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A nice picture but it is not "self-explanatory":
it contains many free parameters.
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Precise measurements allow
to constrain SM parameters
and search for New Physics.




Z decays to hadrons are constrained from LEP and SLC.

Rp = rgﬁ?/r(hadrons) M2/Ts
OUR FIT is obtained by a simultaneous fit to several ¢- and b-quark measurements
as explained in the note “The Z boson” and ref. LEP-SLC Q6.

The Standard Model predicts Ry, =0.21581 for m;=174.3 GeV and My=150 GeV.

VALUE DOCUMENT ID TECN COMMENT [ [ [
0.21629£0.00066 OUR FIT Review of Particle Physics,

0.21594 +0.00094 +0.00075 1 ABE SLD  EEE=91.28 GeV PDG, 2022
0.2174 £0.0015 +0.0028 2 ACCIARRI L3 EER,= 89-93 GeV
0.2178 +0.0011 +0.0013 3 ABBIENDI OPAL EEf, = 88-94 GeV
0.21634£0.00067 +0.00060 4 ABREU DLPH EE§,= 88-94 GeV
0.2159 +0.0009 +0.0011 5 BARATE ALEP EEf,= 88-94 GeV

- I'((uT+cT)/2) /I (hadrons) Fo/lg

RC = Fﬁgc;)/l'(hadrons) rll/r8 This quantity is the branching ratio of Z — “up-type” quarks to Z — hadrons. Except
OUR FIT is obtained by a simultaneous fit to several ¢- and b-quark measurements ACKERSTAFF 97T the values of Z — “up-type” and Z — “down-type” branchings are

as explained in the note “The Z boson” and ref. LEP-SLC 06. extracted from measurements of I'(hadrons), and I'(Z — ~+ jets) where ~ is a high-

The Standard Model predicts R — 0.1723 for m. = 174.3 GeV and Mo = 150 GeV energy (>5 or 7 GeV) isolated photon. As the experiments use different procedures
P ¢ = 0172 t =174 H= : . ! riments | .
and slightly different values of Mz, I'(hadrons) and «g in their extraction procedures,

VALUE DOCUMENT ID TECN  COMMENT our average has to be taken with caution.
0.1721+0.0030 OUR FIT VALUE DOCUMENT ID TECN _ COMMENT

0.1744+0.0031+0.0021 1 ABE 05F SLD  EE§,=91.28 GeV 0.166::0.009 OUR AVERAGE

0.1665--0.0051 +0.0081 2 ABREU 00 DLPH EE§ = 88-94 GeV 017213001 1 ABBIENDI 04 OPAL EE& =91.2 GeV
0.1698+0.0069 3 BARATE 00B ALEP EE§,= 88-94 GeV 0.160+0.019+0.019 2 ACKERSTAFF 97T OPAL E&E = 88-94 GeV
0.180 +0.011 +0.013 4 ACKERSTAFF 98E OPAL EEE = 88-94 GeV 013710038 3 ABREU 95x DLPH EE,= 88-94 GeV
0.167 +0.011 +0.012 > ALEXANDER 96rR OPAL EEE = 88-94 GeV '

0.137+0.033 4 ADRIANI 93 L3 EEE = 91.2 GeV
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0.01%
0.11%
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Angular correlations
Beam Polarisation
Systematics
Total

The cross sections to heavy quarks cou

constrained at LC250 thanks to exceller
tagging.
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But how to take the measurement if...

* tagging is imperfect (s quark)?
* tagging is unavailable (u, d quarks)?




Outline

1. How to measure Z couplings to light quarks?
2. How to generate Monte Carlo events?
3. How to analyse events?



How to measure Z couplings
to light quarks?



General idea

We want to measure quark couplings:
Cr = UJ% T a?
They are given in the SM by:

Vf = 2[3)1“ — 4Qf Sin2 QW af = 2[3,1-‘
[, Scales as:

and .4, 0s:
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Resolution parameter g’

* By measuring the radiative and non-
radiative decays, one can disentangle c,.
The definition of a radiative event is
crucial.

* The photon resolution criterion may
depend on an arbitrarily chosen
isolation parameter, e.g. the photon
transverse momentum w.r.t. the jet
direction, g":

q" = Eysin(0),)
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Measurement at the Z-pole — recipe

1. Count 2-jet events (n;) and 2-jet events with a tagged photon (n
We consider 4 tags: "light", s, c and b.

vj)°
J = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...
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Measurement at the Z-pole — recipe

1. Count 2-jet events (n;) and 2-jet events with a tagged photon (n

We consider 4 tags: "light",s,cand b.
J = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...

2. Compare to the expected numbers of events:

vj)'

N; = (exp. acceptance) - (class. prob.) - (lumi.) - 04 = Aj, - 04

. — RY _ 0 . — RB. .
Nyj = qu(yCut) Tyg T qu(y cut) 0oq = Bjg 0q [2310.03440]
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https://arxiv.org/abs/2310.03440

Measurement at the Z-pole — recipe

1.

Count 2-jet events (n;) and 2-jet events with a tagged photon (n

We consider 4 tags: "light",s,cand b.
J = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...

Compare to the expected numbers of events:

vj)'

N; = (exp. acceptance) - (class. prob.) - (lumi.) - 04 = Aj, - 04

_ 0 _
N’Yf — BJ%(Ycut) $Oyq T qu(yCut) "00q = qu "Oq [2310.03440]
Minimise the y? distribution to extract the cross sections:
2 = 3 (nj — N )2 n Z ”'w '71)2

J
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Measurement at the Z-pole — recipe

1. Count 2-jet events (n;) and 2-jet events with a tagged photon (n
We consider 4 tags: "light", s, c and b.

vj)'

J = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...
2. Compare to the expected numbers of events:

N; = (exp. acceptance) - (class. prob.) - (lumi.) - 04 = Aj, - 04

0 _
N’Yf — BJ%(Ycut) $Oyq T qu(yCut) "00q = qu "Oq [2310.03440]
3. Minimise the y? distribution to extract the cross sections:
2 = 3 (nj — N )2 n Z ”'w '71)2

j
Systematic uncertainties can also be mcluded

XZ(#):Z(H"' +Z (o — M’” +Zék+22)\ we(6
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https://arxiv.org/abs/2310.03440

How to generate Monte Carlo
events?




Analysis setup

We want to consider:

_|_

e"e” — qq(y)

Experimentally measured photons can originate not only from the Final State Radiation but
also from the Initial State Radiation, hadronisation and decays...

One may encounter the following issues:

* Matrix Element calculations — divergent or very slow for low photon-emission angles;
* ISR structure functions — good for low angles, a proper matching procedure needed;
* FSR showers — important for QCD emissions, may cause double-counting;

* hadron decays — photons to be included properly.



Matching procedure — Whizard perspective

* matching: soft physics invisible in the detector,
hard physics properly reconstructed

* soft ISR photons simulated using built-in structure functions

* soft FSR photons simulated using parton showers

* hard photons simulated using full ME calculations
(0, 1, 2... ME y samples)

- momentum transfer and energy to define the soft and hard regimes

18



Efficiency of the matching procedure

About 7-8% of Whizard events are rejected to avoid double-counting.
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How to analyse events?



Event reconstruction

Measurable photons can originate from:
* |nitial State Radiation,

 Final State Radiation,
 hadronisation and decays.

The interesting information comes only from FSR so the reconstruction
criteria should reduce the other contributions.

A dedicated approach is crucial. To detach from the standard convention,
we cluster all photons into jets and then consider EFLow photon objects

(Delphes-level study).




Photon kinematics — transverse momentum
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Systematic uncertainties

The optimal isolation parameter can only be found if systematic uncertainties are included.

Uncertainty [%]

integrated luminosity (relative) 0.01

radiative event selection efficiency F (relative)

background to the radiative sample due to photons coming
from hadronisation G (relative)

0.01-1

tagging uncertainties
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Results — 5-flavour decomposition
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Results — syst. uncertainties
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Conclusions

* The couplings of the Z boson to light quarks are weakly constrained
but a significant improvement could be achieved at future colliders.

* Proper assessment of the uncertainties requires deep understanding
of theoretical calculations, event simulation and reconstruction.

e Tagging uncertainty is a crucial factor in the study.

* Prospects for 100 fb': sub-percent precision for d and u,
sub-permille precision for b if tagging uncertainty ~ 0.1%.



Backup



Starting point

Some part of the work has already been done...

e b X

+ X
Simulating hared photon production with WHIZARD
J. Kalinowski et al., [2004.14486]
General idea:
e soft ISR photons simulated using the built-in structure function

* hard ISR photons simulated at the ME level

* matchinging.:
qg— = \/4EgE, sin %’Y
g+ = /4EoE, cos 97'*

28



Matching procedure

Simulating events with Whizard and Pythia6 (shower and hadronisation)
* ME cuts:

o all y’s:
g.>0.5GeVand E >0.5GeVand M(y, g;) > 1 GeV

* event selection:
o all ISR SF y’s:
q.<0.5GeVor E<0.5GeVor My, gi)<1GeV
o all FSR shower y’s whose parents are initial quarks:
q.<0.5GeVor E<0.5GeVor My, g)<1GeV

Note: a single quark can emit multiple photons.

29



Results — 2 flavours only
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Fit correlations

0.2;
0.1
=
Uzj: 00'
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_0'1.
_02

* SM expectation
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