
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Monte Carlo integration



Monte Carlo integration (MCI) for HEP

© 2025 Quantinuum. All rights reserved.

§ Numerical Monte Carlo techniques such as MCI 
‘workhorse’ of theoretical HEP calculations

§ Efficiently handle:

1. Cut functions without closed form
2. Intractability of analytical calculations at large 

multiplicities
3. Automation
4. Parton distribution functions defined on grid
5. Measurements of cross section as function of 

other observables

30



Quantum Monte Carlo integration 
(QMCI)



Fourier QMCI

© 2025 Quantinuum. All rights reserved.

§ The ‘natural’ quantity to estimate on a quantum computer is:

E sin& 𝑚𝑋 + 𝑐 =D
)

𝑝 𝑥 sin& 𝑚𝑥 + 𝑐

§ Can be achieved using a bank of RA rotation gates

arxiv.org:2105.09100S. Herbert (2022)
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§ Costly quantum arithmetic operations replaced by bank of controlled rotation gates implementing 
trigonometric functions

Fourier QMCI

© 2025 Quantinuum. All rights reserved.
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. . .
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ni→1

ni+1
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P ni wires

Ry(ω) Ry(20
ε) Ry(21

ε) Ry(2ni→1
ε)

Figure 4. Circuit diagram of A(P, i, ϑ, m, ϖ), where ω = mϖxω → ϑ and ε = mϖ!,
in which xω and ! are the first point of probability mass and spacing (as defined in
Section 2.2) for the i

th dimension of P .

is the convergence rate of some QAE subroutine (i.e., as defined in Eq. (3.2)) which operates on

circuits of the form defined in Fig. 4.

Here, the smoothness conditions su!ce to guarantee that the quadratic quantum advantage is
always retained. This Fourier series decomposition approach to QMCI is extremely flexible in terms
of the functions that can be applied, and a key element of the design of the QMCI engine is the
construction of suitable periodic piecewise functions for statistical quantities of interest.

3.4. Noise-aware quantum amplitude estimation. QAE circuits – in particular circuits for
QPE-free QAE – all have the same regular structure. They all consist of repeated instances of
the same sub-circuit, Q, followed by the measurement of a single qubit. In our previous work, we
showed how these properties can be exploited to model the inclement noise as a Gaussian random
variable, regardless of the actual underlying noise characteristics – and furthermore, that such a
random variable can be accounted for as if it were an additional component of variation in the
parameter estimation [28]. This we named noise-aware QAE, and we showed how the noise param-
eter could be co-learned alongside the parameter (amplitude of interest), such that the additional
component of variation introduced by the hardware noise can be exactly compensated for with
additional shots of the circuit.

For practical purposes, one way to think about noise-aware QAE is as a means of application-
specific error-mitigation, which allows the maximum executable circuit depth to be extended by
additional sampling. For instance, observe that a simple depolarising noise model for the machine
IBMQ Rome running circuit A1 has p̃coh = 0.9276 according to Ref. [28, Table 1], and a simple

17
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Quantinuum’s QMCI engine

© 2025 Quantinuum. All rights reserved.

§ We have developed a QMCI engine which has a theoretically guaranteed quadratic speed-up 
based on the Fourier QMCI methodQuantinuum’s Quantum Monte-Carlo engine: Fourier QMCI

We have developed a quantum Monte-Carlo engine which has a theoretically guaranteed quadratic speed-up.

Method Computes MSE Arithmetic

Classical MCI E(f(X)) !(q→1) Classical
Quantum MCI E(f(X)) !(q→2) Quantum & classical
Rescaled QMCI [1, 2] E(X) !(q→4/3) Classical only
Fourier QMCI E(f(X)) !(q→2) Classical only

In the context of ressource-constrained devices, we quantify the ressource requirement for a specific
application and propose a reasonable timeline towards quantum advantage. We already design the
quantum circuits that will be used for these applications.

We expect the first applications to benefit from the advantage of QMCI in about 5 to 7 years, and this
should be included in today’s models.

[1] S. Woerner and D. J. Egger, Quantum risk analysis

[2] N. Stamatopoulos, D. J. Egger, Y. Sun, C. Zoufal, R. Iten, N. Shen, and S. Woerner, Option pricing using quantum computers

I. Akhalwaya et al., arxiv:2308.06081 (2023)

[1] arxiv.org:1806.06893
[2] arxiv.org:1905.02666
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Quantum amplitude estimation convergence

© 2025 Quantinuum. All rights reserved.

§ Characterise convergence of QAE in terms of mean-squared error (MSE) of estimate
§ If 𝑞 is either number of quantum queries or number of classical samples then MSE scaling is (up 

to)

 
  QAE

 Classical

𝒪 𝑞G>

𝒪 𝑞G0

	

      Quadratic advantage!
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State preparation of relativistic Breit-
Wigner distributions



State preparation of probability distributions

© 2025 Quantinuum. All rights reserved.

§ Preparing arbitrary probability distributions on 
a quantum computer thought to be 
computationally hard in general - no 'silver 
bullet’ methodology

§ Bottleneck for many quantum algorithms

𝑝 =2
!

𝑝 𝑥 𝑥

Systematic errors

1. r𝜖! = ∫"%
"& 𝑓 𝑥 𝑝 𝑥 𝑑𝑥 − ∑#$%&'(𝑓 𝑥# 𝑝 𝑥 𝑥# Δ

2. c𝜖) = ∑#$%&'( 𝑓 𝑥# 𝑝 𝑥# Δ − +𝑝 𝑥#

3.  𝜖*+ = 𝐸 𝑋Θ 𝑋 ≥ 𝑉,+ − 𝐸 𝑋Θ 𝑋 ≥ 𝑥#

4. d𝜖-CMSE =
(
&
∑#$(& 5𝑃 𝑥# − 𝑃- 𝑥#

.

§ Load distribution into amplitude of 𝑛-qubit 
quantum state:

§ Distribution discretised and truncated to 𝑁 = 2' 
support points over 𝑎, 𝑏 , with steps Δ =
𝑏 − 𝑎 /𝑁 and 𝑥) = 𝑎 + *

+
 , 𝑥, = 𝑥) + 𝑖Δ

Problem

Discretisation error

Normalisation error

Thresholding error

State-preparation error
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Relativistic Breit-Wigner distributions

© 2025 Quantinuum. All rights reserved.

§ For a given 𝑛, a sub-range of the full support of the BW distribution will exist where 𝜖- and 𝜖' are 
sufficiently minimised to give negligible impact

§ Real calculation only performed for a given centre-of-mass (CoM) energy, 𝑠max, corresponding to 
integrating over a sub-range of the full support 𝑠min = 0	GeV+, 𝑠max = 𝑆	GeV+

Strategy

1. Generate circuits that prepare BW distributions for the resonances 
𝑊,𝑍, 𝑡

2. Choose a range of supports spanning a range of different CoM 
energies

3. Set qubit numbers to sufficiently suppress systematic errors in 
each case

38



Systematic uncertainty scaling

© 2025 Quantinuum. All rights reserved.

(a) W boson (b) Z boson

(c) t quark

Figure 2: Absolute discretisation and normalisation errors as a function of the number of qubits,
n, used to prepare the BW distributions for various resonances corresponding to a COM energy
→
smax = 200GeV.

variational parameters as

U(ωε) = UR(ωε
L+1)

L→times︷ ︸︸ ︷
UCXUR(ωε

L) . . . UCXUR(ωε
1), (25)

where UCX are fixed blocks of CX gates. The training parameters to optimise are the angles of
the Ry rotations across k layers

UR(ωε
k) =

n→1⊗

i=0

Ry(ε
k
i ). (26)

Thus the aim is to learn a U(ωε) such that

|gen↑ = |ϑ(ωε)↑ = U(ωε) |0n↑ . (27)

As is well understood from the literature, variational methods are plagued by issues of train-
ability, specifically the gradients of the cost function vanishing exponentially in the size of the
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State-preparation methods
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Variational
Fourier expansion

§ Quantum machine-learning (QML) approach 
- train parameterised quantum circuit to 
generate target distribution

§ Flexible, small circuits - fast training 
§ Limited scalability due to trainability issues in 

QML – works well for small-scale systems

§ Decompose distribution into Fourier series 
and use linear combination of unitary 
operations to form weighted Fourier sum

§ Scalable method for larger systems - larger 
resource requirements

§ Probabilistic preparation – requires post-
selection

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

ancillas for
coe!cients |0→

→a A C A† ↑0|
→a

ancillas for
block-encoding |0→

→b

(Chebyshev only)

U20
U21

U2a→1

↑0|
→b

main register |+→
→n

↓
∑

x
fd(x) |x→

B

Figure 4: Quantum circuit for state preparation in one dimension. The amplitudes are defined by a finite series, such as Fourier
or Chebyshev. Circuit U is the block-encoding of the corresponding basis functions and may require b additional ancilla qubits.
Each bit in the coe!cient register drives the application of powers of the block-encoding circuit. For example, in the subspace
where the coe!cient ancillas are in state |k→, we apply U

k to the other two registers. The algorithm succeeds if we measure
the zero state on all a + b ancilla qubits.

ax

ay

bx

nx

by

ny

. . .

. . .

. . .

. . .

. . .

. . .

|0→

A C A†

|0→

|0→

U
|+→

|0→

U
|+→

BX

BY

Figure 5: Quantum circuit for state preparation in two dimensions.

A =
Kx↑1∑

k=0

Ky↑1∑

l=0

√
|ck,l|

N
|k→↑0|

→ax
↔ |l→↑0|

→ay
↔ I→(bx+by+nx+ny) + u.c. , (27)

BX =
Kx↑1∑

k=0
|k→↑k| ↔ I→ay ↔ Uk

↔ I→(by+ny), (28)

BY =
Ky↑1∑

l=0
I→ax ↔ |l→↑l| ↔ I→(bx+nx)

↔ U l, (29)

C =
Kx↑1∑

k=0

Ky↑1∑

l=0
eiωk,l |k→↑k| ↔ |l→↑l| ↔ I→(bx+by+nx+ny). (30)

Applying the circuit to the uniform superposition of both main registers and post-selecting on the zero state of
all the ancillas yields the desired state

(
↑0|

→(ax+ay+bx+by)
↔ I→(nx+ny)

)
A†CBY BXA

(
|0→

→(ax+ay+bx+by)
↔ |+→

→(nx+ny)
)

=
1

N
↗

2nx+ny

∑

x

∑

y

fd(x, y) |x→ ↔ |y→ .
(31)
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Variational

(a) W boson (b) Z boson

(c) t quark

Figure 3: True (blue triangles) and generated (orange circles) points for 9-qubit circuits for the
BW distribution for various resonances up to →

smax = 200GeV, generated using the variational
method.

resources required were significantly larger when considering the equivalent accuracy circuits to
those produced using the variational method, due to the large number of additional ancilla qubits
required. In addition, because the Fourier expansion method is a probabilistic state-preparation
method, then in practice, without using techniques such as amplitude amplification, such small
success probabilities will require the circuit to be run several times before the desired state is
actually prepared (successful post selection).

It is worth also discussing that, for the n = 6 circuits (with distributions plotted in Fig. 12
in Appendix A.1), we find that the variational method produces slightly more accurate results
than the Fourier expansion method, and again requires significantly less resources. This indeed
makes sense, given that we expect variational methods to perform well for small-scale circuits;
however, one would expect the performance to decrease as the system size increases, which is
indeed what we see when considering the n = 9 circuits discussed previously.

As an aside, if we were to consider an example of a potential more realistic use case corre-
sponding to an energy scale comparable to a modern collider experiment—where in reality it
would be essential to really suppress systematic errors—of →smax = 1TeV, for example, then we
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Fourier expansion

(a) d = 175 (b) d = 250

Figure 4: True (blue triangles) and generated (orange circles) points for the W-boson BW distri-
bution up to →

smax = 200GeV, generated using the Fourier expansion method, for two di!erent
9-qubit circuits corresponding to (left) a less accurate generated distribution that matches the
accuracy of the variational method, and (right) a more accurate generated distribution.

(a) d = 130 (b) d = 170

Figure 5: True (blue triangles) and generated (orange circles) points for the Z-boson BW distri-
bution up to →

smax = 200GeV, generated using the Fourier expansion method, for two di!erent
9-qubit circuits corresponding to (left) a less accurate generated distribution that matches the
accuracy of the variational method, and (right) a more accurate generated distribution.

can see from Fig. 7 that we would need around n = 16 for systematic errors to be suppressed to
around ↑ (10→5

↓ 10→6). For circuits this size, variational methods are likely not to be perfor-
mant due to the trainability issues previously discussed. On the contrary, the Fourier expansion
method should still be e!ective for generating accurate distributions at this circuit size, although
the resources required would likely be considerable.

As discussed previously, state-preparation for probability distributions is an active research
topic, and future developments should hopefully allow for the preparation of accurate BW dis-
tributions with reduced circuit sizes, paving the way for less resource-intensive QMCI for HEP.
We now move on to discuss an example application of the QMCI engine for calculating a cross-
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(a) d = 175 (b) d = 250

Figure 4: True (blue triangles) and generated (orange circles) points for the W-boson BW distri-
bution up to →

smax = 200GeV, generated using the Fourier expansion method, for two di!erent
9-qubit circuits corresponding to (left) a less accurate generated distribution that matches the
accuracy of the variational method, and (right) a more accurate generated distribution.

(a) d = 130 (b) d = 170

Figure 5: True (blue triangles) and generated (orange circles) points for the Z-boson BW distri-
bution up to →

smax = 200GeV, generated using the Fourier expansion method, for two di!erent
9-qubit circuits corresponding to (left) a less accurate generated distribution that matches the
accuracy of the variational method, and (right) a more accurate generated distribution.

can see from Fig. 7 that we would need around n = 16 for systematic errors to be suppressed to
around ↑ (10→5

↓ 10→6). For circuits this size, variational methods are likely not to be perfor-
mant due to the trainability issues previously discussed. On the contrary, the Fourier expansion
method should still be e!ective for generating accurate distributions at this circuit size, although
the resources required would likely be considerable.

As discussed previously, state-preparation for probability distributions is an active research
topic, and future developments should hopefully allow for the preparation of accurate BW dis-
tributions with reduced circuit sizes, paving the way for less resource-intensive QMCI for HEP.
We now move on to discuss an example application of the QMCI engine for calculating a cross-
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(a) d = 85 (b) d = 180

Figure 6: True (blue triangles) and generated (orange circles) points for the t-quark BW distri-
bution up to →

smax = 200GeV, generated using the Fourier expansion method, for two di!erent
9-qubit circuits corresponding to (left) a less accurate generated distribution and (right) a more
accurate generated distribution.

section in HEP, making use of the 6-qubit, →smax = 100GeV, variationally-trained circuit for
the W-boson BW distribution discussed in this section.

4 Example applications

To illustrate the generality of the approach sketched above, we will focus on one particular
example, the decay of the tau lepton into three fermions

ω→ ↑ εωe→ε̄e, (29)
p = k1 + k2 + k3,

where p and ki are the initial and final state four momenta, respectively. In this case, the matrix
element squared can be written as10

|M|
2 = ↓

ϑ2ϖ2

sin4 ϱw

s21 ↓M2
ω s1

(s2 ↓M2
W)2 + !WMW

, (30)

where the invariants, s1 and s2, are equal to (p1+p3)2 and (p2+p3)2, respectively. The electroweak
coupling is denoted by ϑ, while the weak mixing angle is ϱw. The mass and width of the W
bosons are denoted by mW and !W, respectively, while Mω is the mass of the tau lepton.11 It
is worth pointing out that the expression in Eq. (30) contains a W-boson propagator term [see
Eq. (3)]. This originates from the fact that the electron and anti-electron neutrino are produced
through the decay of an intermediate W boson, as depicted in the Feynman diagram in Fig. 8.

10
The expression has been obtained with the help of the FeynArts [63, 64] and FormCalc [65] packages to

the lowest order in perturbation theory.
11

It is worth noting that the expression for the matrix element in Eq. (30) assumes a massless electron, which

is a common approximation in HEP. This is because the mass of the electron (0.5MeV) is negligible with respect

to a collision energy (13.6TeV for the LHC, for example).
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(a) d = 85 (b) d = 180

Figure 6: True (blue triangles) and generated (orange circles) points for the t-quark BW distri-
bution up to →

smax = 200GeV, generated using the Fourier expansion method, for two di!erent
9-qubit circuits corresponding to (left) a less accurate generated distribution and (right) a more
accurate generated distribution.

Table 1: Comparison of the metrics for the prepared distributions for each resonance for both
COM energies, using either variational or Fourier expansion methods. “Res” stands for “Reso-
nance”. For “Accuracy”, “Optimised” refers to the variationally-trained circuits with optimised
hyperparameters, and “Matched” and “More” refer to the Fourier-expansion-method circuits,
with either similar, or much greater accuracy, to the equivalent variationally trained circuits,
respectively.

→
smax Method Res Accuracy n g1q g2q ωCMSE

s JSD psuccess

100GeV
Variational W Optimised 6 186 150 1.22↑ 10→4 3.31↑ 10→6 N/A

Fourier W Matched (d = 250) 15 1592 1638 1.22↑ 10→4 6.73↑ 10→5 3.12%

200GeV

Variational
W Optimised 9 180 152 4.01↑ 10→4 0.029 N/A
Z Optimised 9 234 200 4.77↑ 10→3 0.024 N/A
t Optimised 9 126 104 8.16↑ 10→3 0.070 N/A

Fourier

W Matched (d = 175) 18 1576 1684 3.28↑ 10→5 0.032 0.9%
More (d = 250) 18 1602 1686 2.13↑ 10→6 0.003 0.9%

Z Matched (d = 130) 18 1591 1692 3.28↑ 10→5 0.031 1.1%
More (d = 170) 18 1601 1686 2.58↑ 10→6 0.014 1.2%

t Matched (d = 85) 17 825 906 3.41↑ 10→5 0.070 1.4%
More (d = 180) 18 1593 1692 2.45↑ 10→6 0.010 1.2%

section in HEP, making use of the 6-qubit, →smax = 100GeV, variationally-trained circuit for
the W-boson BW distribution discussed in this section.
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example 
applications
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Simplified 1D integration
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§ Simplified example, considering only numerator of the matrix element (excluding phase-space 
integral)

𝜎 ∝ %
"

#
𝑑𝑠&%

"

#-#(
𝑑𝑠! 𝑠!& − 𝑠!𝑀.

&

§ Rewrite expression (pre-calculating trivial integration over 𝑠() as

𝜎 ∝ 𝑠 %
"

#
𝑑𝑠!𝑠!&𝐶 𝑠!, 𝑠& −𝑀.

&%
"

#
𝑑𝑠!𝑠!𝐶 𝑠!, 𝑠&

𝑓(𝑠!, 𝑠") = 𝑠!" 𝑓(𝑠!, 𝑠") = 𝑠!

𝑝(𝑠!, 𝑠") = 𝑈 𝑠! 𝑈(𝑠") 𝑝(𝑠!, 𝑠") = 𝑈 𝑠! 𝑈(𝑠")

𝐶 𝑠!, 𝑠" = 1	if	𝑠! + 𝑠" < 𝑠,
				else = 0 

𝐶 𝑠!, 𝑠" = 1	if	𝑠! + 𝑠" < 𝑠,
				else = 0 

𝑠max = 𝑀. = 1.776GeV
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Simplified 1D integration
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Figure 9: Histogram of the error for 100 runs of QMCI estimating the RHS of Eq. (34), for an
expected RMSE upper-bound precision of 10%.

substantial two-qubit gate counts, even the application of targeted error mitigation strategies—
such as noise-aware QAE techniques [? ]—is unlikely to su!ce. There is only so much error
mitigation can do in the presence of such high noise levels, and the accumulation of errors is
likely to compromise the accuracy of the results, regardless. We note that the number of T-gate
operations for fault-tolerant execution are also high; for example, for a 0.1% precision, as would
be required to compete with current classical MCI methods, the largest circuit requires 1.71→109

T gates. However, it is worth noting these gate counts are likely to reduce significantly in future
as more research into optimised synthesis is carried out (see Ref. [32], Section 10.3 for a detailed
discussion of this topic), and, therefore, these values should be regarded as loose upper bounds,
and treated with a degree of uncertainty.

4.2 Separable two-dimensional integration

We now move on to the expression for the actual integration of the tau decay given in Eq. (31),
by also considering the denominator (i.e., the propagator). We again omit the integration over
the angles. The integral then becomes

ω ↑

∫ s

0

∫ s→s2

0
ds1ds2

s21 ↓ s1M2
ω

(s2 ↓M2
W)2 + (MW!W)2

. (35)

The analytical solution to this integral is given in Appendix A.
In order to implement such a calculation using the QCMI engine, we first note that we can

express this integral in the following way

ω ↑

∫ s

0

∫ s

0
ds1ds2

1

(s2 ↓M2
W)2 + (MW!W)2

s21C(s1, s2)

↓M2
ω

∫ s

0

∫ s

0
ds1ds2

1

(s2 ↓M2
W )2 + (MW!W)2

s1C(s1, s2), (36)
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Table 2: Resources required to estimate the RHS of Eq. (34) using QMCI for various expected
precisions, for both NISQ and fault-tolerant resource mode.

Compilation Resource Metric Precision

10% 1% 0.1%

NISQ Number of qubits Largest across circuits 24 24 24

CX gates Total number across circuits 3.99→ 106 4.68→ 107 6.26→ 108

Total depth across circuits 2.52→ 106 2.94→ 107 3.93→ 108

Number in largest circuit 1.80→ 106 1.14→ 107 1.69→ 108

Depth of largest circuit 1.13→ 106 7.18→ 106 1.06→ 108

All gates Total number across circuits 7.97→ 106 9.34→ 107 1.25→ 109

Total depth across circuits 4.71→ 106 5.51→ 107 7.37→ 108

Number in largest circuit 3.59→ 106 2.28→ 107 3.37→ 108

Depth of largest circuit 2.12→ 106 1.35→ 107 1.99→ 108

Fault tolerant Number of qubits Largest across circuits 35 35 35

T gates Total number across circuits 8.62→ 106 3.49→ 108 5.85→ 109

Total depth across circuits 7.21→ 106 2.92→ 108 4.89→ 109

Number in largest circuit 3.83→ 106 9.62→ 107 1.71→ 109

Depth of largest circuit 3.21→ 106 8.06→ 107 1.43→ 109

where the cut function, C(s1, s2), is the same as previously. Then, recalling the general form
of an expectation calculated using the QMCI engine in Eq. (7), and following the discussion in
Section 2.4, we see that each individual integral has the canonical form, in terms of products of
building blocks, that we require for performing a generic cross-section calculation using the QMCI
engine. We can identify the probability distribution, fs1s2 , as a product of univariate BW distri-
butions [or rather, in this case, the product of an uniform distribution for the dimension s1, and an
univariate W-boson BW distribution for the dimension s2, i.e., fs1s2(s1, s2) = U(s1)BWW(s2)].
Then, the functions applied, g(.), are just products of moments of the integration variables [or
rather in this case simply the univariate products g(s1, s2) = s21 or g(s1, s2) = s1].

For this example, for demonstration purposes, it is important that we integrate across the
range of the BW peak, and therefore we set ↑

smax = 100GeV.17 The analytical value in this
case is ω = 3.162 → 108. As discussed in Section 3, we make use of a trained PQC with n = 6
(specifically the optimal circuit given in Table 1) to prepare the BW distribution for the W-boson
propagator used to model the probability distributions for dimension s2, and use the QMCI
engine’s state-preparation library to load a n = 6 circuit preparing the uniform distribution
used to model the probability distribution for dimension s1. We again construct fs1s2(s1, s2) by
combining the circuits.

In order to demonstrate the validity of our generic approach, we carried out numerical exper-
iments by running noiseless simulations to numerically estimate the RHS of Eq. (36), 24 di!erent
times, for an expected precision of 10%.

Figure 10 gives a histogram of the error, ω̂ ↓ ω, where we again see all values within the
expected precision of 10%. However, in this case there is a clear bias in the results (as they
are not centered around 0). A bias is to be expected given the discussion of systematic errors
regarding the state preparation of BW distributions given in Section 3—a source of error that
was notably not applicable to the previous example. In this case, the observed systematic

17
Note that this calculation does not correspond to a physical tau decay (or indeed a physical process).

24

𝜎 = 	−8.248
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Non-separable 2D integration
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§ Extension increasing complexity of the problem and mimicing more general case of multivariate 
integration

§ Amounts to computing additional multivariate term

𝑠max = 100GeV𝜎 ∝ %
"

#
%
"

#-#(
𝑑𝑠!𝑑𝑠&

𝑠!&𝑠 − 𝑠!𝑀.
&𝑠 + 𝑠!𝑀.

&𝑠&
𝑠& −𝑀/

& & + 𝑀/Γ/ &

𝐼! = %
"

#
%
"

#-#(
𝑑𝑠!𝑑𝑠&

𝑠!𝑀.
&𝑠&

𝑠& −𝑀/
& & + 𝑀/Γ/ &
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Non-separable 2D integration

© 2025 Quantinuum. All rights reserved.

Figure 11: Histogram of the error for 6 runs of QMCI estimating the RHS of Eq. (37) for an
expected RMSE upper-bound precision of 10%.

4.3 Non-separable two-dimensional integration

Finally, in order to increase the complexity of the problem and mimic the more general case of
Eq. (4), we compute the following

ω →

∫ s

0

∫ s→s2

0

s21s↑ s1M2
ω s+ s1M2

ω s2
(s2 ↑M2

W)2 + (MW!W)2
ds1ds2, (37)

which amounts in practice to, in addition to calculating the same terms as in Eq. (36) (multiplied
by the constant, s), calculating the following, non-separable, two-dimensional integral

I1 =

∫ s

0

∫ s→s2

0

s1M2
ω s2

(s2 ↑M2
W)2 + (MW!W)2

ds1ds2. (38)

The analytical solution to this additional integral is also provided in Appendix A. The analytical
value of Eq. (37) is then ω = 3.179↓ 1012.

For this example, the setup is the same as in Section 4.2. In order to demonstrate the
validity of our approach, we carried out numerical experiments by running noiseless simulations
to numerically estimate the RHS of Eq. (37), 6 times, for an expected precision of 10%.

Figure 11 gives a histogram of the error, ω̂ ↑ ω. The results are broadly similar to those in
Section 4.2, with all values within the expected precision, and with a bias again observed (this
is not surprising, as the calculations only di!er by the additional term, which is subdominant).

We analysed the resources required to run the circuits at the nominal precisions using the
resource mode. Table 4 gives these for NISQ and fault-tolerant compilation. Once again the
results are similar to the previous sections, and therefore a similar analysis again applies. In
this case, as compared to the example in Section 4.2—which itself required greater resources
than the example in Section 4.1—both the qubit counts and number of gates are larger, by
approximately an additional order of magnitude in the latter case. This increase is due to
the extra 2D integration that is performed (i.e., calculating E[s1s2]), which as discussed in
Section 2.3.1 requires greater resources than when calculating univariate expectations. Thus, we
see that as the dimensionality or complexity of the integrals increases, so too do the required
resources.

26

Based upon the resource analysis here, and that in the previous sections, it is clear that to
be able to perform state-of-the-art HEP calculations using QMCI in the future—whereby the
dimensionality and complexity of the calculations will be much greater than for these examples—
we will require significantly greater resources than are available with near-term hardware. Thus,
this clearly remains an application for the future, fault-tolerant era of quantum computing.

Table 4: Resources required to estimate the RHS of Eq. (37) using QMCI for various expected
precisions, for both NISQ and fault-tolerant resource mode.

Compilation Resource Metric Precision

10% 1% 0.1%

NISQ Number of qubits Largest across circuits 28 28 28

CX gates Total number across circuits 7.39→ 107 6.15→ 108 5.09→ 109

Total depth across circuits 4.34→ 107 3.61→ 108 2.99→ 109

Number in largest circuit 3.39→ 107 2.71→ 108 1.20→ 109

Depth of largest circuit 1.99→ 107 1.59→ 108 7.03→ 108

All gates Total number across circuits 1.50→ 108 1.24→ 109 1.03→ 1010

Total depth across circuits 8.02→ 107 6.67→ 108 5.52→ 109

Number in largest circuit 6.86→ 107 5.49→ 108 2.42→ 109

Depth of largest circuit 3.68→ 107 2.94→ 108 1.30→ 109

Fault tolerant Number of qubits Largest across circuits 41 41 41

T gates Total number across circuits 3.39→ 109 4.08→ 1010 2.72→ 1011

Total depth across circuits 3.29→ 109 3.95→ 1010 2.63→ 1011

Number in largest circuit 1.65→ 109 2.14→ 1010 6.97→ 1010

Depth of largest circuit 1.60→ 109 2.07→ 1010 6.75→ 1010

5 Conclusion

Quantum technology holds the promise of solving complex problems that are classically in-
tractable, or providing more e!cient methods for tackling existing challenges than classical ap-
proaches allow. Meanwhile, the field of high-energy physics (HEP)—which seeks to uncover the
fundamental laws of nature at the smallest scales—demands immense computational resources.

In this work, we investigated whether quantum computing could, in the future, help address
key computational bottlenecks in HEP. Building on, and going far beyond, the work presented in
Ref. [21], where MP first introduced the idea of using Quantum Monte Carlo Integration (QMCI)
for cross-section calculations in HEP, we have made significant advancements in this direction.

We have developed a general approach for integrating non-trivial cross sections in HEP, in
terms of decomposing the general integrand into products of constituent building blocks. This
work leverages the Fourier Quantum Monte Carlo Integration method implemented in Quantin-
uum’s QMCI engine [32], developed in part by IW, along with several other key proprietary
features of the engine. Specifically, we introduced two distinct approaches for preparing rela-
tivistic Breit-Wigner distributions on quantum registers—functions that appear as one of the
key building blocks of generic integrands in cross-section calculations.

To demonstrate the method’s capabilities, we performed two-dimensional integrations for
several examples that arguably represent some of the most challenging integrands investigated
to date for quantum integration. However, it is still worth remarking that these examples remain
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Current limitations
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• Currently practical only for 2D integrals — scalability to higher dimensions remains a major hurdle 
(based on current FQMCI methods)

• Uniform spacing for representing underlying probability distributions with qubits limits flexibility and 
efficiency

• Complex kinematic cuts and realistic phase spaces remain largely unexplored
• Approach restricted to specific cross-section integrand forms — generalisation is still lacking
• Accuracy bottlenecked by state-preparation fidelity for Breit-Wigner distributions — tailored 

methods are needed
• Systematic errors in state preparation not yet fully understood — a barrier to precision
• Resource estimates indicate that even simple tree-level cases require FT hardware — impractical 

for near-term quantum devices, especially for high-dimensional problems encountered in state-of-
the-art classical calculations
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