

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

MEASUREMENTS OF DIBOSON PRODUCTION AND PRECISION EFT CONSTRAINTS

EPS HEP 2025 | 10 July, MarseilleHannes Mildner on behalf of the ATLAS collaboration

DIBOSON PRODUCTION

- Will discuss three new diboson measurements by the ATLAS collaboration
 - *W*⁺*W*⁺: <u>arXiv:2505.11310</u>
 - W[±]Z: <u>arXiv:2507.03500</u>
 - o Zy: <u>ATLAS-CONF-2025-001</u>
 - Based on full 13 TeV dataset of 140 fb⁻¹
 - **Precision** measurement with leptonic boson decays
- Probing the SM electroweak gauge structure
 - Triple gauge couplings (TGCs) due to non-Abelian gauge symmetry
 - No neutral triple gauge coupling (nTGC) (e.g. $ZZ\gamma$ or $Z\gamma\gamma$)
- Deviations from SM modelled as additional operators in SMEFT framework
 - Anomalous TGCs at dimension six
 - nTGCs at dimension eight
 - Diboson sensitive: effects of multiple operators increases with invariant mass

JGU

 $\Lambda \Lambda /$

(not for **Zy**)

Hannes Mildner Measurements of Diboson Production and Precision EFT Constraints

 $\mathcal{I} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$

+ iFBY

+ $\chi_i \mathcal{Y}_{ij} \mathcal{X}_j \mathcal{P} + h.c.$

 $+\left|\mathcal{D}_{\mathcal{A}}\varphi\right|^{2}-\bigvee(\phi)$

WW, WZ, AND ZY: EVENT SELECTION

•

• *WW*

- o Electron and muon
- 0 b-jets (reduce top background)
- $m_{\ell\ell}$ > 85 GeV (reduce DY)
- Event yield Category 144221 Data Total SM 139500 ± 2400 WW 56900 ± 1100 41% Total background 82600 ± 2100 59% 66500 ± 1900 48% Top Drell–Yan 6500 ± 400 5% Fakes 5000 ± 1300 4% 4500 ± 600 $WZ, ZZ, V\gamma$ 3%

- WZ
 - Three charged leptons • $|M_{\ell\ell} - M_Z| < 10 \text{ GeV}$
 - $M_{T}(W) > 30 \text{ GeV}$

Channel	eee	μee	$e\mu\mu$	$\mu\mu\mu$	All
Data	3955	4600	5895	7486	21936
Total expected	$\begin{array}{c} 4000 \\ \pm 500 \end{array}$	$\begin{array}{c} 4900 \\ \pm 500 \end{array}$	$\begin{array}{c} 5900 \\ \pm 700 \end{array}$	$\begin{array}{c} 7600 \\ \pm 900 \end{array}$	$\begin{array}{c} 22400 \\ \pm 2500 \end{array}$
WZ	78%	83%	79%	82%	81%
ZZ	8%	7%	8%	7%	7%
Misid. leptons	7%	4%	6%	5%	5%
$t\overline{t} + V$	4%	4%	4%	4%	4%
tZj	2%	2%	2%	1%	2%
WZjj-EW	1%	1%	1%	1%	1%
VVV	< 1%	< 1%	< 1%	< 1%	< 1%

Zy

- \circ $\,$ Two charged leptons and a photon $\,$
- $\circ |M_{\ell\ell} M_Z| < 10 \text{ GeV}$
- $M_{\ell\ell} + M_{\ell\ell\gamma} > 182 \text{ GeV} (\text{reduce FSR})$
- Photon $p_T > 200 \text{ GeV}$

~	
Source	$ee + \mu\mu$
$Z\gamma$ signal	$271.0 \pm 2.4 \text{ (stat.)} \pm 44.3 \text{ (syst.)}$
Z+jets	$82 \pm 71 \; (\text{stat.}) \pm 98 \; (\text{syst.})$
multiboson	$33.5 \pm 4.6 \text{ (stat.)} \pm 10.0 \text{ (syst.)}$
pile-up	$1.01 \pm 0.11 \text{ (stat.)} \pm 0.20 \text{ (syst.)}$
$t\bar{t}\gamma$	$0.31 \pm 0.18 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$
$tW\gamma$	$0.13 \pm 0.02 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$
Total prediction	$388 \pm 71 \text{ (stat.)} \pm 108 \text{ (syst.)}$
Data	344

- 3x more *WW* events (57k) than *WZ* (18k) but 3x larger background fraction
- Z_{γ} : small yield due to photon p_T requirement focus on nTGC limits
- Will discuss *WW* and *WZ* first, highlighting similarities and differences

WW AND WZ: BACKGROUND ESTIMATION

- Fake lepton background
 - Due to non-prompt leptons or objects misidentified as leptons 0
 - Estimated in regions with loosened lepton identification criteria \bigcirc
- Top quark pair production background (relevant for *WW* only)
 - Estimated differentially from 1 and 2 b-jets CRs (SR has 0), simultaneously 0 determining b-tag efficiency ε and top background yield

JGU

ATLAS $5000 = \frac{ATLAS}{\sqrt{5}}$

2000F

000

1.2

"fakes"

Data

____ W⁺Z Misid. leptons

ZZ tt+V Others HI Tot. unc

> l'll $\ell', \ell = e \text{ or } \mu$

WZ

WW AND WZ: SIGNAL EXTRACTION, UNCERTAINTIES

- WZ: combination of four different three-lepton channels
- WW: Signal extraction in maximum-likelihood fit
 - Further reduce uncertainties of data-driven backgrounds
 - Benefits from state-of-the art MiNNLO_{PS} NNLO+PS model

14/7	eee	μee	$e\mu\mu$	$\mu\mu\mu$	Combined	
WZ Relativ	e uncert	ainties [%]			
e energy scale	0.3	< 0.1	0.2	< 0.1	0.1	
e efficiency	1.7	1.1	0.6	< 0.1	0.6	
μ momentum scale	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
μ efficiency	< 0.1	1.4	0.5	1.7	0.9	
$E_{\rm T}^{\rm miss}$ and jets	0.4	0.4	0.5	0.5	0.4	
Trigger	< 0.1	< 0.1	< 0.1	0.2	0.1	
Pile-up	1.0	0.9	0.6	0.4	0.6	
Misid. leptons background	2.3	1.1	1.5	1.4	1.4	-
ZZ background	0.9	0.8	0.9	0.8	0.8	
Other backgrounds	0.9	0.9	0.9	0.9	0.9	
Uncorrelated	0.4	0.3	0.3	0.3	0.2	
Total experimental uncertainty	3.4	2.6	2.3	2.6	2.3	
Luminosity	0.9	0.9	0.9	0.9	0.9	/
Theoretical modelling	3.0	3.0	3.0	3.0	🢽 3.0 🚩	
Data statistics	2.0	1.8	1.6	1.4	U 0.8	
Total	5.0	4.5	4.2	4.3	4.0	

WW AND WZ: CROSS-SECTION

Excellent agreement with precise (n)NNLO QCD x NLO EW fixed-order prediction from MATRIX ----- Data ATLAS (incl. NLO corrections to photon and gluon induced) Statistical uncertainty $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $pp \rightarrow e^{\pm} \nu \mu^{\mp} \nu$ **Total uncertainty** Choice of PDF matters, NNPDF3.0 (old ATLAS default) Predictions yields too small cross-sections This measurement $707 \pm 7 \text{ (stat)} \pm 20 \text{ (syst) fb}$ Powheg MiNNLO + Pythia8 (*) ATLAS 656 ± 10 (PDF) ± 15 (scale) fb eee 60.6 ± 3.1 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ GENEVA + Pythia8 (*) W[±]Z $(N)NLO + parton \cdot$ 683 ± 8 (PDF) ± 5 (scale) fb M//μee 57.5 ± 2.6 shower models • Data Sherpa 2.2.12 (0-1/@NLO, 2-3/@LO) (*) HIM MATRIX NNPDF3.1 655 ± 10 (PDF) ± 48 (scale) fb NNLO QCDxEW_{aq} 62.0 ± 2.6 eμμ ••••• MATRIX NNPDF3.1 MATRIX 2.1 nNNLO NNLO QCD+EW 710 ± 7 (PDF) ± 15 (scale) fb (** 683 ± 9 (PDF) ± 15 (scale) fb (**) ••••• MATRIX MSHT20 μμμ 60.7 ± 2.6 NNLO QCDxEW Most precise prediction, MATRIX 2.1 nNNLO

NLO EW (n)NNLO QCD x NLO EW, 687 ± 7 (PDF) ± 14 (scale) fb (**) combined 60.7 ± 2.4 using NNPDF 3.1 luxQED, 661 ± 9 (PDF) ± 15 (scale) fb (**) in agreement with data (*) + Sherpa 2.2.2 $gg \rightarrow WW \times 1.7$ 50 55 70 75 (**) + NNPDF3 1luxQED $\gamma \gamma \rightarrow WW$ $\sigma_{W^{\pm}7}^{\text{fid.}}$ [fb] 600 650 700 500 550

Hannes Mildner Measurements of Diboson Production and Precision EFT Constraints

Integrated fiducial cross-section [fb]

IGU

WW AND WZ: DIFFERENTIAL CROSS-SECTION

- Fiducial differential cross-section extracted using iterative Bayesian unfolding
- Reaching O(10%) precision across wide kinematic range
- Best description typically by (n)NNLO QCD and *multiplicative* NLO EW correction
- (N)NLO+PS give good description of data, too

WW AND WZ: DIFFERENTIAL CROSS-SECTION

like e

- Jet multiplicity measured with remarkable precision
- Described within uncertainties by Sherpa multi-jet merged sample (ATLAS main NLO+PS work horse)
- Good description also by MiNNLO_{PS}+Pythia model

WW AND WZ: DIFFERENTIAL CROSS-SECTION

- Measurements at very low p_T not well described
- Expected to be explained by large logarithms in p_T/m_{VV}
- Resummed predictions in principle available
- Many more observables measured (2D distributions, angular correlations,)

Disagreements at low p_T

WW AND WZ: CHARGE ASYMMETRIES

- Charge asymmetry due to 2:1 ratio of up:down valence quarks
- WZ: measurement of charge ratio with 2% precision (statistically limited)
- *WW*: *W*⁺ more boosted, typically following up valence quark direction
 - \circ Less pronounced on lepton level (even inverted due to W decay kinematics)
 - A_C quantifies asymmetry in $|\eta_{\ell^+}| > |\eta_{\ell^-}|$ vs $|\eta_{\ell^+}| < |\eta_{\ell^-}|$
 - Evidence for increase of asymmetry with dilepton invariant mass

WW AND **WZ**: SMEFT INTERPRETATION (CP EVEN)

- Limits on SMEFT Wilson coefficients from m_T distribution
- Competitive limits on anomalous TGC and quark-boson couplings (spoiling cancellations in SM)
- Quadratic contribution dominant, interference (linear in *c_i//*⁻²) helicity suppressed
- Probing multi-TeV scale
- WZ better, WW broader sensitivity

JGU

	WИ	$O(\Lambda^{-2}), i$ Expected	ndividual Observed	$O(\Lambda^{-4})$, i Expected	individual Observed	$O(\Lambda^{-4}),$ Expected	profiled Observed	✓ Λ = 1 ⁻¹	TeV assum	ed, limits scale	~ / ²	
TGC -	c _W	[-3.5, 3.2] [-8.9.9.8]	[-3.5, 3.4]	[-0.16, 0.16] [-7 21]	[-0.18, 0.18]	[-0.17, 0.16] [-7 21]	[-0.18, 0.18]	WZ	Expec 95% CL (lin.)	cted [TeV $^{-2}$] 95% CL (lin.+quad.)	$\begin{array}{c} \text{Obser} \\ 95\% \text{ CL (lin.)} \end{array}$	ved [TeV $^{-2}$] 95% CL (lin.+quad.)
	c _{HWB}	[-8.4, 9.2]	[-10, 8]	[-1.5, 1.7]	[-1.7, 1.9]	[-1.7, 1.7]	[-1.8, 1.9]	c_W/Λ^2	[-0.668, 0.733]	[-0.103, 0.095]	[-1.150, 0.181]	[-0.093, 0.079]
Quark-	$\begin{bmatrix} c_{Hq}^{(1)} \\ c_{Hq}^{(3)} \end{bmatrix}$	[-2.5, 2.4] [-0.69, 0.66]	[-2.2, 2.8] [-0.7, 0.68]	[-0.27, 0.24] [-0.28, 0.22]	[-0.29, 0.27] [-0.31, 0.24]	[-0.29, 0.29] [-0.3, 0.27]	[-0.31, 0.31] [-0.34, 0.29]	$c_{HWB}/\Lambda^2 \ c_{HD}/\Lambda^2$	$\begin{bmatrix} -0.326, 0.412 \\ [-8.107, 9.096 \end{bmatrix}$	$\begin{bmatrix} -0.326, \ 0.413 \end{bmatrix} \\ \begin{bmatrix} -4.494, \ 3.976 \end{bmatrix}$	$\begin{matrix} [-0.470, \ 1.440] \\ [-18.0, \ 1.7] \end{matrix}$	[-0.458, 1.520] [-5.840, 1.680]
boson- only	нq С _{Ни} С _{Нd}	[-3.2, 3.0] [-11, 11]	[-3.0, 3.4] [-11, 11]	[-0.31, 0.29] [-0.45, 0.46]	[-0.35, 0.32] [-0.5, 0.51]	[-0.32, 0.31] [-0.49, 0.49]	[-0.35, 0.33] [-0.52, 0.53]	$c_{Hq}^{(1)}/\Lambda^2 \ c_{Hq}^{(3)}/\Lambda^2$	[-1.994, 2.122] [-0.097, 0.106]	[-2.923, 1.615] [-0.145, 0.074]	$[-0.367, 3.980] \\ [-0.146, 0.0275]$	[-0.503, 2.550] [-0.165, 0.015]

WZ ONLY: CP-ODD SMEFT INTERPRETATION

IGU

ZY MEASUREMENT

- Previous formulations of nTGC violate SM gauge symmetry
 - Addressed by Ellis et al [e.g *Phys. Rev. D* 107 (2023) 035005]
 - New form factor introduced that cancels spurious energy dependent term
- ATLAS Measurement focused on extracting nTGC limits:
 - high-*p*_τ event selection
 - Jet veto to enhance nTGC effect
 - Limits extracted from photon p_{τ} distribution
 - Statistically limited
 - *Z*+jets background (photon fakes, estimated from data) source of dominant systematic uncertainty

i i i i i i

ZY: NEUTRAL TRIPLE GAUGE COUPLINGS

- Limits on dimension-eight Wilson coefficients using fully gauge invariant model
- Converted to form factor limits
- For *h*₃ nTGC form factor limits match sensitivity of previous measurements in *Z(vv)y* final state
- For *h*₄ sensitivity reduced as expected

Parameters	Limits at 95% C.L.					
	Observed 95% C.L. $[\text{TeV}^{-4}]$	Expected 95 % C.L. $[\text{TeV}^{-4}]$				
C_{G+}/Λ^4	[-0.022, 0.020]	[-0.025, 0.023]				
C_{G-}/Λ^4	[-1.41, 1.08]	[-1.50, 1.23]				
C_{BB}/Λ^4	[-0.37, 0.37]	[-0.44, 0.44]				
$C_{ ilde{B}W}/\Lambda^4$	[-0.54, 0.53]	[-0.62, 0.61]				
C_{BW}^{LW}/Λ^4	[-0.87, 0.95]	[-1.05, 1.14]				
C_{WW}/Λ^4	[-1.90, 1.78]	[-2.26, 2.13]				

This measurement

old **Z(vv)y** measurement

Parameters	Current limit: $(140 \text{ fb}^{-1}) \text{ using}$	s at 95% C.L. g new formalism	Limits at 95% C.L. from Reference [61] (36.1 fb^{-1}) using old formalism		
	Observed 95% C.L.	Expected 95 $\%$ C.L.	Observed 95% C.L.	Expected 95 $\%$ C.L.	
$egin{array}{c} h_4^\gamma\ h_4^Z\ h_4^\gamma\ h_3^\gamma\ h_3^Z\ h_3^Z \end{array}$	$[-1.3 \times 10^{-5}, 1.4 \times 10^{-5}]$ $[-2.4 \times 10^{-5}, 2.6 \times 10^{-5}]$ $[-3.5 \times 10^{-4}, 4.6 \times 10^{-4}]$ $[-3.2 \times 10^{-4}, 3.2 \times 10^{-4}]$	$[-1.5 \times 10^{-5}, 1.6 \times 10^{-5}]$ $[-2.8 \times 10^{-5}, 3.0 \times 10^{-5}]$ $[-4.0 \times 10^{-4}, 4.9 \times 10^{-4}]$ $[-3.7 \times 10^{-4}, 3.6 \times 10^{-4}]$	$[-4.4 \times 10^{-7}, 4.3 \times 10^{-7}]$ $[-4.5 \times 10^{-7}, 4.4 \times 10^{-7}]$ $[-3.7 \times 10^{-4}, 3.7 \times 10^{-4}]$ $[-3.2 \times 10^{-4}, 3.3 \times 10^{-4}]$	$ \begin{bmatrix} -5.1 \times 10^{-7}, 5.0 \times 10^{-7} \\ [-5.3 \times 10^{-7}, 5.1 \times 10^{-7}] \\ [-4.2 \times 10^{-4}, 4.3 \times 10^{-4}] \\ [-3.8 \times 10^{-4}, 3.8 \times 10^{-4}] \end{bmatrix} $	

CONCLUSION

- Presented three new diboson measurements by the ATLAS collaboration
 - o WW: arXiv:2505.11310
 - WZ: <u>arXiv:2507.03500</u>
 - **Zy:** <u>ATLAS-CONF-2025-001</u>
- WW and WZ measurements
 - Reach 3% and 4% precision thanks to precise background estimates
 - Measure many differential distributions with high precision up to TeV scale
 - Study of novel observables (*WW* charge asymmetry, powerful CP-odd observable in *WZ*)
 - Testing state-of-the-art SM predictions
 - Constrain new physics at the of multi-TeV scale in SMEFT framework
- **Zy**: first constraints on nTGC respecting SM gauge symmetries
- A lot to look forward to:
 - A few Run 2 precision EW measurements still forthcoming
 - Run 3 measurements on their way, too!

