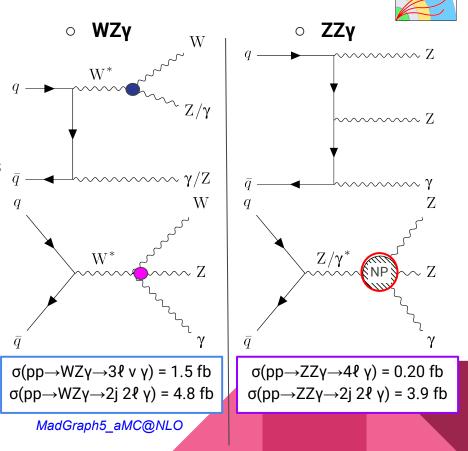


Triboson ZZy production in the 4ly channel in pp collisions with the CMS experiment at 13 TeV

Antonio Vagnerini (Univ. Lincoln-Nebraska)

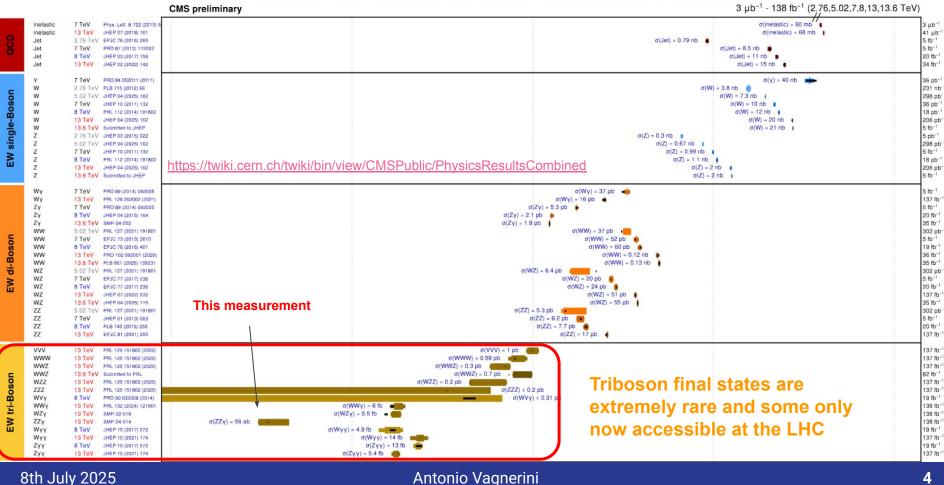
EPS-HEP 2025, Marseille

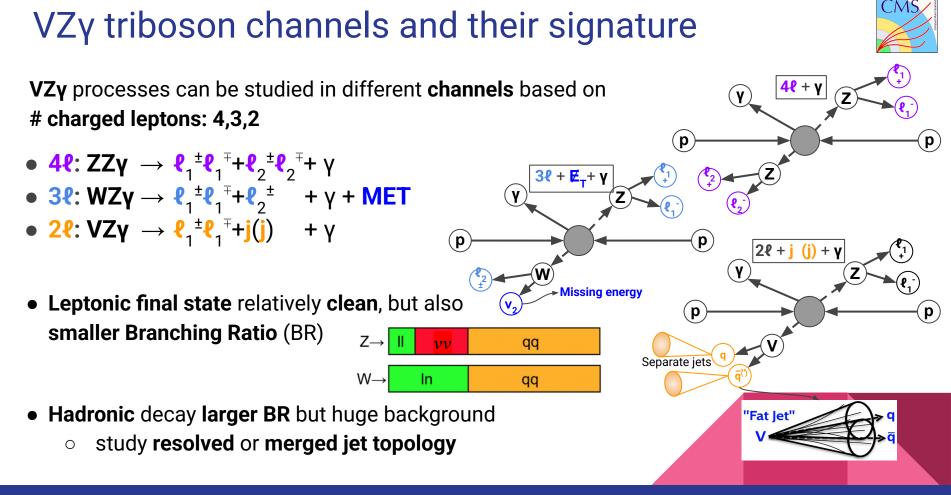
8th July 2025


Antonio Vagnerini

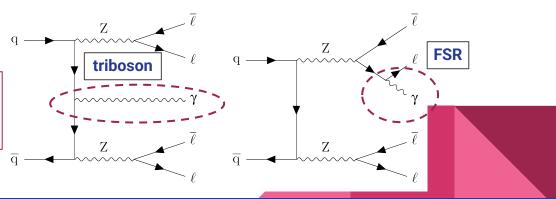
Outline

- Theoretical introduction
- Event selection
- Signal definition
- Background estimation
- Results
- Summary


Triboson production


- Study the EW sector to high precision
 - Probe the non-Abelian triple (TGC) and quartic (QGC) gauge couplings
 - Complementary to Higgs measurements at an energy scale larger than Higgs mass √s
 > m_H
- VZγ processes sensitive to Beyond Standard Model (BSM) effects on gauge couplings
 - WZγ has Leading Order (LO) contributions from TGC and QGC
 - **ZZ** γ does **not** have TGC/QGC **LO diagrams** in SM \rightarrow sensitive to anomalous couplings

Overview of CMS cross section results


ZZγ leptonic measurement

- First LHC result on triboson ZZγ production!
- Inclusive EWK $pp \rightarrow 4\ell\gamma$
 - Not all analyses distinguish between FSR and triboson
- Very challenging analysis due to small section, but very clean final state

Search for $ZZ\gamma$ production **CMS Run 2** data (138 fb⁻¹)

	ATLAS	CMS
Wyy	13 TeV ℓ [±] ν γ γ: 5.6 σ (<u>PUB</u>)	13 TeV ℓ [±] νγγ: 3.1 σ (<u>PUB</u>)
Ζγγ	13 TeV ℓ ⁺ ℓ ⁻ νγγ (<u>PUB</u>)	13 TeV ℓ ⁺ ℓ ⁻ ν γ γ: 4.8 σ (<u>PUB</u>)
WWγ	8 TeV $\ell^{\pm} \nu \ell'^{\pm} \nu \gamma + \ell^{\pm} \nu j j \gamma$ (<u>PUB</u>)	13 TeV ℓ [±] ν ℓ′ [±] ν γ: 5.6 σ (<u>PUB</u>)
WZγ	13 TeV ℓ′ [±] ν ℓ ⁺ ℓ [−] γ: 6.3 σ (<u>PUB</u>)	13 TeV ℓ′±ν ℓ⁺ℓ⁻ γ∶ 5.4 σ (<u>PAS</u>)
ΖΖγ	-	This work (<u>PAS</u>)

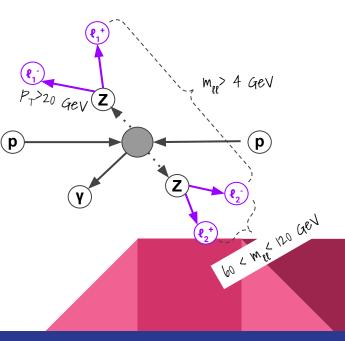
Reconstruction and identification e/µ

Electrons

- Track in the silicon tracker + ECAL clusters (+ bremsstrahlung)
- Loose selection:
 - \circ p_T > 7 GeV (**VB decay**)
 - \circ | η | < 2.5 (tracker acceptance)
 - Isolation (VB vs e.g. hadronic activity)
 - **Vertex-track**: $d_{xy} < 0.5$ cm, $d_z < 1$ cm
- Tight selection: (high purity)
 - Significance of Impact Parameter: SIP_{3D} < 4 and MVA discriminant

Muons

- Tracker track + match in the muon system (track OR single segment)
- Loose selection:
 - \circ p_T > 5 GeV (**VB decay**)
 - \circ | η | < 2.4 (muon system acceptance)
 - Isolation (VB vs e.g. heavy flavour decay)
 - **Vertex-track**: $d_{xy} < 0.5$ cm, $d_z < 1$ cm
- Tight selection: (high purity)
 - \circ SIP_{3D} = IP_{3D}/ $\sigma_{IP,3D}$ < 4 and MVA discriminant


8th July 2025

Z reconstruction from leptons

• Z candidates: Same Flavour Opposite Sign (SFOS) pairs of leptons passing loose selection (low purity)

Antonio Vagnerini

- \circ 60 GeV < m_{$\ell\ell$} < 120 GeV
- $\circ ||m_{Z1} m_Z| < ||m_{Z2} m_Z|$
- Veto opposite-sign leptons that have $m_{\ell} < 4 \text{ GeV}$
- ZZ: pair of non overlapping Z candidates
 - \circ **Z**₁: closest in mass to the nominal Z peak
 - \circ **Z**₂: with the highest scalar sum p_T of its daughters

8

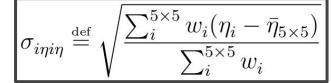
FSR recovery for charged leptons

- Algorithm to recover Final State Radiation photons in the vicinity of charged leptons
 - same method as in H->ZZ->4l analysis JHEP08(2023)040
- FSR 1. FSR candidate preselection: a. $p_{\tau} > 2 \text{ GeV}; |\eta| < 2.4$ **b.** $I^{\gamma} \stackrel{\text{def}}{=} \frac{1}{p_{\mathrm{T}}^{\gamma}} \left(\sum p_{\mathrm{T}}^{\gamma} + \sum_{i \in \text{ neutral}} p_{\mathrm{T}}^{i} + \sum_{i \in \text{ charged}} p_{\mathrm{T}}^{j} \right) < 1.8$ **Δ**R(γ, ℓ) < 0.5 c. Exclude y used in electron reconstruction Assigned to the **closest lepton** (e, μ) 3. Accepted (at most 1 per ℓ) if: a. $\Delta R(\gamma, \ell) < 0.5$ b. $\Delta R(\gamma, \ell) / E_{T,v}^2 < 0.012 \text{ GeV}^{-2}$ 4. Add vectorially four-momentum of FSR candidate to the lepton

Reconstruction and identification of signal y

Antonio Vagnerini

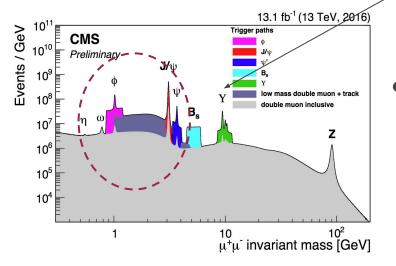
Signal photon kinematic selection:


- $\Delta R(\gamma, \ell) > 0.5$ suppresses **FSR photon**
- $p_{T} > 20 \text{ GeV}, |\eta| < 1.4442 \lor 1.566 < |\eta| < 2.4$
- electron conversion veto

Photon identification:

cut-based with thresholds on 5 variables

- shower shape σ_{inin}
- energy ratio in HCAL to ECAL H/E
- **isolation** : photon, neutral and charged


$${
m Iso}_{
m charged\ hadrons} p_T \quad {
m within} \ \Delta R < R_{
m iso}$$

Search region(s)

- Inclusive Electroweak 4*ℓγ*:
 - Exactly 4 leptons passing **high purity** $p_T^{\ell_1, \ell_2} > 20, 10 \text{ GeV}$
 - **"Smart-cut"**: **reject** 4e and 4μ candidates where alternative pairing satisfies $|\mathbf{m}_{za} - \mathbf{m}_{z}| < |\mathbf{m}_{z1} - \mathbf{m}_{z}| \land \mathbf{m}_{zb} < 12 \text{ GeV/c}^2$
 - 1 good photon

• Triboson $ZZ\gamma$:

in addition $\min(m_{\ell+\ell-\gamma}) > 100$ GeV, $\ell^+\ell^-$ from a Z candidate

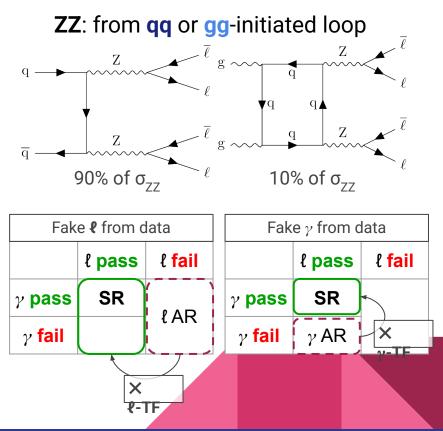
to suppress FSR

Zb

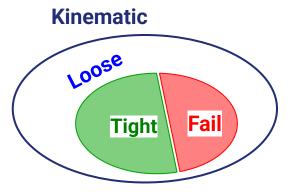
0+

 \mathbf{Z}_2

 Z_1


Za

Backgrounds: irreducible vs reducible

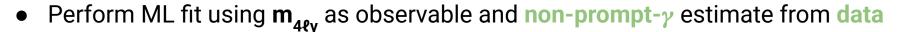

Two main categories of background:

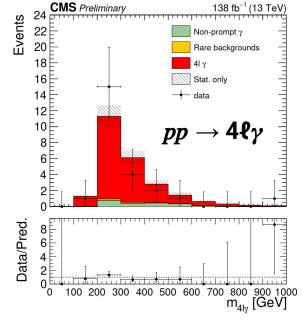
- Irreducible rare VVV, *ttZ* estimated from simulation
- Main reducible bkg: (qq/gg) → ZZ → 4ℓ (+γ fake/FSR) (non-prompt photon) estimated with data-driven method and simulation
- Small fake-lepton bkg estimated with data-driven method

Non-prompt/misidentified photons

- Origin of fake photons (instrumental bkg):
 - **non-prompt**, from **light meson** decays, e.g. $\pi^0 \rightarrow \gamma \gamma$
 - mis-identified electrons / light quark jets
- Subset of **Z+ℓ** Control Region + **1 loose γ** (enriched in fake γ)
 - Subtract prompt photons from MC (Zγ)
- "Tight-to-loose" method to measure fake rate: FR(p_τ, η) = Tight/Loose
 - Loose: ≥ 3 cuts (H/E, Iso_{neutral}, Iso_{photon})
 - Tight: all 5 cuts of cut-based ID

Application of photon fake rate


- Application Region used to estimate fake γ yield in Signal Region
 γ-FR from Z+l control region
 - 4 leptons pass the Tight selection
 - 1 γ passes the Loose selection but fails tight

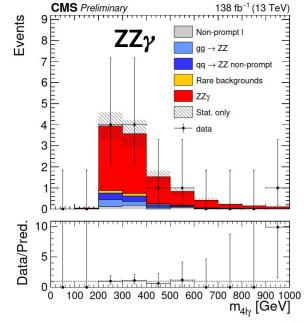


- $N_{SR}^{bkg} = \sum \frac{f_i}{1 f_i} N_{AR}$
- Good **agreement** between **data-driven** approach and **MC** for non **prompt γ**
 - used for inclusive $4\ell\gamma$
- Use MC for **non-prompt** γ in ZZ_{γ} **region** due to low stat in AR

8th July 2025

First observation of inclusive $pp \rightarrow 4\ell\gamma$

• Observation of $pp \rightarrow 4\ell\gamma$: <u>5.1\sigma obs</u>. (4.1\sigma exp.)


_	2016	2017	2018	Run 2
$ m pp ightarrow 4\ell\gamma$	5.83 ± 0.91	6.35 ± 1.40	9.32 ± 2.04	21.51 ± 2.64
Non-prompt γ	0.81 ± 0.70	0.42 ± 0.35	0.82 ± 0.72	2.05 ± 1.07
Rare backgrounds	0.09 ± 0.04	0.12 ± 0.04	0.22 ± 0.03	0.44 ± 0.07
$pp \rightarrow 4\ell\gamma \text{ OOA}$	0.07 ± 0.02	0.08 ± 0.02	0.09 ± 0.01	0.24 ± 0.02
Predicted number of events	6.81 ± 1.06	6.98 ± 1.41	10.45 ± 2.09	24.24 ± 2.74
Observed number of events	7	6	11	24

nonpr.- ℓ already included in the the "data-driven" non-prompt γ

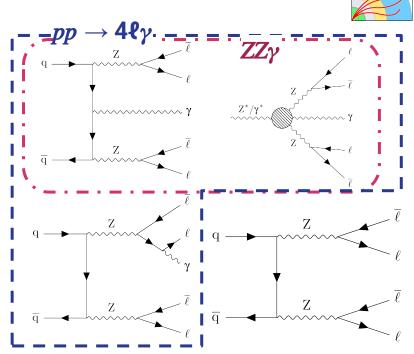
 $\sigma_{\rm fid}({\rm pp} \to 4\ell\gamma) = 161^{+64}_{-56}\,({\rm stat})^{+7}_{-9}\,({\rm theo})^{+5}_{-4}\,({\rm lumi})^{+15}_{-14}\,({\rm syst})\,{\rm ab} = 161^{+66}_{-58}\,{\rm ab}$

First evidence of triboson $ZZ\gamma$

- CMS
- Perform ML fit using $m_{42\gamma}$ as observable and non-prompt- γ estimate from MC

• Evidence of pp \rightarrow ZZ $\gamma \rightarrow$ 4 $\ell\gamma$: <u>3.7 σ obs</u>. (3.0 σ exp.)

	2016	2017	2018	Run 2
$ZZ\gamma ightarrow 4\ell\gamma$	2.18 ± 0.61	2.52 ± 0.99	3.58 ± 1.41	8.28 ± 1.83
$q\overline{q} ightarrow ZZ$	0.18 ± 0.04	0.24 ± 0.06	0.34 ± 0.09	0.76 ± 0.12
$gg ightarrow ZZ ightarrow \ell\ell$	0.19 ± 0.03	0.20 ± 0.04	0.28 ± 0.05	0.67 ± 0.07
$ZZ\gamma ightarrow 4\ell\gamma$ OOA	0.12 ± 0.02	0.12 ± 0.01	0.14 ± 0.02	0.38 ± 0.03
Non-prompt ℓ	0.17 ± 0.15	0.12 ± 0.11	0.08 ± 0.09	0.37 ± 0.21
Rare backgrounds	0.04 ± 0.01	0.13 ± 0.03	0.18 ± 0.04	0.35 ± 0.05
Predicted number of events	2.87 ± 0.64	3.34 ± 1.00	4.60 ± 1.41	10.80 ± 1.84
Observed number of events	2	3	6	11


 $\sigma_{\rm fid}(\rm pp \to ZZ\gamma \to 4\ell\gamma) = 56^{+34}_{-28}\,(\rm stat)^{+1}_{-1}\,(\rm theo)^{+2}_{-1}\,(\rm lumi)^{+6}_{-5}\,(\rm syst)\,ab = 56^{+34}_{-28}\,\rm ab$

Summary

- Full Run 2 analysis with {4e;2e 2µ;4µ} γ FS
- First observation of inclusive $pp \rightarrow 4\ell\gamma$
 - significance: **5.1** σ observed (4.1 σ expected)
- First evidence for triboson ZZγ @13 TeV
 - significance: **3.7** σ observed (3.0 σ expected)
- Both results are in **agreement** with the **SM**
 - Signal strengths are slightly > 1
 - NLO EW corrections may be needed

Measurement of the most rare tri-boson channel to date!

• $\sigma_{fid}(pp \rightarrow ZZ\gamma \rightarrow 4\ell\gamma) = 56 \pm 30 \text{ ab}$ <u>CMS PAS SMP-24-014</u>

Thanks for your attention

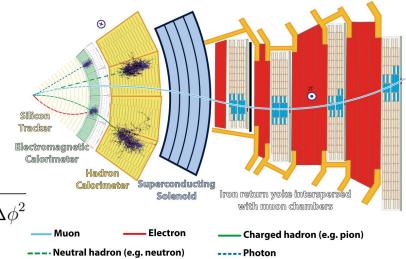
Backup

Triboson searches @LHC

	8 T	ēV	13 TeV		
	ATLAS CMS		ATLAS	CMS	
Ζγγ	<u>Observation</u>	<u>Observation</u>	Cross-section	<u>Evidence</u>	
Wyy	Evidence	<u>ce</u> <u>Evidence</u>	<u>Observation</u>	<u>Evidence</u>	
ZΖγ	_	Ctudu	_	-	
WZγ	<u>Study</u>	<u>Study</u> -	<u>Observation</u>	<u>Observation</u>	
WWγ	<u>Study</u>	_	_	-	

Source of systematic uncertainty	Туре	Impact on $4\ell\gamma$	Impact on $ZZ\gamma$
QCD scale	norm.	5.0 %	1.0 %
α _S	norm.	1.3 %	0.3 %
pdf	norm.	1.4 %	0.9 %
Trigger	norm.	1.0 %	1.0 %
Pileup	norm.	2.5 %	2.3 %
Luminosity	norm.	2.7 %	2.7 %
Muon efficiency	norm.	1.0 %	1.0 %
Electron efficiency	norm.	4.4 %	4.4 %
Photon efficiency	norm.	2.0 %	2.1 %
Photon energy scale	norm.	0.2 %	0.1 %
γ misidentif. rate	norm.	2.2 %	2 - 0
Non-prompt ℓ norm.	norm.	-	1.8 %
Non-prompt γ norm.	norm.	3.7 %	4.7 %
Non-prompt γ shape	shape	3.6 %	-

Table 1: Sources of systematic uncertainty and their impact on the cross section measurement for the inclusive $pp \rightarrow 4\ell\gamma$ final state and for the triboson $ZZ\gamma$ final state.


The Large Hadron Collider and CMS

- High energies for triboson \rightarrow **LHC**
- Need to detect the collision products
 Compact Muon Solenoid experiment
 - Silicon tracker (pixel+strip)
 - Electromagnetic calorimeter (ECAL)
 - Hadron calorimeter (HCAL)
 - Superconducting solenoid (3.8 T)
 - Muon system (DT + CSC + RPC [+ GEM])
- Particle Flow (PF) algorithm gives a consistent global event description
- Right handed coordinates:
 - z = beam axis , $x = \rightarrow center$ y = vertical

pseudo-
rapidity:
$$\eta = -ln\left(\tan\frac{\theta}{2}\right)$$
 distance: $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}$

Run 2 (2016–2018) - 13 TeV

@CMS	2016	2017	2018	Run2
<interactions bx=""></interactions>	20	27	38	37
$\int \mathcal{L} dt [fb^{-1}]$	36.3	41.5	59.8	137.6

Vector boson self-interactions

The **production** of **three electroweak (EW) bosons (**W,Z,γ) in high energy collisions probes the EW symmetry breaking in the SM, in particular the gauge boson self-interactions

1

$$\mathcal{L}_{gauge} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \qquad \circ W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g \epsilon^{abc} W^{b}_{\mu} W^{c}_{\nu} \\ \circ B_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu} \\ \circ B_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu} \\ \downarrow \\ WWV \qquad \qquad -ie \left[(W^{+\mu\nu} W^{-}_{\mu} - W^{-\mu\nu} W^{+}_{\mu}) A_{\nu} + W^{+}_{\mu} W^{-}_{\nu} F^{\mu\nu} \right] \\ \neg ig \cos \theta_{W} \left[(W^{+\mu\nu} W^{-}_{\mu} - W^{-\mu\nu} W^{+}_{\mu}) Z_{\nu} + W^{+}_{\mu} W^{-}_{\nu} Z^{\mu\nu} \right] \\ WWV \qquad \qquad -\frac{1}{2} g^{2} \left[W^{+}_{\mu} W^{-\mu} W^{+}_{\nu} W^{-\nu} - W^{+}_{\mu} W^{+}_{\nu} W^{-\mu} W^{-\nu} \right] \\ WWVV \qquad \qquad -\frac{1}{2} g^{2} \left[W^{+}_{\mu} W^{-\mu} W^{+}_{\nu} W^{-\nu} - W^{+}_{\mu} W^{+}_{\nu} W^{-\mu} W^{-\nu} \right] \\ WWVV \qquad \qquad -\frac{1}{2} g^{2} \left[W^{+}_{\mu} W^{-\mu} A_{\nu} A^{\nu} - W^{+}_{\mu} A^{\mu} W^{-}_{\nu} A^{\nu} \right] \\ WWVV \qquad \qquad -\frac{1}{2} g^{2} \cos^{2} \theta_{W} \left[W^{+}_{\mu} W^{-\mu} Z_{\nu} Z^{\nu} - W^{+}_{\mu} Z^{\mu} W^{-}_{\nu} Z^{\nu} \right] \\ WWZV \qquad -eg \cos \theta_{W} \left[W^{+}_{\mu} W^{-\mu} Z_{\nu} A^{\nu} - W^{+}_{\mu} Z^{\mu} W^{-}_{\nu} A^{\nu} + h.c. \right]$$

8th July 2025

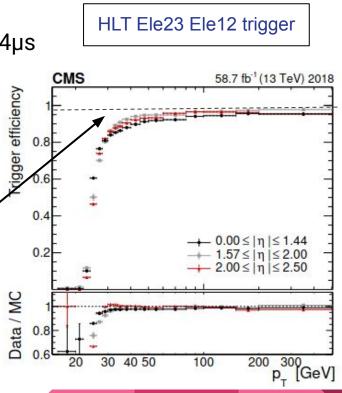
Antonio Vagnerini

$ZZ\gamma$ analysis strategy

- Rows: photon selection
- Columns: number of tight leptons

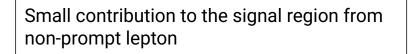
ZZγ (4ℓ) channel			Lepton selection			
γ selection		4P		3P1F	2P2F	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \gamma \end{array} \\ \mu \end{array} \\ \mu \end{array} \\ \mu \end{array} \\ \gamma \end{array} \\ \gamma \end{array} \\ \gamma \end{array} \\ \gamma \end{array} \\ \hline \gamma \bigg $ \\ \hline \gamma \bigg $ \left(1 \right $		SR4P_1P $\rightarrow 4\ell\gamma$ inclusive	$SR4P_1P$ _triboson $\rightarrow ZZ\gamma$	Nonpr. leptons	Nonpr. leptons	
kinel	γ FAIL	L CR4P_1F (fake γ AR)		AR	AR	
	γ fails loose					
No γ kinem.						
4P − <i>ZZ</i> → 4 { (<u>SMP-22-001</u>)				CR3P1F	CR2P2F	

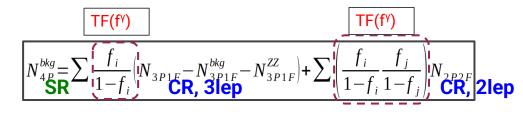
CMS revelopment


Signal/background regions:

•	4P: 4 P _{tight} , r photons (hi		
•	CR 3 P 1 F: CR 2 P 2 F: CRLFR: CR 4 P_ 1 F: SR 4 P_ 1 P:	3 ^t _{tight} 1 ^f _{fail} 2 ^t _{tight} 2 ^f _{fail} 2 ^t _{tight} 1 ^f _{loo} 4 ^t _{tight}	se + 1γ _{fail}
•	SR4P_1P_t ○ min(m _{ℓℓγ}) > 100 GeV	
	CRLFR: p _T GeV	^{niss} < 30	
			23

Trigger and samples


- CMS uses a two-stage trigger (LHC **collisions: 40 MHz**)
 - L1 trigger (custom FPGA): 100 kHz (-98%), latency < 4µs
 - High Level Trigger (software): ~1kHz (-99%), < 50 ms/event
- This analysis uses several trigger paths :
 - inclusive OR of triggers requiring 1, 2 or 3 electrons at least one muon
- This analysis requires that $p_T^{\ell_1}$, $p_T^{\ell_2} > 20$, 10 GeV
 - close to trigger efficiency plateau E >95%
- Run 2 data split in **4 periods**: $\mathcal{L}_{int} = 137.6 \text{ fb}^{-1}$ at **13 TeV**



Non-prompt leptons

- Non-prompt ? are difficult to model form simulation (instrumental background)
- **Misidentified** light-flavour jets, **non-prompt** from heavy quark decays
- Tight-to-loose method to estimate fake ?
 - Measure Fake Rate in a **dedicated CR:** $Z_{PP} + \ell_L \rightarrow f(p_T^{\ell}, \eta^{\ell}) = N_{PASS} / N_{FAIL}$
 - Use it to **reweight events** in application regions

Overlap between samples

 Z^*/γ^*

Β.

Z

 $pp \rightarrow ZZ \rightarrow 4\ell (+FSR)$

Z

- The γ can be emitted from:
 - A. an initial state fermion (this includes ISR) signal sample
 - B. a **TGC** or **QGC** vertex (not for SM ZZ γ)
 - C. a lepton from a Z/W decay, as **FSR**
 - D. an unrelated process, e.g. light hadron decay from another collision ("nonprompt"), or "fake"
- Only (A.) and (B.) are "triboson"
- Defined a **triboson fiducial region** where these diagrams are enhanced (next slides)
- Both the **ZZG** signal and the **ZZ** background samples **include FSR** diagrams (c.)
- Remove events with prompt γ from ZZ to avoid double counting

 $pp \rightarrow 4l$

Electron MVA

Observable type	Observable name	
Cluster shape	RMS of the energy-crystal number spectrum: $\sigma_{i\eta i\eta}$, $\sigma_{i\varphi i\varphi}$ Super cluster width along η and ϕ Ratio of the hadronic energy behind the SC to the SC energy, H/E Circularity $(E_{5\times 5} - E_{5\times 1})/E_{5\times 5}$ Sum of the seed and adjacent crystal over the SC energy R_9	
	For endcap training bins: energy fraction in pre-shower $E_{\rm PS}/E_{\rm raw}$	
Track-cluster match	Energy-momentum agreement E_{tot}/p_{in} , E_{ele}/p_{out} , $1/E_{tot} - 1/p_{in}$ Position matching $\Delta \eta_{in}$, $\Delta \varphi_{in}$, $\Delta \eta_{seed}$	
Tracking	Fractional momentum loss $f_{brem} = 1 - p_{out}/p_{in}$ Reduced χ^2 of the KF and GSF track χ^2_{KF} , χ^2_{GSF}	

Muon high- p_T ID

Requirement Muon station matching Good $p_{\rm T}$ measurement Vertex compatibility (xy)Vertex compatibility (z)Pixel hits Tracker hits

Technical description Muon is matched to segments in at least two muon stations $\sigma_{p_{\rm T}}/p_{\rm T} < 0.3, \ \sigma_{p_{\rm T}}$ is the $p_{\rm T}$ uncertainty $d_{xy} < 2 \,\mathrm{mm}$ $d_z < 5 \,\mathrm{mm}$ At least one pixel hit Hits in at least six tracker layers

Photon ID

Variable	Barrel (tight WP)	Endcap (tight WP)
H/E	<0.021	< 0.032
$\sigma_{i\eta i\eta}$	< 0.0099	< 0.027
Ich	<0.65 GeV	<0.52 GeV
In	$< 0.32 \text{GeV} + 0.015 E_{\text{T}} +$	$< 2.72 \text{GeV} + 0.012 E_{\text{T}} +$
	$2.26 \times 10^{-5} E_{\rm T}^2/{\rm GeV}$	$2.3 \times 10^{-5} E_{\rm T}^2/{\rm GeV}$
I_{γ}	$< 2.04 \text{GeV} + 0.0040 E_{\text{T}}$	$< 3.03 \text{GeV} + 0.0037 E_{\text{T}}$

Signal definition (GEN)

- Leptons:
 - electron or muon (IID| = 11, 13)
 - $\circ p_{T} > 5 \text{ GeV}$
 - |η| < 2.5
- Photons
 - \circ isPrompt (generator status bit)
 - $\circ \ \ \text{min} \ \Delta \mathsf{R}(\gamma_{\text{GEN'}} \ \boldsymbol{\ell}_{\text{GEN}}) > 0.5$
 - p_T > 20 GeV
 - ∘ |η| < 1.4442 ∨ 1.566 < |η| < 2.4
 - Frixione isolation
- Jets AK4 (AK8)
 - p_T > 30 (150) GeV
 - $\circ |\eta| < 4.7$

- SR4P_1P (ZZ $\gamma \rightarrow 4\ell \gamma$)
 - $\circ~$ 2 SFOS with $|m_{\ell\ell}^{} m_Z^{PDG}|$ < 30 GeV
 - ≥ 1 prompt γ
- SR3P_1P (ZW $\gamma \rightarrow 3\ell \vee \gamma$)
 - \circ 1 SFOS with $|m_{\ell\ell} m_z^{PDG}| < 30 \text{ GeV}$
 - 1 ℓ + 1v with $|m_{\ell \ell}^{T} m_{W}^{T}|^{PDG}| < 30 \text{ GeV}$
 - $\circ \geq 1 \text{ prompt } \gamma$
- SR2P_1P (ZV \rightarrow 2 ℓ 2j γ)
 - \circ 1 SFOS with $|m_{\ell} m_Z^{PDG}| < 30 \text{ GeV}$
 - EITHER 2 j / minDM(m_{ii}) < 30 GeV (*)
 - OR 1 J / minDM(m_) < 30 GeV (*)
 - ≥ 1 prompt γ

 $\min DM(x) = \min(|x - m_z^{PDG}|, |x - m_z^{PDG}|)$

8th July 2025

Double tracker muon + electron

Single tight ID central electron

Single tight ID GSF electron

Single tight ID electron

Single isolated muon

Single isolated muon

Trigger description

Trigger description	Requirements	Primary Dataset	Trigger description	Requirements	Primary Dataset	ringger description	Requirements	Filliary Datase
Double isolated electron	$p_{\rm T}^{\rm e_1}, p_{\rm T}^{\rm e_2} > 17, 12 {\rm GeV}$		Double isolated electron	$p_{\rm T}^{\rm e_1}, p_{\rm T}^{\rm e_2} > 23, 12 {\rm GeV}$		Double isolated electron	$p_{\rm T}^{\rm e_1}, p_{\rm T}^{\rm e_2} > 23, 12{\rm GeV}$	
Double isolated electron	$p_{\rm T}^{{\rm \hat{e}}_1}, p_{\rm T}^{{\rm \hat{e}}_2} > 23, 12 {\rm GeV}$	DoubleEG	Double GSF electron	$p_{\rm T}^{{\rm \dot{e}_1}}, p_{\rm T}^{{\rm \dot{e}_2}} > 33, 33 {\rm GeV}$	DoubleEG	Double electron	$p_{\rm T}^{\rm e_1}, p_{\rm T}^{\rm e_2} > 25, 25 {\rm GeV}$	EGamma
Double isolated GSF electron	$p_{\rm T}^{{\rm e}_1}, p_{\rm T}^{{\rm e}_2} > 33, 33{\rm GeV}$	DoubleEG	Triple electron	$p_{\rm T}^{{\rm e}_1}, p_{\rm T}^{{\rm e}_2}, p_{\rm T}^{{\rm e}_3} > 16, 12, 8{\rm GeV}$		Single isolated electron	$p_{\rm T}^{\rm e} > 32 {\rm GeV}$	
Triple isolated electron	$p_{\rm T}^{\rm e_1}, p_{\rm T}^{\rm e_2}, p_{\rm T}^{\rm e_3} > 16, 12, 8{\rm GeV}$		Double isolated muon	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2} > 17, 8 {\rm GeV}, \ m_{\mu\mu} > 3.8 {\rm GeV}$		Double isolated muon	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2} > 17, 8 {\rm GeV}, \ m_{\mu\mu} > 3.8 {\rm GeV}$	DoubleMuon
Double isolated muon	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2} > 17, 8 {\rm GeV}$		Double isolated muon	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2} > 17, 8 {\rm GeV}, \ m_{\mu\mu} > 8 {\rm GeV}$	DoubleMuon	${\rm Iso~muon+iso~electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 23, 12 { m GeV}$	
Double isolated muon ¹	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2} > 17, 8 {\rm GeV}$	DoubleMuon	Triple muon	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2}, p_{\rm T}^{\mu_3} > 12, 10, 5 {\rm GeV}$	DoubleMuon	${\rm Iso~muon+iso~electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 8, 23 {\rm GeV}$	
Triple isolated muon	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2}, p_{\rm T}^{\mu_3} > 12, 10, 5 {\rm GeV}$		Triple muon	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2}, p_{\rm T}^{\mu_3} > 10, 5, 5 {\rm GeV}$		${\rm Iso~muon+iso~electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 12, 23 {\rm GeV}$	MuonEG
${\it Tracker}\ {\it muon} + {\it isolated}\ {\it electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 8, 17$		Iso $muon + iso electron$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 23, 12 {\rm GeV}$		${\rm Iso~muon+iso~electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 23, 12 {\rm GeV}$	
${\rm Tracker}\ {\rm muon} + {\rm isolated}\ {\rm electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 8, 23$		${\rm Iso~muon+iso~electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 8, 23 {\rm GeV}$		${\small Double\ muon+electron}$	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2}, p_{\rm T}^{\rm e} > 9, 9, 9 {\rm GeV}$	
${\it Tracker}\ {\it muon} + {\it isolated}\ {\it electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 17, 12$		${\rm Iso~muon+iso~electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 12, 23 {\rm GeV}$		Single isolated muon	$p_{\rm T}^{\mu} > 24 {\rm GeV}$	SingleMuon
${\it Tracker}\ {\it muon+isolated}\ {\it electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 23, 12$	MuonEG	${\rm Iso~muon+iso~electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 23, 12 {\rm GeV}$	MuonEG			
${\it Tracker}\ {\it muon} + {\it isolated}\ {\it electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{\rm e} > 23, 8$		${\rm Double\ muon+electron}$	$p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2}, p_{\rm T}^{\rm e} > 9, 9, 9 {\rm GeV}$				
${\rm Tracker}\ {\rm muon} + {\rm double}\ {\rm electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{{\rm e}_1}, p_{\rm T}^{{\rm e}_2} > 8, 12, 12 {\rm GeV}$		${\rm Muon} + {\rm double\ electron}$	$p_{\rm T}^{\mu}, p_{\rm T}^{{\rm e}_1}, p_{\rm T}^{{\rm e}_2} > 8, 12, 12 {\rm GeV}$				

 $p_{\rm T}^{\rm e} > 35 \, {\rm GeV}$

 $p_{\rm T}^{\rm e} > 38 \, {\rm GeV}$

 $p_{\rm T}^{\rm e} > 40 \, {\rm GeV}$

 $p_{\rm T}^{\mu} > 27 \, {\rm GeV}$

Doquinomonto

2016

Desuisses asta

 $p_{\rm T}^{\mu_1}, p_{\rm T}^{\mu_2}, p_{\rm T}^{\rm e} > 9, 9, 9 \,{\rm GeV}$

 $p_{\rm T}^{\rm e} > 25, \ |\eta^{\rm e}| < 2.1$

 $p_{\rm T}^{\rm e} > 27, \, |\eta^{\rm e}| < 2.1$

 $p_{\rm T}^{\rm e} > 27$

 $p_{\rm T}^{\mu} > 20$

Trigger paths

Duine and Datasat Thisgen decomintion

SingleElectron

SingleMuon

 $Muon + double \ electron$

Single tight ID electron

Single tight ID electron

Single tight ID electron

Single isolated muon

2017

Duimowy Dataget

SingleElectron

SingleMuon

Trigger description Requirements

2018

 $p_{\mathrm{T}}^{\mu} > 22$

1: μ_1 is global, μ_2 is tracker muon

Primary Dataset

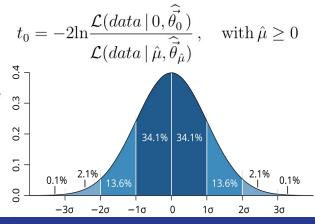
 $p_{\rm T}^{\mu}, p_{\rm T}^{\rm e_1}, p_{\rm T}^{\rm e_2} > 8, 12, 12 \,{\rm GeV}$

MC simulations

	Process	Generator	σ [pb]
ations	Signal samples		
	$ZZ\gamma \to 4\ell\gamma$	MadGraph (NLO)	0.02202
	$\mathrm{WZ}\gamma\to 3\ell\nu\gamma$	MadGraph (NLO)	0.03844
	$ZZ\gamma ightarrow 2\ell2j\gamma$	MadGraph (NLO)	0.04978
	$\mathrm{WZ}\mathbf{\gamma} ightarrow 2\ell2j\mathbf{\gamma}$	MadGraph (NLO)	0.08044
	Main background sa	mples	
	$ZZ \rightarrow 4\ell + 0,1 \text{ jets}$	MadGraph (NLO)	1.256
	$gg \to ZZ \to 4\mu$	MCFM (LO)	0.001586
	$gg \to ZZ \to 4e$	MCFM (LO)	0.001586
	$gg \to ZZ \to 2e \; 2\mu$	MCFM (LO)	0.003191
	Z + 0,1,2 jets	MadGraph (NLO)	6225.2
	$\mathrm{Z}\gamma$ + 0,1 jets	MadGraph (NLO)	55.48
	$WZ \to 3\ell\nu$	MadGraph (NLO)	5.213
	$t\overline{t} \to 2\ell\nu+{\rm jets}$	Powheg	87.3
	Rare background sa	mples	
	$t\overline{t}Z + 0,1 ext{ jets}$	MadGraph (NLO)	0.5407
	$t\overline{t}W + 0,1 ext{ jets}$	MadGraph (NLO)	0.2161
	$t\overline{t}ZZ$	MadGraph (LO)	0.001572
	$t\overline{t}WW$	MadGraph (LO)	0.007883
	ZZZ	MadGraph (NLO)	0.01398
	WZZ	MadGraph (NLO)	0.05565
	WWZ	MadGraph (NLO)	0.1651
	WWW	MadGraph (NLO)	0.08058

8th July 2025

Statistical model


- Perform maximize likelihood fit to assess presence of signal and significance
 - μ: "signal strength", multiplicative factor for the signal cross section; unconstrained
 - 9_i: i-th "nuisance parameter", models a systematic uncertainty; constrained by a prior

 $\mathcal{L}(data \,|\, \mu, \vec{\theta}\,) = \prod \mathcal{L}_c(data \,|\, \mu \cdot s(\vec{\theta}\,) + b(\vec{\theta}\,)) \cdot \prod p_i(\tilde{\theta_i} \,|\, \theta_i) \quad \text{Poisson distribution for yield}$

- Systematic uncertainty can affect only **yield** or also **alter** the shape of signal/bkg process $p(\tilde{\theta} \mid \theta) = \frac{1}{\sqrt{2\pi} \ln k} \cdot \frac{1}{\tilde{\theta}} \cdot \exp\left(-\frac{(\ln(\tilde{\theta}/\theta_m))^2}{2\ln^2 k}\right)$
- Excess quantified with test-statistic on log-likelihood

 $p_0 = p(t_0 \ge t_0^{obs} \,|\, \mu = 0) \quad \begin{array}{l} \text{expressed in} \\ \text{terms of } \mathbf{Z} \end{array} \quad p_0 = \int_Z^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \quad \begin{array}{c} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{array}$

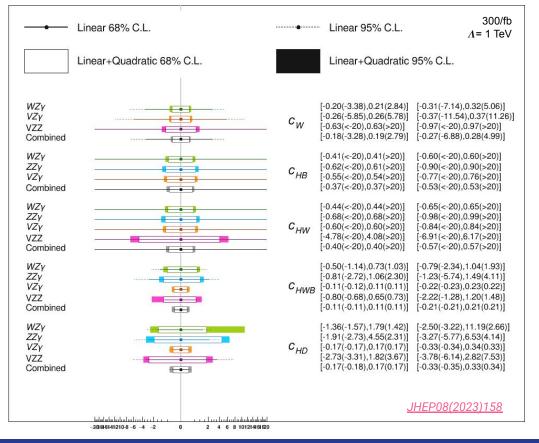
• **Z-significance**: **3σ** (evidence); **5σ** discovery

EFT interpretation dimension-6

- Triboson measurements can be used to set limits on EFT operators
 - о dimension 6 operators: triple/quartic gauge Ow and Higgs-gauge HVV coupling Онх

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_{k} c_k^6 O_k^6 + o\left(\frac{1}{\Lambda^3}\right) \qquad \sigma_{SMEFT} \propto |A_{SM}|^2 + 2c_W Re\left(A_{SM}A_{O_W}^*\right) + c_W^2 |A_{O_W}|^2$$

$$\underbrace{\text{Introducing Ow-amplitude and squaring it}}_{\text{Introducing Ow-amplitude and squaring it}} \bullet \text{Warsaw basis} \bullet \text{VZy sensitivity to bosonic operators}$$


$$\frac{Q_{Hl}^{(1)} = (H^{\dagger}i\overrightarrow{D_{\mu}}H)(\overline{l_p}\gamma^{\mu}l_p)}{Q_{Ha}^{(1)} = (H^{\dagger}i\overrightarrow{D_{\mu}}H)(\overline{l_p}\sigma^{i}\gamma^{\mu}l_p)} Q_{Ha}^{(3)} = (H^{\dagger}i\overrightarrow{D_{\mu}}H)(\overline{q_p}\sigma^{i}\gamma^{\mu}q_p)} Q_{Ha}^{(3)} = (H^{\dagger}i\overrightarrow{D_{\mu}}H)(\overline{q_p}\sigma^{i}\gamma^{\mu}q_p)}$$

$$Q_{qq}^{(3)} = (\overline{q_p}\gamma_{\mu}q_p)(\overline{q_r}\gamma^{\mu}\sigma^{i}q_r) \quad Q_{qq}^{(3,1)} = (\overline{q_p}\gamma_{\mu}q_r)(\overline{q_r}\gamma^{\mu}q_p)} Q_{qq}^{(3,1)} = (\overline{q_p}\gamma_{\mu}\sigma^{i}q_r)(\overline{q_r}\gamma^{\mu}\sigma^{i}q_p)}$$

$$Q_{HD} = (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H) \quad Q_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H) \qquad Q_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H) \qquad Q_{L\Box} = (H^{\dagger}H)W_{\mu\nu}W^{\mu\nu\nu}$$

$$Q_{W} = \varepsilon^{ijk}W_{\mu}^{i\nu}W_{\nu}^{j\rho}W_{\rho}^{k\mu} \quad Q_{U}^{(1)} = (\overline{l_p}\gamma_{\mu}l_r)(\overline{l_r}\gamma^{\mu}l_p)$$

Dimension-six EFT study

Interpretation of triboson results *traditionally* in terms of **dim-8 SMEFT** operators (aQGCs)

- Dim-6 EFT operators have an impact too!! [10.1007/JHEP08(2023)158.]
- proof of quadratic terms importance!
- very competitive constraints!
- identification of the most sensitive variables
- fundamental role of combination of the analyses

Next step:

- CMS Detector-level analysis
- dim. 6 vs dim. 8 operators effects
- Coordination role in the combination of several EFT analyses

8th July 2025

Antonio Vagnerini