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- Encoding: classical images into a quantum state, by encoding
pixel energies into rotational angles of qubits. W The model successfully captures pixel correlations and accu-

- Decoding: translate repeated measurements of quantum states rately reproduces the expected energy distributions

Into energies.
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Two types of models trained at different noise scales:

» trained on noiseless simulator, evaluated on noisy instance
» trained and evaluated on noisy instance

Noise study
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W For high noise levels, the model is capable of adapting to the
underlying noise.

Training routine Current noise levels on real QPUs do not impact performance.
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Testing the architectures on real quantum processors under

Encoding %naigng different quantum hardware noise types and levels.

- =8 1M eleQtron

Loss function (optimizer: COBYLA | loss: MMD)

Training Loss Validation Loss
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w MMD loss alone is able to effectively learn correlations between
pixels
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