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01. Introduction: What is a diffusion model?
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Forward Diffusion Process

Backward Diffusion Process

Diffusion 
Model

● Unfolding: 
reconstructing the true 
particle-level signals from 
detector-smeared measurements.

● Generative simulation: 
Generate new events or shower 
data fast while consuming less 
energy.

● Noise modeling: 
find an accurate representation of 
the stochastic processes and 
uncertainties.

● Model-to-data comparison: 
Assessing how well the model 
reproduces real experimental 
measurements using robust 
statistical metrics and posterior 
analysis.



Digital  Quantum Computing Analog  Quantum Computing 

01. Introduction: Quantum Computing Paradigms
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- Encoding: Hamiltonian
- Control: Continuous
- Focuses on Specific tasks (could be universal)
- Bypasses Error-Correction needs

- Encoding: Sequence of Gates
- Control: Discrete
- Universal General-Purpose Model
- Needs Error-Correction Codes.



01. Introduction: Why Quantum computing for ML?
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● Larger Embedding Space:
○ Quantum states live in a 2n-dimensional Hilbert space with just n 

qubits.
○ Quantum feature maps act like kernel methods, embedding data in a 

high‑dimensional space.This enhances linearly separating complex 
patterns, much like SVMs in huge feature spaces.

● Non-Linearities:
○ The quantum system can process the non-linearities of the data, 

making it easier for classical framework to process this information.



02. Quantum Diffusion Models: State-of-the-Art

Quantum approaches(1,2):
● Start with a set of quantum states sampled from an unknown distribution.
● Add quantum noise.
● Remove quantum noise using Parameterized Quantum Circuits (PQCs).
● Generate new quantum states that follow the initial distribution. 

Hybrid Classical-Quantum approaches(3,4):
● Embed a quantum layer (PQC) into an existing classical machine learning framework. 
● Using quantum layer to improve performance of existing ML algorithms or reduce their number of 

parameters. 
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(1) Zhang, Bingzhi, et al. "Generative quantum machine learning via denoising diffusion probabilistic models." Physical Review Letters 132.10 (2024): 
100602.
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02. Quantum Diffusion Models: State-of-the-Art
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source:  Kwun, Gino, Bingzhi Zhang, and Quntao Zhuang. "Mixed-state quantum 
denoising diffusion probabilistic model." Physical Review A 111.3 (2025): 032610.



● Can be used for data embedding (similar 
to kernel methods).

● Can be used for temporal-series 
processing (similar to RNNs).

● Uses the quantum system’s natural 
dynamics as a reservoir.

● Captures and processes  Complex 
nonlinear relationships between input 
information. 

● Doesn’t require gradient-based training 
(no barren plateaus)
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03. Contributions: Quantum Reservoirs
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03. Contributions: Reverse Time Evolution
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Forward

Backward
● tf: forward time evolution. 
● 𝝉b: backward time evolution.
● λ: coupling strength. 
● m: number of ancilla qubits.
● n: number of input qubits. 
● |ѱk>: input state encoding the data.
● |ѱk-pred>: final state.



03. Contributions: Reverse Time Evolution
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The trivial case: 

if: λ = 0 and 𝝉b= tf

Then: |ѱk> = |ѱk-pred>



03. Contributions: Results
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03. Contributions: Results
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03. Contributions: Results
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          Original Distribution 
          Reconstructed Distribution

Wootters distance = 0.0154Wootters distance = 0.0164Wootters distance = 0.0142

Wootters distance = 0.0147 Wootters distance = 0.0146

tf=15
Δ = 1

𝜏b=0.1
λ=0.7



04. Conclusions: Where to go from here? 
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● We discuss the possibility of using quantum reservoir computing to 
reconstruct initial data distribution. 
○ we show that there are multiple non-trivial cases where the backward 

time evolution can successfully reconstruct the initial state.

● Current Limitation of the approach is that it requires access to original 
training samples.

● We are currently working on improving the approach to generate new 
data without relying on existing training samples.
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Thanks for listening!
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