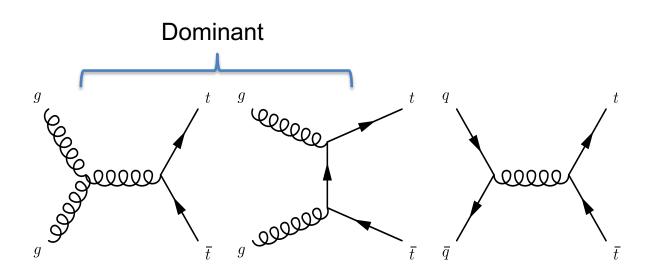
Observation of a cross-section enhancement near the $t\bar{t}$ production threshold with the ATLAS detector

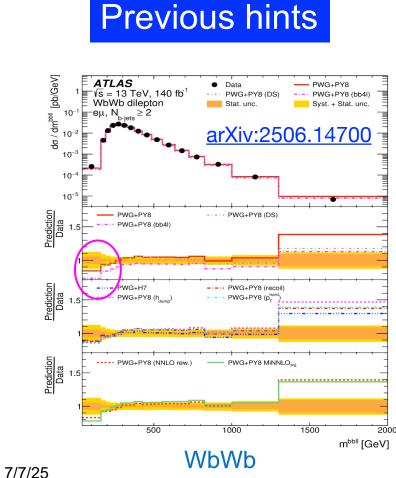
Haifeng Li

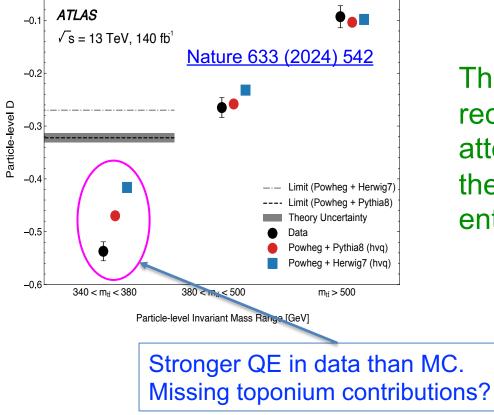


Shandong University

On behalf of the ATLAS Collaboration EPS-HEP, July 7-11, 2025, Marseille, France

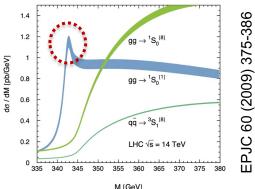
Top Quark Pair Production at LHC

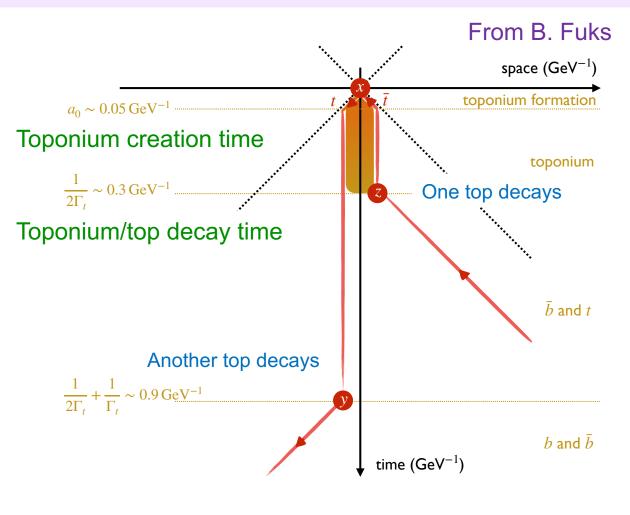

- LHC is a $t\bar{t}$ factory
 - $-\sigma_{t\bar{t}} = 834$ pb at LHC Run 2
 - 0.83M $t\bar{t}$ events per fb⁻¹
 - Due to the short life time, can measurement $t\bar{t}$ spin correlations
- With those huge amount of $t\bar{t}$ data, ATLAS has carried out precision measurements in top quark physics


- Thanks to the advanced MC generators and high-order QCD/EW calculations
- In this talk, focus on tī production threshold region with 140 fb⁻¹ LHC Run 2 pp data

Threshold Region Measurement is Challenging

Experimentally very challenging: modelling of $t\bar{t}$ close to threshold region; tiny effect of quasi-bound state

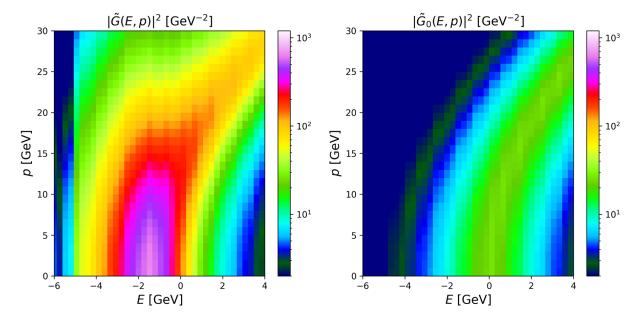




Threshold region has received a lot of attention recently in the context of quantum entanglement

Top quark and $t\bar{t}$ Threshold Region

- Top quark is very special. Heaviest quark in the SM. Has largest Yukawa coupling to the Higgs field
- Very short life time → decays before forming any real hadron
- QCD predicts a quasi-bound state close to the threshold for low momentum top quarks (the prediction was made even before the top quark discovery)


Hadronization time scale: ~5 GeV⁻¹

Quasi-bound State from NRQCD

- S-wave, color-singlet state with Green's function of non-relativistic (NR) QCD by B. Fuks *et al.*, Eur. Phys. J. C 85 (2025) 157
- Generate $gg \rightarrow tt \rightarrow b\ell v b\ell v$ with MG5_aMC. Spin correlations included
- Reweight matrix element with QCD Green's functions

$$|\mathcal{M}|^2 \rightarrow |\mathcal{M}|^2 \left| \frac{\widetilde{G}(E; p^*)}{\widetilde{G}_0(E; p^*)} \right|^2$$

 \tilde{G} : Green's function considering QCD potential \tilde{G}_0 : Free Green's function

This model includes NRQCD calculations. More complete w.r.t. previous simplified models (using scalar/pseudoscalar as an effective model)

Background Modelling

Extremely challenging measurement: need precise modelling of the $t\bar{t}$ threshold region

- $t\bar{t}$: main background. Powheg v2 hvq + Pythia8, using narrow-width approximation (NWA). $m_t = 172.5$ GeV
 - 2D reweighting in $(\cos\theta^*, M(t\bar{t}))$ to NNLO QCD (from MATRIX) and NLO EW (HATHOR)
 - θ^* : angle between the momentum of the top quark in the $t\bar{t}$ center-of-mass frame and the momentum of the $t\bar{t}$ system in the lab. frame
- $t\bar{t}$: alternative MC sample (for syst.), Powheg v2 bb4I + Pythia8
 - Simulate $pp \rightarrow b\ell v b\ell v$ including off-shell, non-resonant contributions, and exact spin correlations at NLO

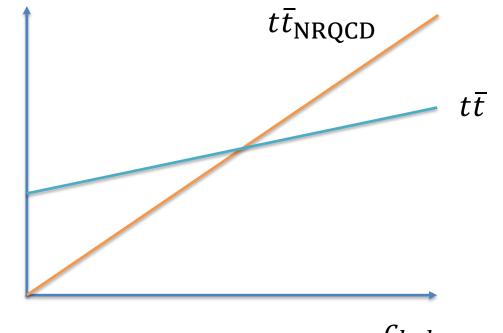
Event Selections

Target for dilepton channel $tt \rightarrow b\ell v b\ell v$ SR: Signal Region; CR: Control Region

SRs	CR-Z	CR-Fakes	
\geq 1 trigger-ma	= 2ℓ with $p_T(\ell) \ge 10$ GeV atched lepton with $p_T \ge 2$ ≥ 2 jets with $p_T \ge 25$ GeV tagged jet (70% efficience) $m_{\ell\ell} \ge 15$ GeV $m_{t\bar{t}} \le 500$ GeV	25/27/28 GeV V	OSSF: opposite- sign, same-flavor
$E_{\rm T}^{\rm miss} \ge 60 { m GeV}$	for OSSF events		
$\ell^{\pm}\ell^{'\mp}$ $ m_{\ell\ell} - m_Z \ge 10 \text{ GeV}$	$\begin{vmatrix} e^{\pm}e^{\mp}/\mu^{\pm}\mu^{\mp} \\ m_{\ell\ell} - m_Z \le 10 \text{ GeV} \end{vmatrix}$	$ \begin{vmatrix} \ell^{\pm} \ell'^{\pm} \\ m_{\ell\ell} - m_Z \ge \end{vmatrix} $	

CRs are for correcting Z+jets and Fakes normalization in fit

Haifeng Li (Shandong University)


Event Categorization

SR events are categorized into 9 regions based on two observables: c_{hel} and c_{han}

 $c_{hel} = \vec{\ell}_+ \cdot \vec{\ell}_-$,

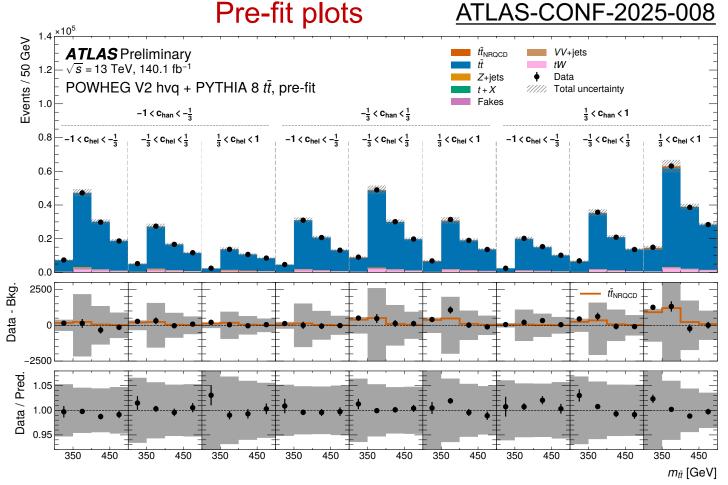
where the $\vec{\ell}_{\pm}$ are the lepton directions in $t\bar{t}$ center-of-mass frame, and then in turn boosted into t and \bar{t} frames. This distribution has a maximum slope for a spin-singlet state

 c_{han} : flip the $\vec{\ell}$ in t direction. This distribution has a maximum slope for a spin-triplet state

C_{hel}

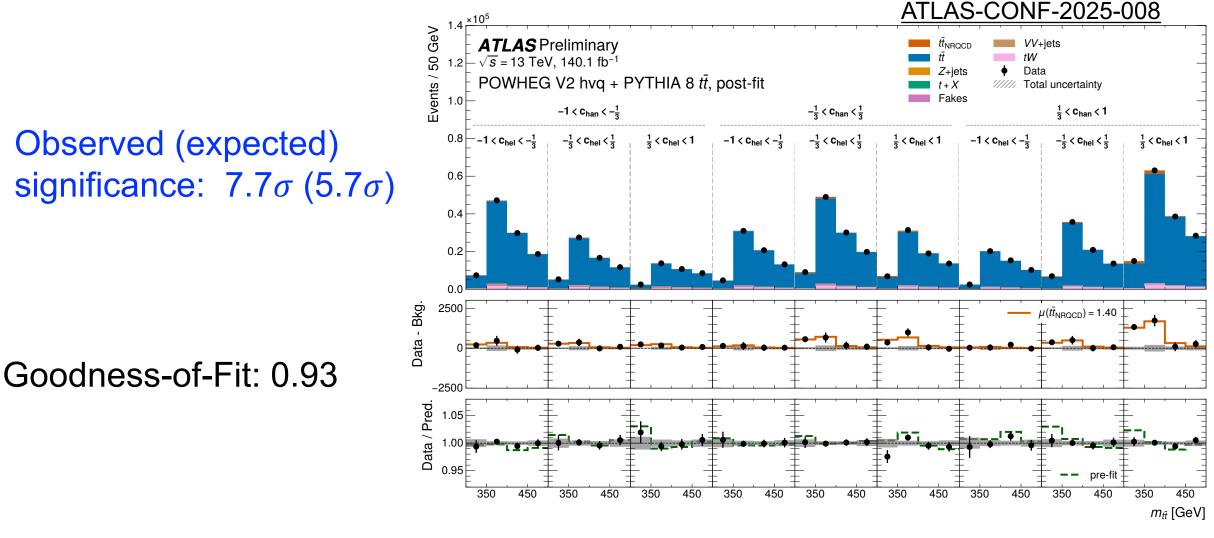
 c_{hel} is useful to separate pseudoscalar from other contributions

Event Categorization and Fitting


	$-1 < c_{hel} < -$	$-\frac{1}{3}$ $-\frac{1}{3}$	$< c_{hel} < rac{1}{3}$	$\frac{1}{3} < c_{he}$	_l < 1
$-1 < c_{han} < -\frac{1}{3}$	SR1		SR2	SR3	
$-\frac{1}{3} < c_{han} < \frac{1}{3}$	SR4		SR5	SR6	
$\frac{1}{3} < c_{han} < 1$	SR7		SR8	SR9	
CR-Fakes ee CR-Fakes $e\mu$		CR-Fakes	uμ	CR-Z	

Simultaneous fitting to $m_{t\bar{t}}$ with 13 categories with profile likelihood method

Background Estimations


- $t\bar{t}$: with a free-floating scale factor (SF); tW: estimation from MC
- Z+jets: get some contributions from $Z \rightarrow \tau \tau$. Use the CR-Z to normalize the Z+b process ATLAS-CONF-2025-00

 fake / non-prompt leptons: Fakes represent 1.5% of SR yields. Data-driven estimation with 3 CR-Fakes

Haifeng Li (Shandong University)

Results: baseline $t\bar{t}$ + quasi-bound state (NRQCD)

 $\sigma(t\bar{t}_{\text{NRQCD}}) = 9.0 \pm 1.3 \text{ pb} = 9.0 \pm 1.2 \text{ (stat.)} \pm 0.6 \text{ (syst.) pb}$

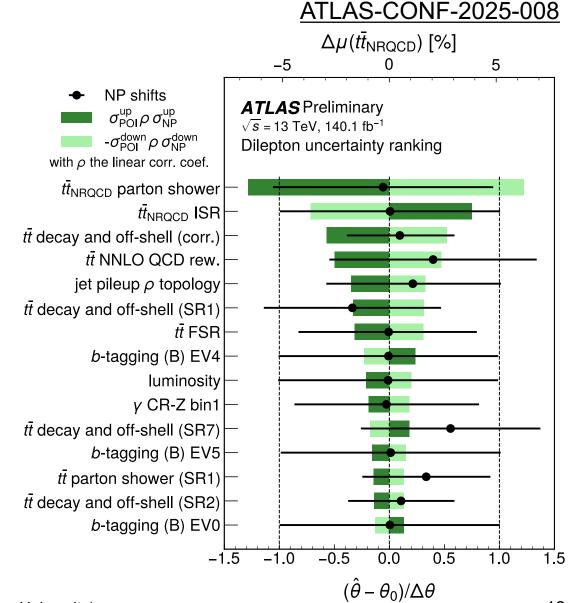
b-jet 1

b-jet 2

Run: 338183 Event: 3295623881 2017-10-14 09:08:09 CEST

electron

D-


muon

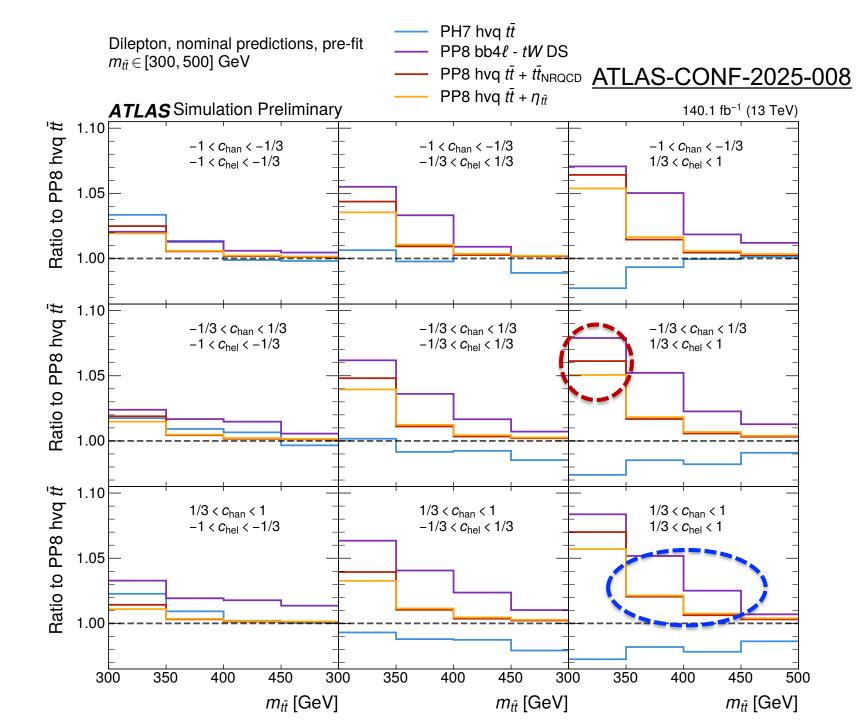
Missing E_{T}

 $m_{t\overline{t}} = 342 \text{ GeV}$ $c_{hel} = 0.97$ $c_{han} = 0.94$

Impacts of Systematics

- Quasi-bound state modelling: Parton shower [Herwig7]
- $t\bar{t}$ decay and off-shell [comparison to bb4l]
- NNLO QCD rew.: NNLO QCD scale variations
- No strong pulls or constraints
- Largest effects from toponium modelling and off-shell effect modelling

Impacts of Systematics


ATLAS-CONF-2025-008

- Quasi-bound state modelling: Parton shower [Herwig7]
- $t\bar{t}$ decay and off-shell [comparison to bb4l]
- NNLO QCD rew.: NNLO QCD scale variations
- No strong pulls or constraints
- Largest effects from toponium modelling and off-shell effect modelling

Category	Impact	
$t\bar{t}_{NRQCD}$ modelling	5.3%	
$t\bar{t}$ modelling	3.5%	
Jet energy scale (pileup)	1.3%	
<i>b</i> -tagging	1.2%	
Instrumental (other)	0.9%	
Limited MC statistics	0.7%	
Jet energy scale (flavour)	0.5%	
Background normalisations	0.4%	
tW modelling	0.4%	
Jet energy scale (η inter-calibration)	0.4%	
Jet energy scale (other)	0.3%	
Jet energy resolution	0.3%	
Leptons	0.2%	
Total syst. uncertainties	6.8%	
Total stat. uncertainties	13%	

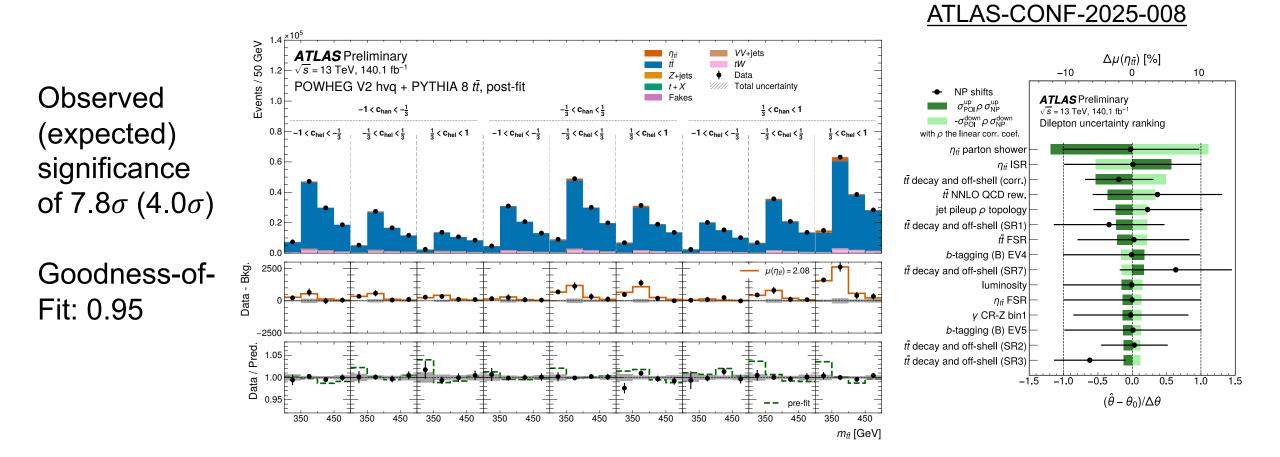
Ratios of the pre-fit distributions for $t\bar{t}$ MC models vs. baseline Powheg hvq

- Low m_{tt̄} region: bb4l is more similar to hvq+toponium than hvq only
- High m_{tt̄} region: bb4l differs from hvq+toponium model

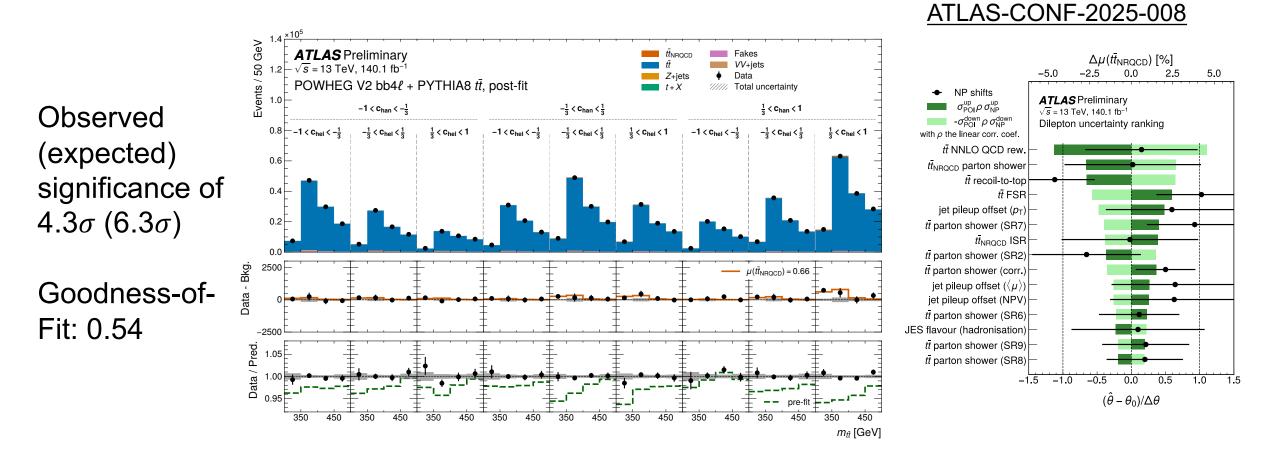
Conclusions

- This excess is consistent with color-singlet, *S*-wave, quasi-bound $t\bar{t}$ states predicted by NRQCD with cross-section of 9.0 \pm 1.3 pb
- A more complete model from NRQCD calculation is used in this analysis. Important advantage compared with recent CMS results (arXiv:2503.22382)
- This results show the strength of the LHC as a precision machine
- **Observation of toponium** opens a new field to study NRQCD with top quarks
- More work to characterize this excess and to better quantify the impact of off-shell top-quark decays

Top quark and anti top quark "shake their hands" before they decay


Simplified model for $t\bar{t}$ quasi-bound states

- A pseudo-scalar spin-singlet resonance or as a combination of scalar and pseudo-scalar resonances. Mostly pseudo-scalar ${}^{1}S^{[1]}$ configuration
- The contributions from states with higher total angular momentum J and color-octet states are expected to be sub-dominant and are neglected in this model

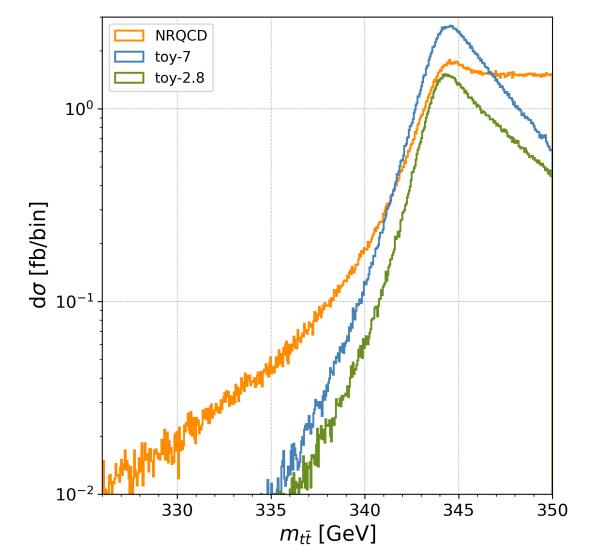

More Information for Fitting

- Profile likelihood fitting to $m_{t\bar{t}}$
- Control regions: use the 3 CR-Fakes to extract scale factors (SF) for heavyflavor and photon-conversion electron fakes, and heavy-flavor muon fakes; use the CR-Z to normalize the Z+b process
- Signal regions: use the 9 SRs to extract a SF for regular tt
 and signal strength for quasi-bound state tt
- Nuisance parameters (NPs) correlation scheme for constraint ones: In the case of NPs that are strongly constrained to less than 50% of their prior uncertainty, the original systematic variation is treated as partially (50%) correlated between SRs and CRs

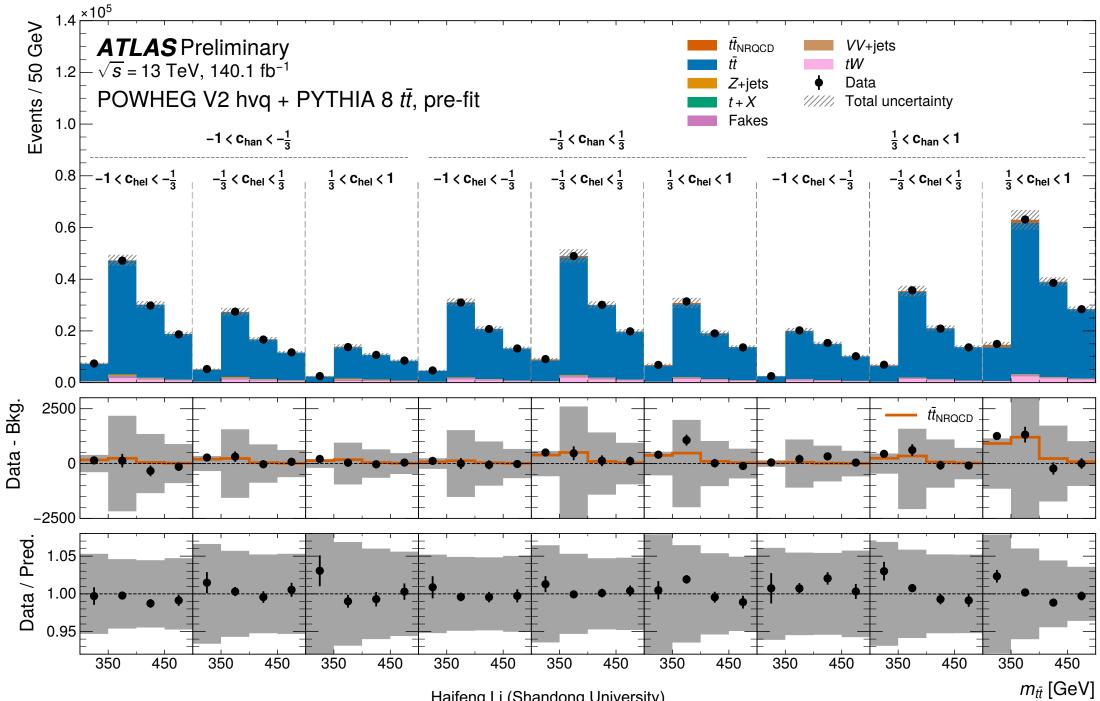
Alternative fit: Powheg hvq + simplified model of toponium

Alternative fit: Powheg bb4I + quasi-bound state (NRQCD)

Reconstruction of the $t\bar{t}$ System

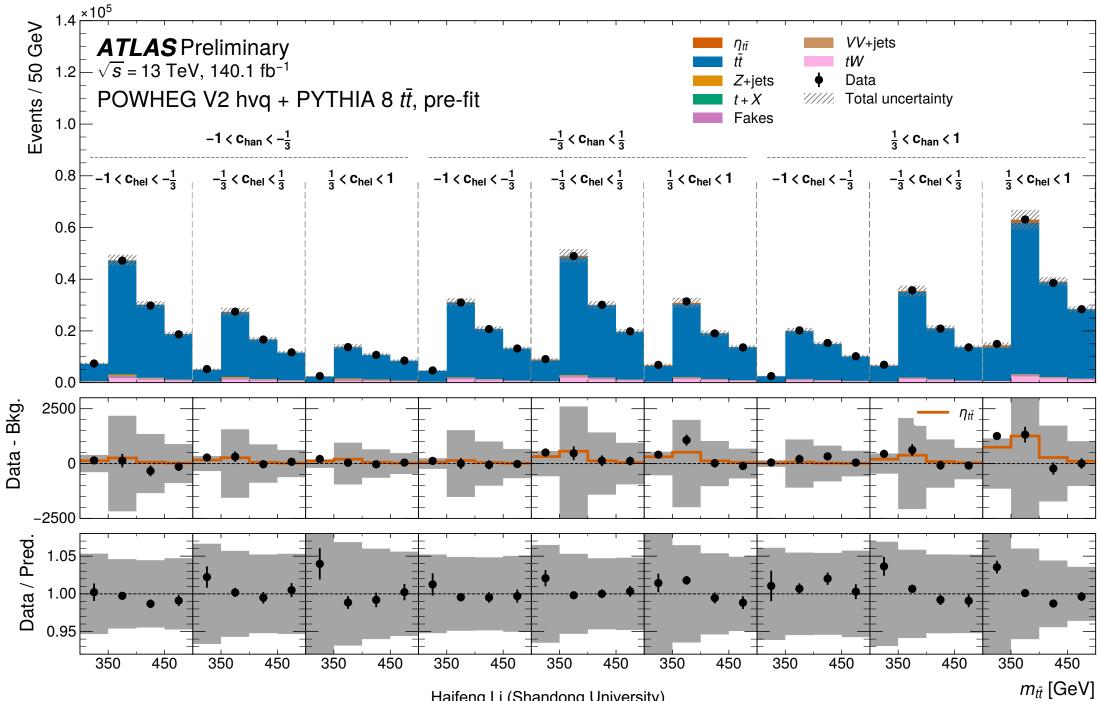

- Ellipse Method [NIM A 736 (2014) 169]: geometric/analytic approach that imposes W and top mass constraints
- The two *b*-tagged jets associated with the decays of the top and antitop quark are chosen from all selected hadronic jets. If more than two of them are *b*-tagged, the two leading *b*-tagged jets are selected. If there is only one *b*-tagged jet, the highest-*p*T jet among the remaining untagged ones is selected.
- The Ellipse Method provides a solution for about 95% of $t\bar{t}$ dilepton events

Systematics


- Experimental systematics: Electron, muon, jet, b-jet tagging, Missing E_T, pileup, and luminosity
- $t\bar{t}$ modelling: Parton shower [Herwig7], decay and off-shell [comparison to bb4I], matching [$p_{\rm T}^{\rm hard}$, $h_{\rm damp}$], recoil-to-top, underlying event [A14 Var1], color reconnection [CR0 vs CR1/CR2 models], top mass [±0.5 GeV], ISR/FSR, PDF4LHC15, NNLO QCD scale variations, NLO EW scheme
- **tW modelling**: Parton shower [Herwig7], matching $[p_T^{hard}, h_{damp}]$, interference scheme [DR/DS], top mass [±0.5 GeV]
- Background normalizations: 4% tW, 20% tt+b, 40% tt+c, 50% top+X, 50% Z+c/light, 50% diboson
- Quasi-bound state modelling: μ_r/μ_f variations, PDF4LHC21, parton shower [Herwig7], ISR/FSR

From Benjamin Fuks

LHC Top WG meeting 4-6 June 2025, CERN



Haifeng Li (Shandong University)

25

Haifeng Li (Shandong University)

26

Haifeng Li (Shandong University)