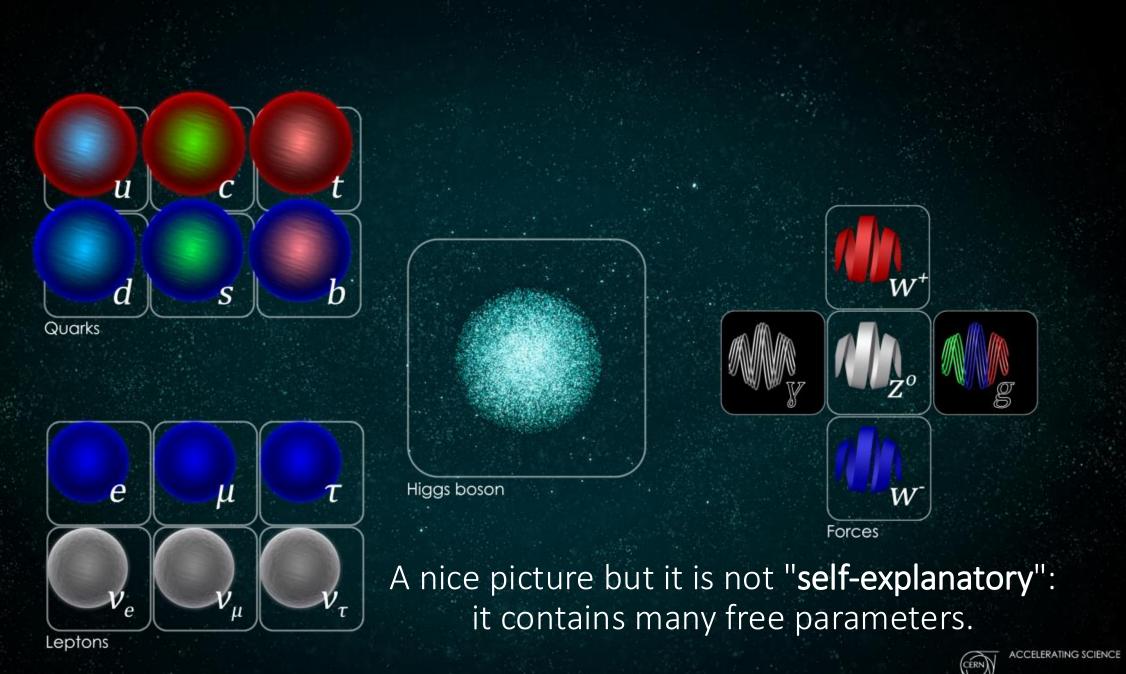
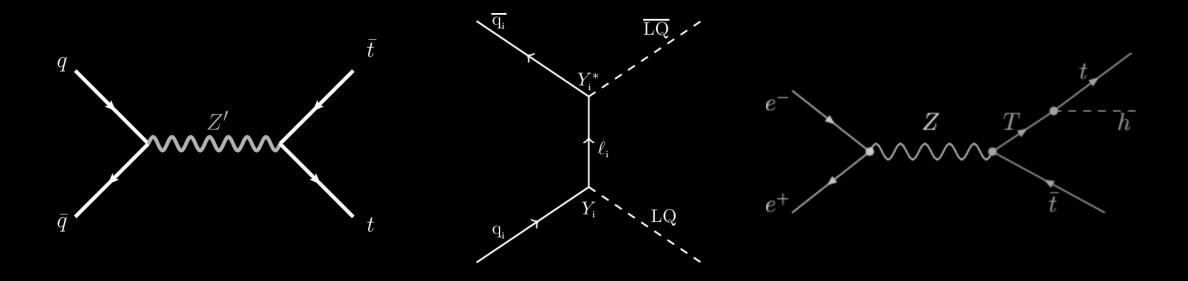
Determination of the first-generation quark couplings at the Z-pole


Krzysztof Mękała

DESY, Hamburg, Germany


Faculty of Physics, University of Warsaw, Poland

based on [2504.11365]

EPS-HEP, 10.07.2025

Precise measurements allow to constrain SM parameters and search for New Physics.

Z decays to hadrons are constrained from LEP and SLC.

$R_b = \Gamma(b\overline{b})/\Gamma(\text{hadrons})$

 Γ_{12}/Γ_8

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts $R_b = 0.21581$ for $m_t = 174.3$ GeV and $M_H = 150$ GeV.

VALUE	DOCUMENT ID		TECN	COMMENT
0.21629±0.00066 OUR FIT				
$0.21594 \pm 0.00094 \pm 0.00075$	1 ABE	05F	SLD	<i>E^{ee}</i> =91.28 GeV
$0.2174 \ \pm 0.0015 \ \pm 0.0028$	² ACCIARRI	00	L3	<i>E^{ee}</i> _cm= 89–93 GeV
$0.2178 \ \pm 0.0011 \ \pm 0.0013$	³ ABBIENDI	99 B	OPAL	<i>E^{ee}</i> _cm= 88–94 GeV
$0.21634 \pm 0.00067 \pm 0.00060$	⁴ ABREU	99 B	DLPH	<i>E^{ee}</i> _cm= 88–94 GeV
$0.2159 \ \pm 0.0009 \ \pm 0.0011$	⁵ BARATE	97F	ALEP	<i>E</i> ^{<i>ee</i>} _{CM} = 88–94 GeV

Review of Particle Physics, PDG, 2022

as explained in the no	by a simultaneous ote "The Z boson"	and ref	f. LEF		Г(((uu+cc)/2)/Γ(hadrons) This quantity is the branchin ACKERSTAFF 97T the value extracted from measuremen	ig ratio of $Z \rightarrow$ "up es of $Z \rightarrow$ "up-type ts of Γ (hadrons), an	e"and nd Γ(2	$Z \rightarrow $ "d $Z \rightarrow \gamma$ -	lown-type" branchings are $+$ jets) where γ is a high-
The Standard Model	predicts $R_c = 0.172$	23 for <i>n</i>	$n_t =$	174.3 GeV and $M_{H} = 150$ GeV.		energy (>5 or 7 GeV) isola and slightly different values				
VALUE	DOCUMENT ID	<u> </u>	ECN	COMMENT		our average has to be taken			0	
0.1721 ±0.0030 OUR FIT					VAL	UE	DOCUMENT ID		TECN	COMMENT
$0.1744 \pm 0.0031 \pm 0.0021$	¹ ABE	05F SI	LD	<i>E^{ee}</i> _{Cm} =91.28 GeV		66±0.009 OUR AVERAGE				
$0.1665 \pm 0.0051 \pm 0.0081$	² ABREU	00 D	LPH	<i>E</i> ^{<i>ee</i>} _{CM} = 88–94 GeV	0.17	$72 \substack{+0.011 \\ -0.010}$	¹ ABBIENDI	04E	OPAL	$E_{ m CM}^{ee}=$ 91.2 GeV
0.1698 ± 0.0069	³ BARATE	00в А	LEP	<i>E</i> ^{<i>ee</i>} _{CM} = 88–94 GeV	0.16	$50 \pm 0.019 \pm 0.019$	² ACKERSTAFF	97⊤	OPAL	<i>E^{ee}</i> _{cm} = 88–94 GeV
$0.180\ \pm 0.011\ \pm 0.013$	⁴ ACKERSTAFF			<i>E</i> ^{<i>ee</i>} _{Cm} = 88–94 GeV	0.13	$37 \substack{+0.038 \\ -0.054}$	³ ABREU	95×	DLPH	$E_{\rm CM}^{ee}$ = 88–94 GeV
$0.167\ \pm 0.011\ \pm 0.012$	⁵ ALEXANDER	96r O	PAL	<i>E</i> ^{<i>ee</i>} _{Cm} = 88–94 GeV		= 0.034 37 ± 0.033		93		$E_{\rm cm}^{ee} = 91.2 {\rm GeV}$

Future e^+e^- colliders operating at the Z-pole would be a perfect place to measure the couplings.

CEPC

ILC

FCC-ee

Source	$e^-e^+ ightarrow car{c}$				$e^-e^+ ightarrow bar{b}$				
	$P_{e^-e^+}(-0)$	(-8, +0.3)	$P_{e^{-}e^{+}}(+$	$P_{e^-e^+}(+0.8,-0.3)$		$P_{e^-e^+}(-0.8,+0.3)$		-0.8, -0.3)	
	R_c	$A^{car{c}}_{FB}$	R_c	$A_{FB}^{car{c}}$	R_b	$A_{FB}^{bar{b}}$	R_b	$A_{FB}^{bar{b}}$	
Statistics	0.18%	0.38%	0.27%	0.52%	0.12%	0.24%	0.23%	0.70%	
Preselection eff.	<0.01%	0.12%	0.02%	0.16%	<0.01%	0.08%	0.06%	0.12%	
Background	0.01%	0.01%	0.02%	0.02%	0.01%	0.01%	0.06%	<0.01%	
heavy quark mistag	0.11%	<0.01%	0.06%	<0.01%	0.12%	<0.01%	0.22%	<0.01%	
uds mistag	0.03%	<0.01%	0.02%	<0.01%	0.08%	<0.01%	0.14%	<0.01%	
Angular correlations	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	
Beam Polarisation	<0.01%	<0.01%	0.02%	0.01%	<0.01%	0.01%	0.03%	0.15%	
Systematics	0.15%	0.16%	0.12%	0.19%	0.18%	0.13%	0.29%	0.22%	
Total	0.24%	0.41%	0.30%	0.55%	0.21%	0.27%	0.37%	0.73%	

A. Irles et al., [2306.11413]

The cross sections to heavy quarks could be well constrained at LC250 thanks to excellent flavour-tagging.

But how to take the measurement if...

tagging is imperfect (s quark)?
tagging is unavailable (u, d quarks)?

Outline

- 1. How to measure Z couplings to light quarks?
- 2. How to generate Monte Carlo events?
- 3. How to analyse events?

How to measure Z couplings to light quarks?

General idea

We want to measure quark couplings:

$$c_f = v_f^2 + a_f^2$$

They are given in the SM by:

$$v_f = 2I_{3,f} - 4Q_f \sin^2 \theta_W \quad a_f = 2I_{3,f}$$

 Γ_{had} scales as:

$$\Gamma_{had} \sim \sum_{q} c_{q}$$

and $\Gamma_{had+\gamma}$ as:

$$\Gamma_{had+\gamma} \sim \sum_{q} c_q Q_q^2$$

Resolution parameter q^{T}

- By measuring the radiative and nonradiative decays, one can disentangle c_q. The definition of a *radiative* event is crucial.
- The photon resolution criterion may depend on an arbitrarily chosen isolation parameter, e.g. the photon transverse momentum w.r.t. the jet direction, q^T:

$$q^T = E_\gamma \sin(\theta_{j\gamma})$$

`K	22	_	
qT	2 ⁰		

1. Count 2-jet events (n_j) and 2-jet events with a tagged photon $(n_{\gamma j})$. We consider 4 tags: "light", *s*, *c* and *b*. j = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...

- 1. Count 2-jet events (n_j) and 2-jet events with a tagged photon $(n_{\gamma j})$. We consider 4 tags: "light", *s*, *c* and *b*. j = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...
- 2. Compare to the expected numbers of events:

 $N_j = (exp. acceptance) \cdot (class. prob.) \cdot (lumi.) \cdot \sigma_q \equiv A_{jq} \cdot \sigma_q$

$$N_{\gamma j} = B_{jq}^{\gamma}(y_{cut}) \cdot \sigma_{\gamma q} + B_{jq}^{0}(y_{cut}) \cdot \sigma_{0q} \equiv B_{jq} \cdot \sigma_{q}$$
[2310.03440]

- 1. Count 2-jet events (n_j) and 2-jet events with a tagged photon $(n_{\gamma j})$. We consider 4 tags: "light", *s*, *c* and *b*. j = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...
- 2. Compare to the expected numbers of events:

 $N_j = (exp. acceptance) \cdot (class. prob.) \cdot (lumi.) \cdot \sigma_q \equiv A_{jq} \cdot \sigma_q$

$$N_{\gamma j} = B_{jq}^{\gamma}(y_{cut}) \cdot \sigma_{\gamma q} + B_{jq}^{0}(y_{cut}) \cdot \sigma_{0q} \equiv B_{jq} \cdot \sigma_{q}$$

[2310.03440]

3. Minimise the χ^2 distribution to extract the cross sections:

$$\chi^2 = \sum_j \frac{(n_j - N_j)^2}{N_j} + \sum_j \frac{(n_{\gamma j} - N_{\gamma j})^2}{N_{\gamma j}}$$

- 1. Count 2-jet events (n_j) and 2-jet events with a tagged photon $(n_{\gamma j})$. We consider 4 tags: "light", *s*, *c* and *b*. j = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...
- 2. Compare to the expected numbers of events:

 $N_j = (exp. acceptance) \cdot (class. prob.) \cdot (lumi.) \cdot \sigma_q \equiv A_{jq} \cdot \sigma_q$

$$N_{\gamma j} = B_{jq}^{\gamma}(y_{cut}) \cdot \sigma_{\gamma q} + B_{jq}^{0}(y_{cut}) \cdot \sigma_{0q} \equiv B_{jq} \cdot \sigma_{q}$$

[2310.03440]

3. Minimise the χ^2 distribution to extract the cross sections:

$$\chi^2 = \sum_j \frac{(n_j - N_j)^2}{N_j} + \sum_j \frac{(n_{\gamma j} - N_{\gamma j})^2}{N_{\gamma j}}$$

Systematic uncertainties can also be included:

$$\chi^{2}(\vec{\delta}) = \sum_{j} \frac{(n_{j} - N_{j}(\vec{\delta}))^{2}}{n_{j}} + \sum_{j} \frac{(n_{\gamma j} - N_{\gamma j}(\vec{\delta}))^{2}}{n_{\gamma j}} + \sum_{k} \delta_{k}^{2} + \sum_{q} 2\lambda_{q} w_{q}(\vec{\delta})$$
¹⁵

How to generate Monte Carlo events?

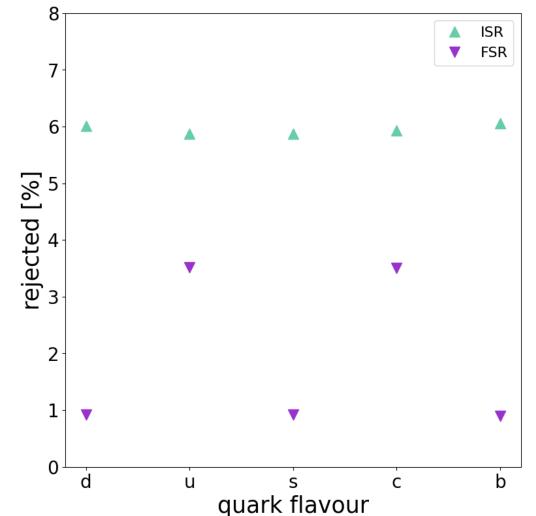
Analysis setup

We want to consider:

$$e^+e^-
ightarrow qar{q}(\gamma)$$
 .

Experimentally measured photons can originate not only from the Final State Radiation but also from the Initial State Radiation, hadronisation and decays...

One may encounter the following issues:


- Matrix Element calculations divergent or very slow for low photon-emission angles;
- ISR structure functions good for low angles, a proper matching procedure needed;
- FSR showers important for QCD emissions, may cause double-counting;
- hadron decays photons to be included properly.

Matching procedure – Whizard perspective

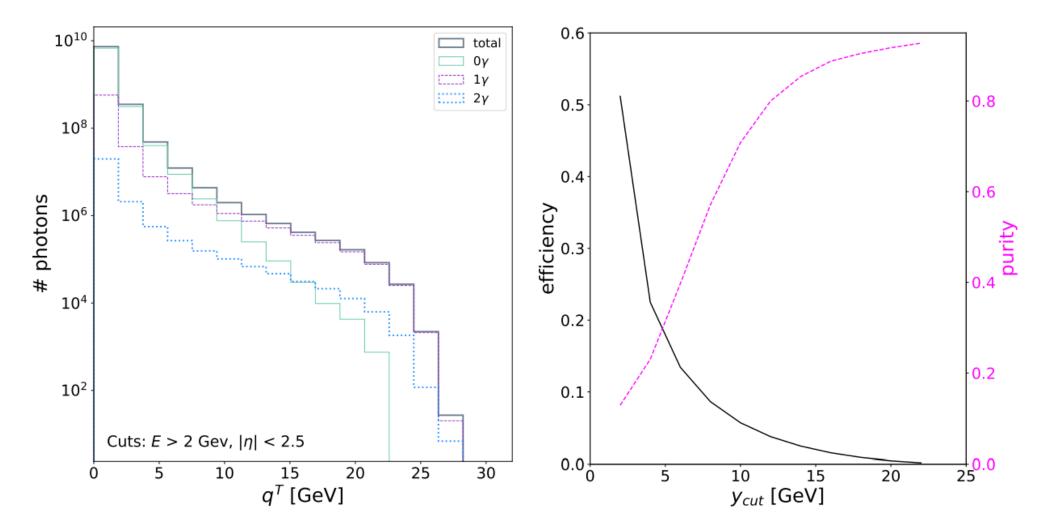
- <u>matching</u>: *soft* physics invisible in the detector, *hard* physics properly reconstructed
- soft ISR photons simulated using built-in structure functions
- soft FSR photons simulated using parton showers
- hard photons simulated using full ME calculations
 (0, 1, 2... ME γ samples)
- \rightarrow momentum transfer and energy to define the soft and hard regimes

Efficiency of the matching procedure

About 7-8% of Whizard events are rejected to avoid double-counting.

How to analyse events?

Event reconstruction

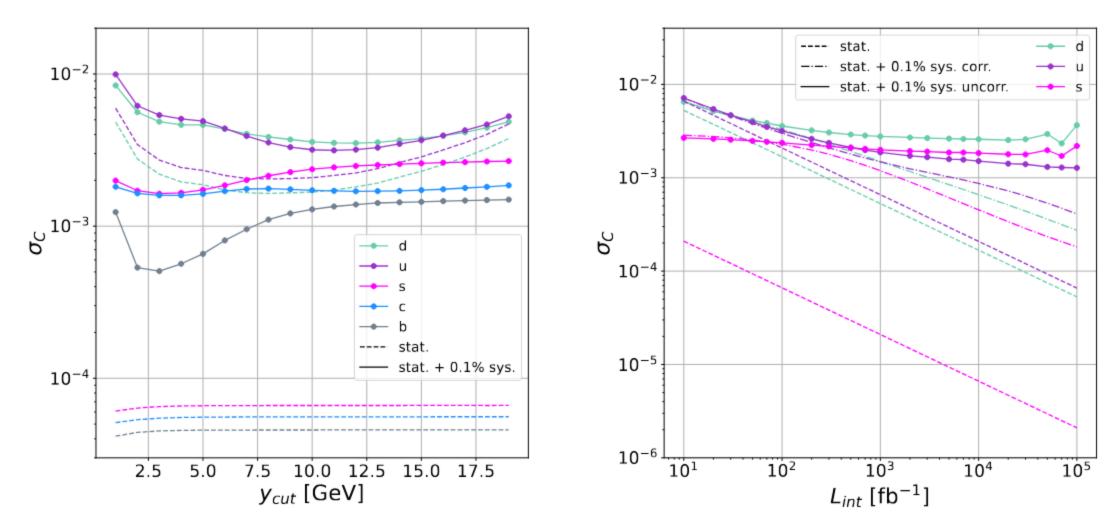

Measurable photons can originate from:

- Initial State Radiation,
- Final State Radiation,
- hadronisation and decays.

The interesting information comes only from FSR so the reconstruction criteria should reduce the other contributions.

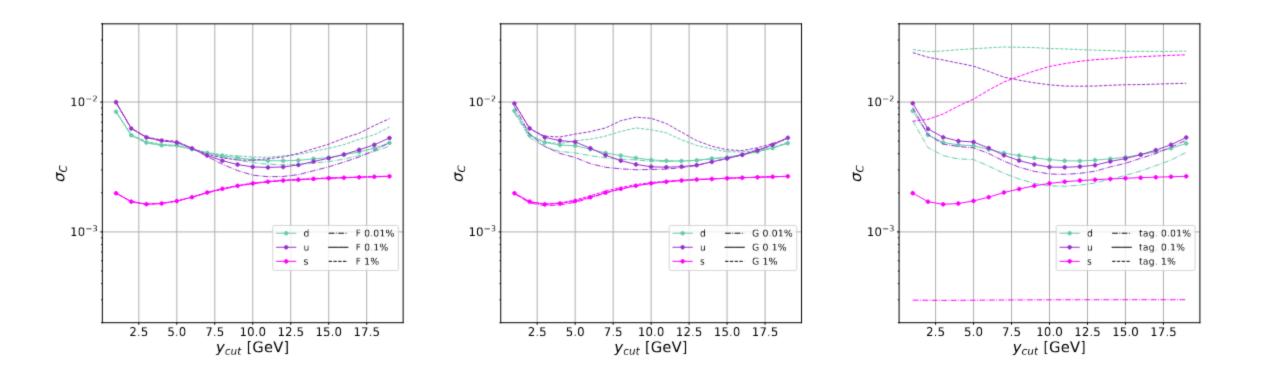
A dedicated approach is <u>crucial</u>. To detach from the standard convention, we cluster all photons into jets and then consider EFLow photon objects (Delphes-level study).

Photon kinematics – transverse momentum


ILD as reference detector design 22

Systematic uncertainties

The optimal isolation parameter can only be found if systematic uncertainties are included.

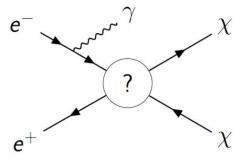

Uncertainty	[%]		
integrated luminosity (relative)	0.01		
radiative event selection efficiency F (relative)			
background to the radiative sample due to photons coming from hadronisation G (relative)	0.01-1		
tagging uncertainties			

Results – 5-flavour decomposition

assuming int. lumi of 100 fb⁻¹

Results – syst. uncertainties

assuming int. lumi of 100 fb⁻¹


Conclusions

- The couplings of the Z boson to light quarks are weakly constrained but a significant improvement could be achieved at future colliders.
- Proper assessment of the uncertainties requires deep understanding of theoretical calculations, event simulation and reconstruction.
- Tagging uncertainty is a crucial factor in the study.
- Prospects for 100 fb⁻¹: sub-percent precision for d and u, sub-permille precision for b if tagging uncertainty ~ 0.1%.

Backup

Starting point

Some part of the work has already been done...

Simulating hard photon production with WHIZARD

J. Kalinowski et al., [2004.14486]

General idea:

- soft ISR photons simulated using the built-in structure function
- hard ISR photons simulated at the ME level
- matching in q_{\pm} :

$$q_{-} = \sqrt{4E_0E_\gamma}\sinrac{ heta_\gamma}{2}$$
 $q_{+} = \sqrt{4E_0E_\gamma}\cosrac{ heta_\gamma}{2}$

Matching procedure

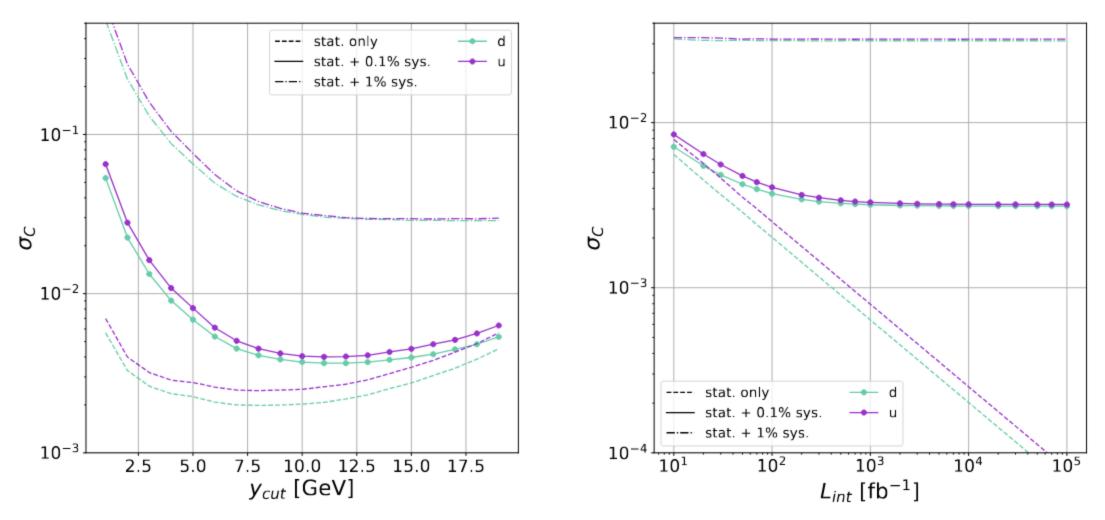
Simulating events with Whizard and Pythia6 (shower and hadronisation)

- ME cuts:
 - \circ **all** γ 's:

 q_{\pm} > 0.5 GeV and E > 0.5 GeV and $M(\gamma, q_i)$ > 1 GeV

• event selection:

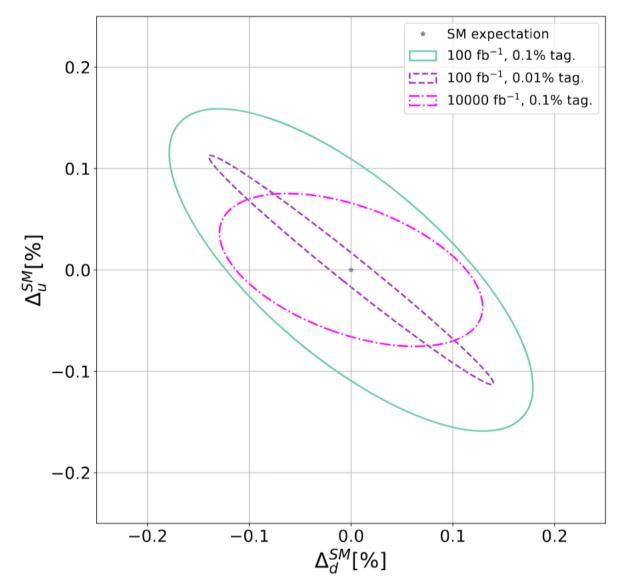
```
\circ all ISR SF \gamma's:
```


 $q_{\pm} < 0.5 \text{ GeV} \text{ or } E < 0.5 \text{ GeV} \text{ or } M(\gamma, q_{i}) < 1 \text{ GeV}$

 \circ **all** FSR shower γ 's whose parents are initial quarks:

 q_{\pm} < 0.5 GeV <u>or</u> *E* < 0.5 GeV <u>or</u> *M*(γ , q_{i}) < 1 GeV

Note: a single quark can emit multiple photons.


Results – 2 flavours only

assuming int. lumi of 100 fb⁻¹

Fit correlations

int. lumi of 100 fb⁻¹

