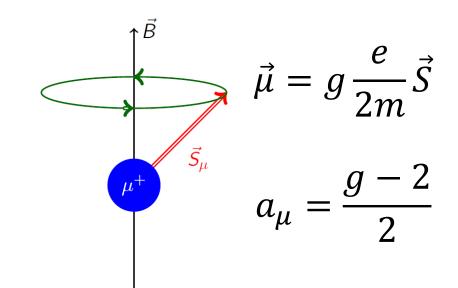
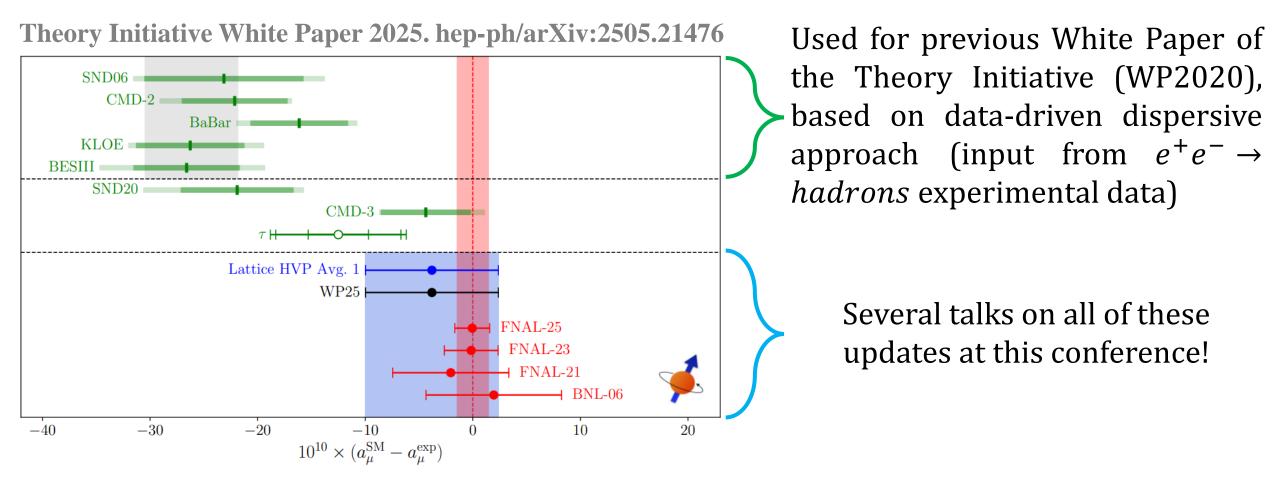

PrecisionSM: an annotated database for low-energy e^+e^- hadronic cross sections

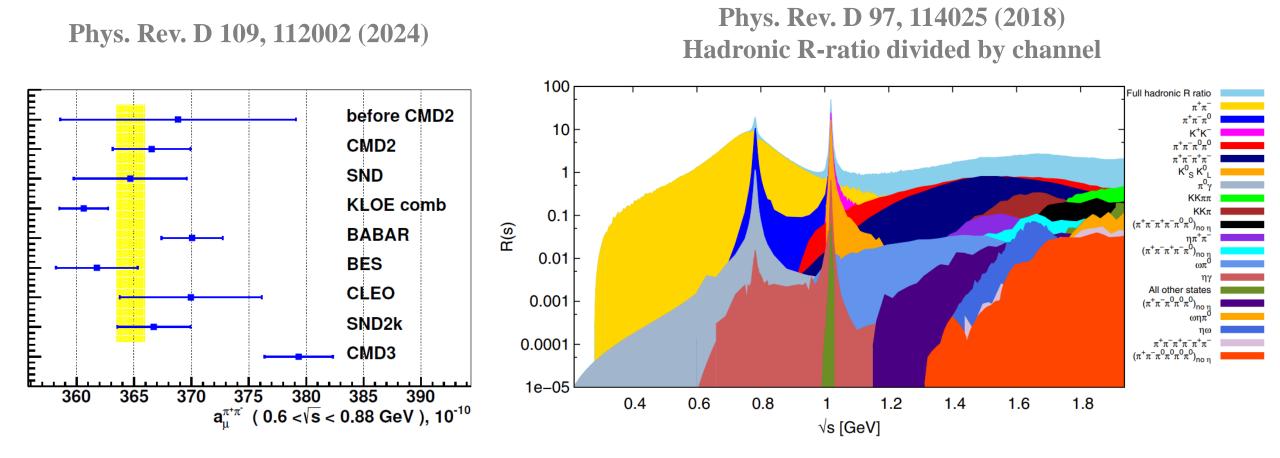
UNIVERSITY OF LIVERPOOL


LEVERHULME TRUST _____ <u>L. COTROZZI</u>, A. DRIUTTI, F. IGNATOV, A. LUSIANI, G. VENANZONI STRONG

08/07/2025: EPS-HEP, MARSEILLE


Outline

- Current status of the muon g 2
- RadioMonteCarLow 1 and 2 and STRONG2020 activities
- Specific goal: database for low energy e^+e^- hadronic cross section
 - ≻Input data
 - Procedure to create entries
 - ≻ Plots
 - Future work


Muon g - 2: theory vs experiment

The error on the prediction of a_{μ} is dominated by the theoretical error on the leading order Hadronic Vacuum Polarization (HVP-LO)

Tensions in the data-driven HVP calculation

Experimental data from $e^+e^- \rightarrow$ hadronic channels are used as an input

Activities on low energy e^+e^- data

RadioMonteCarLow

https://www.lnf.infn.it/wg/sighad/

- Active from 2006 to 2019
- Report in 2010 on Eur. Phys. J. C

RadioMonteCarLow2

https://radiomontecarlow2.gitlab.io/

•

- Continuation of previous project, see <u>talk</u>
- Phase I started in 2022, Phase II in 2024
- Phase I report published in SciPost

STRONG2020 Project STRONG

http://www.strong-2020.eu/

Completed in 2024

- Work Package under the EU Horizon 2020 grant agreement n. 824093
- Specific goal within the project: create an annotated database, PrecisionSM, for lowenergy hadronic e^+e^- cross sections
- PrecisionSM DB is online:

https://precision-sm.github.io/

Important for the HVP-LO contribution to a_{μ} and for running of α_{em}

RadioMonteCarLow activities

- 20 meetings between theorists and experimentalists from 2006 to 2019
- Efforts to develop MC generators for luminosity, $e^+e^- \rightarrow$ hadrons and leptons (+ γ from ISR), τ -lepton production and decays

Eur. Phys. J. C (2010) 66: 585-686

- Final report, divided into 5 subjects:
 - 1. Luminosity measurements at low energies (up to B-factories energy)
 - 2. R(s) measurement with energy scan
 - 3. R(s) measurement with radiative return
 - 4. τ -lepton physics
 - 5. Calculation of vacuum polarization with emphasis on the hadronic contributions

DOI 10.1140/epjc/s10052-010-1251-4	PHYSICAL JOURNAL C
Review	
Quest for precision in hadronic cross Monte Carlo tools vs. experimental	
Working Group on Radiative Corrections and Monte Car	lo Generators for Low Energies
S. Actis ³⁸ , A. Arbuzov ^{9,e} , G. Balossini ^{32,33} , P. Beltrame ¹³ , V. Cherepanov ^{25,26} , M. Czakon ¹ , H. Czyż ^{19,a,f,i} , A. Denig ²⁷ J. Gluza ¹⁹ , A. Grzelińska ⁸ , M. Gunia ¹⁹ , A. Hafner ²² , F. Ig W. Kluge ¹⁷ , A. Korchin ²⁰ , J.H. Kühn ¹⁸ , E.A. Kuraev ⁹ , P. I S.E. Müller ^{22,f} , F. Nguyen ^{34,d} , O. Nicrosini ³³ , D. Nomura ³⁰ F. Piccinini ³³ , W. Płaczek ⁷ , T. Przedzinski ⁶ , E. Remiddi ^{4,5} O. Shekhovtsova ¹¹ , C.P. Shen ¹⁶ , A.L. Sibidanov ²⁵ , T. Teut der Bij ¹² , P. Wang ² , B.F.L. Ward ³⁹ , Z. Was ^{8,g} , M. Worek ⁴⁰	² , S. Eidelman ^{25,26,g} , G.V. Fedotovich ^{25,26,e} , A. Ferroglia ²³ , natov ²⁵ , S. Jadach ⁸ , F. Jegerlehner ^{3,19,41} , A. Kalinowski ²⁹ , Lukin ²⁵ , P. Mastrolia ¹⁴ , G. Montagna ^{32,33,b,d} , ^{5,h} , G. Pakhlova ²⁴ , G. Pancheri ¹¹ , M. Passera ²⁸ , A. Penin ¹⁰ , T. Riemann ⁴¹ , G. Rodrigo ³⁷ , P. Roig ²⁷ , oner ^{21,h} , L. Trentadue ^{30,31} , G. Venanzoni ^{11,c,i} , J.J. van

Eur.Phys.J.C 66 (2010) 585-686 More details <u>HERE</u>

THE EUROPEAN

RadioMonteCarLow2 Working Group

- See previous talk by <u>J. Paltrinieri at this conference</u>
- Efforts from theorists and experimentalists aimed at improving our knowledge of low-energy e^+e^- collisions
- 4 sections in Phase I report:
 - 1. Review of experiments that provided e^+e^- data for HVP in the dispersive approach
 - 2. Computational setup: overview of all tools and contributions to theoretical prediction
 - 3. Review of 7 MC codes used for comparisons in Phase I
 - 4. Comparisons of MC codes in realistic scenarios
- Phase II launched in 2024

Radiative corrections and Monte Carlo tools for low-energy hadronic cross sections in e^+e^- collisions

Riccardo Aliberti¹, ¹ Paolo Beltrame², ⁰ Ettore Budassi^{3,4},
Carlo M. Carloni Calame⁴, ⁰ Gilberto Colangelo⁵, ⁰ Lorenzo Cotrozzi²,
Achim Denig¹, ⁰ Anna Driutti^{6,7}, ⁰ Tim Engel⁸, ⁰ Lois Flower^{2,9},
Andrea Gurgone^{3,6,7}, ⁰ Martin Hoferichter⁵, ⁰ Fedor Ignatov²,
Sophie Kollatzsch^{10,11}, ⁰ Bastian Kubis¹², ⁰ Andrzej Kupść^{13,14*},
Fabian Lange^{10,11}, ⁰ Alberto Lusiani^{7,15}, ⁰ Stefan E. Müller¹⁶, ⁰ Jérémy Paltrinieri²,
Pau Petit Rosàs², ⁰ Fulvio Piccinini⁴, ⁰ Alan Price¹⁷, ⁰ Lorenzo Punzi^{7,15},
Marco Rocco^{10,18}, ⁰ Olga Shekhovtsova^{19,20}, ⁰ Andrzej Siódmok¹⁷,
Adrian Signer^{10,11*}, ⁰ Giovanni Stagnitto²¹, ⁰ Peter Stoffer^{10,11},
Thomas Teubner², ⁰ William J. Torres Bobadilla²,
Francesco P. Ucci^{3,4}, ⁰ Yannick Ulrich^{2,5*} and ⁰ Graziano Venanzoni^{2,7*} (RadioMonteCarLow 2 working group)

SciPost Phys. Comm. Rep. 9 (2025) More details <u>HERE</u> (second half of slides)

Overview of STRONG2020 project

• EU project to study strong interactions

Dedicated webiste

with hyperlinks

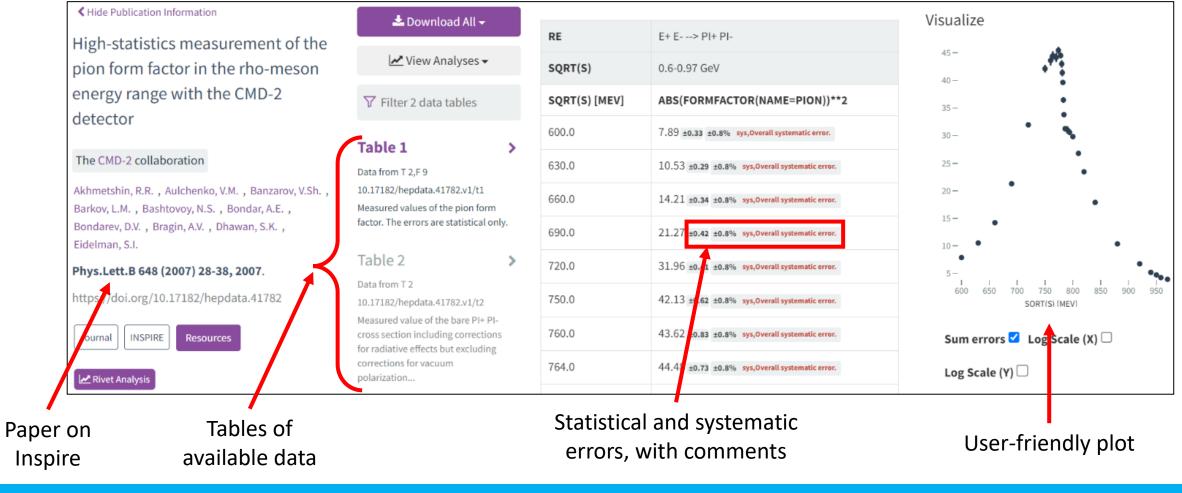
- PrecisionSM "Hadron Physics for Precision Tests of the Standard Model" with several goals:
 - Combine theory and experiment for BSM precision tests (R(s) measurements, Radiative corrections and MC generators)
 - >Compile an <u>annotated database</u> for low-energy hadronic cross sections in e^+e^- collisions
 - Measurements on HEPData
 - Papers on InspireHEP

Responsive plots of hadronic cross sections

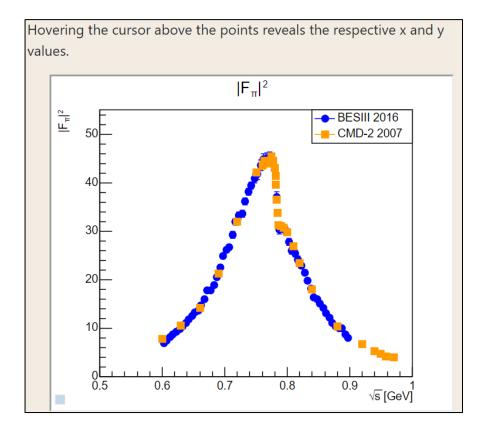
PrecisionSM annotated database (link)

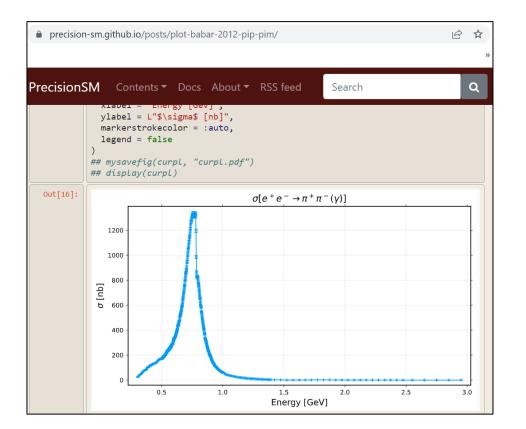
PrecisionSM Contents - Docs About - RSS feed	Search	Q	, 	- Inpເ	ut data
Low energy e^+e^- channels database	Database for	$r e^+ e^- ightarrow \pi^+ \pi^-$ channels			
• Measurements Database: $\circ e^+e^- ightarrow \pi^+\pi^-$	Experiment	Year Reference (link to INSPIRE-HEP)	Link to Hepdata	Details	Status
$\circ \; e^+ e^- ightarrow \pi^+ \pi^- \pi^0$	BESIII (BEPC, Beijing)	2016 Phys.Lett.B 753(2016) 629-638 [errata: Phys.Lett.B 812 (2021) 135982]	ins1385603	details	Finalized
$\circ \; e^+e^- ightarrow \pi^0 \gamma$	BaBar (SLAC, Stanford U.)	2012 Phys.Rev.D 86 (2012) 032013	ins1114155	details	Finalized
HEPData submissions o cured by PrecisionSM	CLEO (CESR, Cornell U.)	2018 Phys.Rev.D 97 (2018) 3, 032012	ins1643020	details	Finalized
HEPData submissions checks	CLEO (CESR, Cornell U.)	2013 Phys.Rev.Lett. 110 (2013) 2, 022002	ins1189656	details	Finalized
Plots	CLEOc (CESR, Cornell U.)	2005 Phys.Rev.Lett. 95 (2005) 261803	ins693873	details	Finalized
Contents © 2025 PrecisionSM Group - Powered by Nikola KLOE (DAPHNE, Frascati), 2017 • status: in preparation	KLOE (DAPHNE, Frascati)	2017 JHEP 03 (2018) 173		details	In Preparation In
 hepdata: 1634981 method: Direct quotes: 	Annotate	:			
$\circ \ d\sigma/dQ^2(\pi^+\pi^-\gamma)$ (stat, syst) $\circ \ \sigma_{\pi^+\pi^-}$ (stat, syst) $\circ \ F_\pi$ (stat, syst)		le data (cross section, form fact	:or, mati	rices	, etc)
• energy[GeV]: 0.32 - 0.97	• energy	ranges in GeV			
 radiative corrections: VP corr. updated to 'alphaQED16.tar.gz' package by F. Jegerlehner (2016) Remaining are in inspirehep-797438, inspirehep-859660, inspirehep-120809! 		ent of Radiative Corrections			
 comment: combination of KLOE08, KLOE10 and KLOE12 data; updates for inspirehep-797438, inspirehep-859660, inspirehep-1208095 	 any oth 	ner information needed to use t	:he data	pro	perly

3 channels currently maintained: $\pi^+\pi^-$ (~75% of total contribution); $\pi^+\pi^-\pi^0$; $\pi^0\gamma$


Steps to create the database

- 1. **DATA COLLECTION**: inputs of hadronic (starting from $\pi^+\pi^-$) e^+e^- data from published experiments (see next slide) InspireHEP.net
- 2. UPLOAD DATA IN PUBLIC REPOSITORY → HEPData.net J
- Collaboration point-of-contact (or STRONG2020 coordinator) submits data
- Reviewer appointed for cross-checks: no mistakes, HEPData.net prescriptions
- If validated: data is posted, can be catalogued and used
- 3. CATALOGUE DATA IN ACCESSIBLE WAY: precision-sm.github.io
- Website files on GitHub
- Created with Nikola static website generator
- 4. **PROVIDE TOOLS TO ELABORATE DATA** (see following slides)


Available e^+e^- data

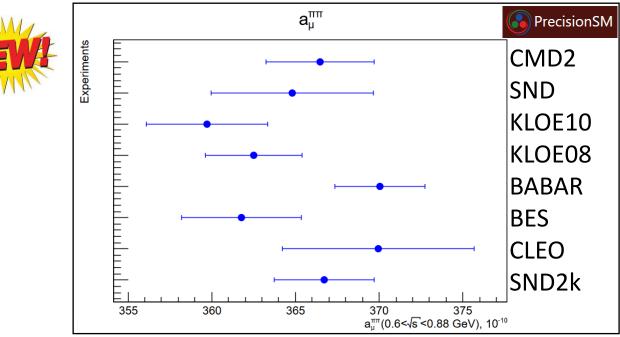

• For each dataset, a member of the collaboration provided relevant data: BABAR, BESIII, KLOE, Belle-II, CERN-NA007, CLEO, experiments at Novosibirsk, ADONE, and Orsay. **«Finalized»** entries appear on HEPData.net

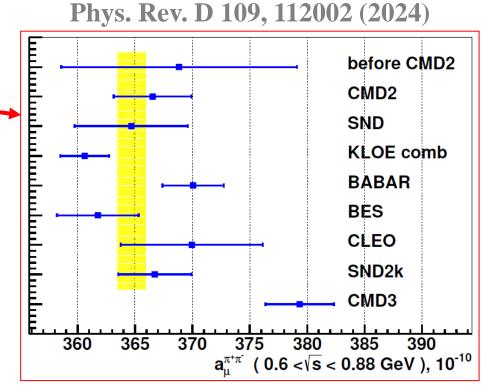
Radio MonteCarLow2

Examples of notebooks and responsive plots

Pion Form Factor

BABAR $\sigma(e^+e^- \to \pi^+\pi^-(\gamma))$

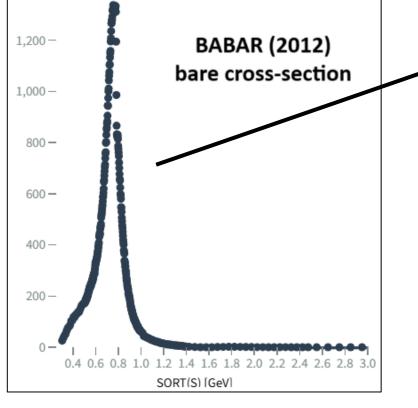

These are all meant as **tools** to work on the database



L. COTROZZI - 08/07/2025 – EPS-HEP 2025, MARSEILLE

Work in progress: plot of contributions to $a_{\mu}^{HVP,LO}$

- Goal to reproduce integrals: from cross section to $a_{\mu}^{\pi\pi}$ contribution, like this plot
- They should include at least the following energy range: [\sim 0.6, \sim 0.9] GeV, which contributes the most to the cross section



 $\leftarrow We started from the most recent experiments that were available on HEPData$

Radio MonteCarLow2

How the plot currently works: example

Use JavaScript ROOT to:

- 1. Take json file from «Bare cross-section» table on HEPData
- 2. If needed: convert to cross-section versus *s* (square of \sqrt{s}) in GeV²
- 3. Perform HVP dispersive integral with trapezoidal integration

$$a_{\mu}^{HVP,LO} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{s_1}^{s_2} ds \,\frac{\widehat{K}(s)}{s^2} R_{had}(s)$$

- $\widehat{K}(s)$ being the kernel function (see WP25), $R_{had}(s)$ the hadronic R-ratio - s_1 and s_2 currently set at (0.6 GeV)² and (0.88 GeV)², respectively

4. Covariance matrices for errors are used when available

Work in progress

- **1. Use all experiments**, also those that don't provide the bare cross section directly but, for instance, only the pion form factor.
- 2. Make this user-friendly: the user can choose which experiments to include and which energy range to integrate over.
- 3. **Display errors** separately between statistical and systematic.
- **4. Complete the plot with all channels** available with proper weights to produce the hadronic cross section observable.

List of previous talks, posters and proceedings

List of Past Presentations

July 2024: 42nd International Conference on High Energy Physics (ICHEP 2024) - Prague, Czech Republic.

- Title: "PrecisionSM: an annotated database for low-energy positron-electron hadronic cross sections"
- Contribution: Poster
- Proceeding: PoS ICHEP2024 (2025) 578

August 2023: 2023 European Physical Society Conference on High Energy Physics (EPS-HEP2023) - Hamburg, Germany.

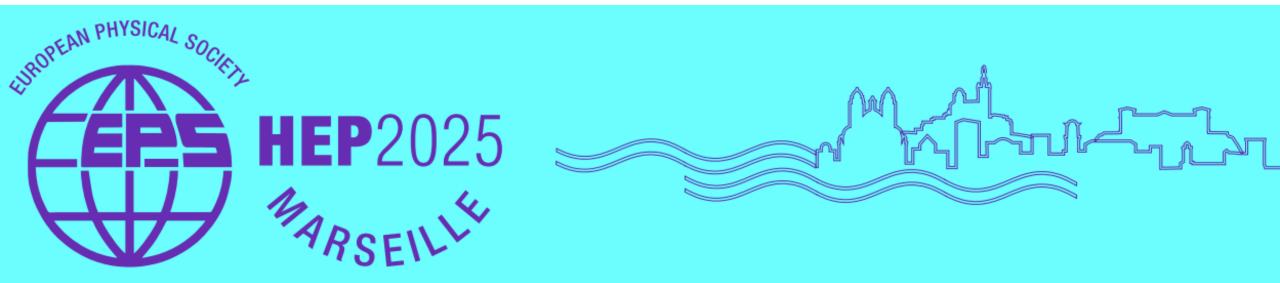
- Title: "PrecisionSM: an annotated database for low-energy positrons-electrons into hadrons"
- Contribution: Poster
- Proceeding: PoS EPS-HEP2023 (2024) 376

4 presentations, 3 posters, 6 proceedings

Summary, conclusion and acknowledgements

- Efforts for more than 20 years within <u>RMCL1</u> and <u>RMCL2</u>, important for evaluating $a_{\mu}^{HVP,LO}$ and for fits to Standard Model (running of α_{em})
- Reliable estimates of $a_{\mu}^{HVP,LO}$ and fits to SM depend on the correctness of data and on the correct treatment of radiative corrections
- We are contributing with a database for low-energy hadronic cross sections with relevant information (RC treatment, systematic errors, ...): over 60 database entries among 3 channels (there will be ~ 200 entries in total). Stay tuned for updates on https://precision-sm.github.io/!
- This work was supported by the European Union STRONG2020 project under Grant Agreement Number 824093
- We thank the collaborations for providing us with the relevant data!!

THANK YOU VERY MUCH FOR YOUR ATTENTION!



LEVERHULME TRUST _____

LORENZO COTROZZI – <u>LORENZO.COTROZZI@LIVERPOOL.AC.UK</u>

ANNA DRIUTTI, FEDOR IGNATOV, ALBERTO LUSIANI, GRAZIANO VENANZONI

BACKUP SLIDES