## Studies of $B_c^+$ mesons at LHCb

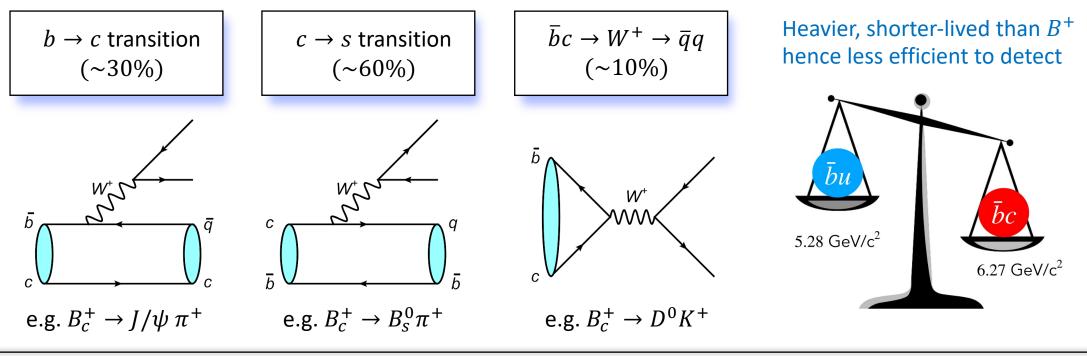
Yuhao Wang

on behalf of the LHCb collaboration

**Peking University** 

@ EPS-HEP, Marseille

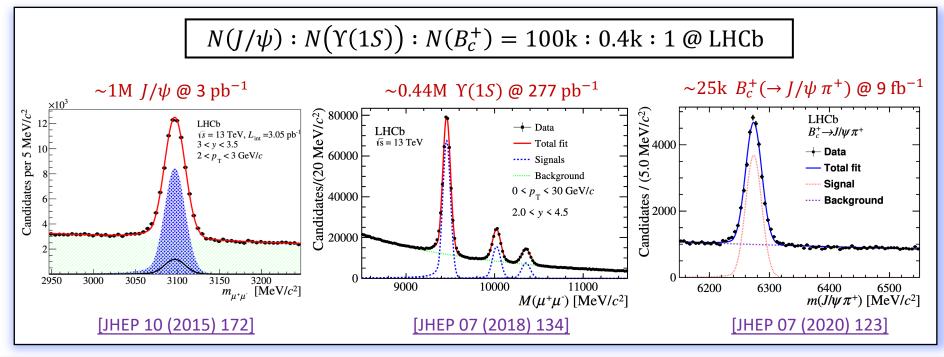
July 11, 2025








## $B_c^+$ meson

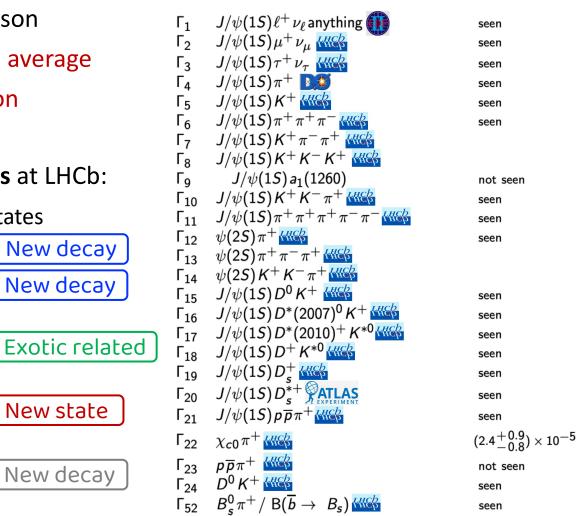

- Heavy quarkonium: ideal system to probe QCD both theoretically and experimentally
- The  $B_c^+$  meson: only ground-state meson composed of two different heavy quarks ( $\overline{b}c$ )
  - ✓ Opportunity: unique features to extract information on both QCD dynamics and weak interactions
    - $\Rightarrow$  the heaviest among known meson (~6.27 GeV), decay time (~0.5 ps) three times shorter than  $B^+$
    - $\Rightarrow$  rich decay modes through weak interaction



## $B_c^+$ meson

• The  $B_c^+$  meson: only ground-state meson composed of two different heavy quarks ( $\overline{b}c$ )

- ✓ Opportunity: unique features to extract information on both QCD dynamics and weak interactions
- X Challenge: limited knowledge in experimental study
  - $\Rightarrow$  unreachable in current  $e^+e^-$  colliders
  - $\Rightarrow$  suppressed in hadron colliders as it requires simultaneous  $\bar{c}c$  and  $\bar{b}b$  pair production



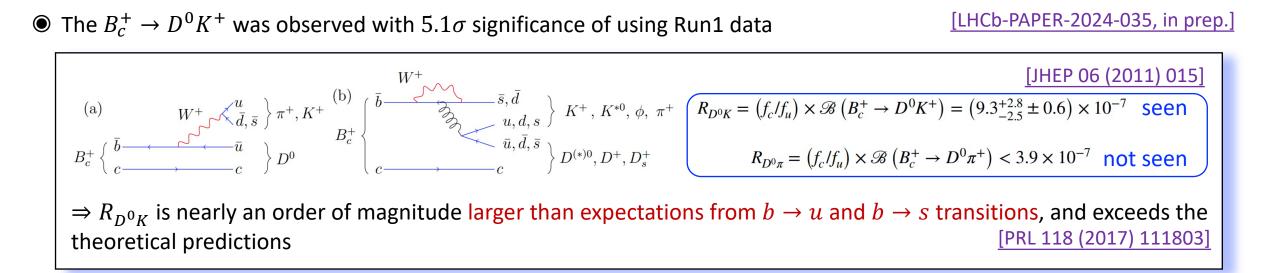

## Studies of $B_c^+$ mesons at LHCb

New state

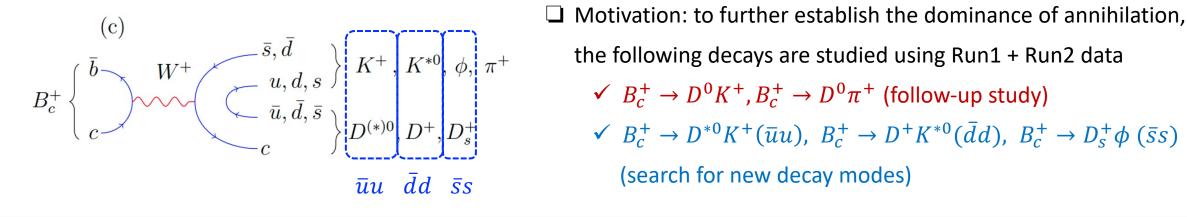
• The LHCb plays a leading role in the study of the  $B_c^+$  meson

- $\checkmark$  Mass, lifetime measurements  $\rightarrow$  dominating world average
- ✓ Various studies of new decay modes and production
- This talk will focus on the **recent progress on**  $B_c^+$  **studies** at LHCb:
  - $\bigcirc$  New measurement of  $B_c^+$  decays into single charm final states New decay [LHCb-PAPER-2024-035, in prep.]
  - Observation of  $B_c^+ \rightarrow Dh^+h^-$  decays [LHCb-PAPER-2025-028, in prep.]
  - Search for  $B_c^+ \rightarrow \chi_{c1}(3872)\pi^+$  decay [JHEP 06 (2025) 013]
  - $\bigcirc$  Observation of the orbitally excited  $B_c^+$  states [arXiv:2507.02149] [arXiv:2507.02142]
  - $\bigcirc$  Observation of  $B_c^+ \rightarrow J/\psi \pi^+ \pi^0$  decay [Not discussed] New decay [JHEP 04 (2024) 151]





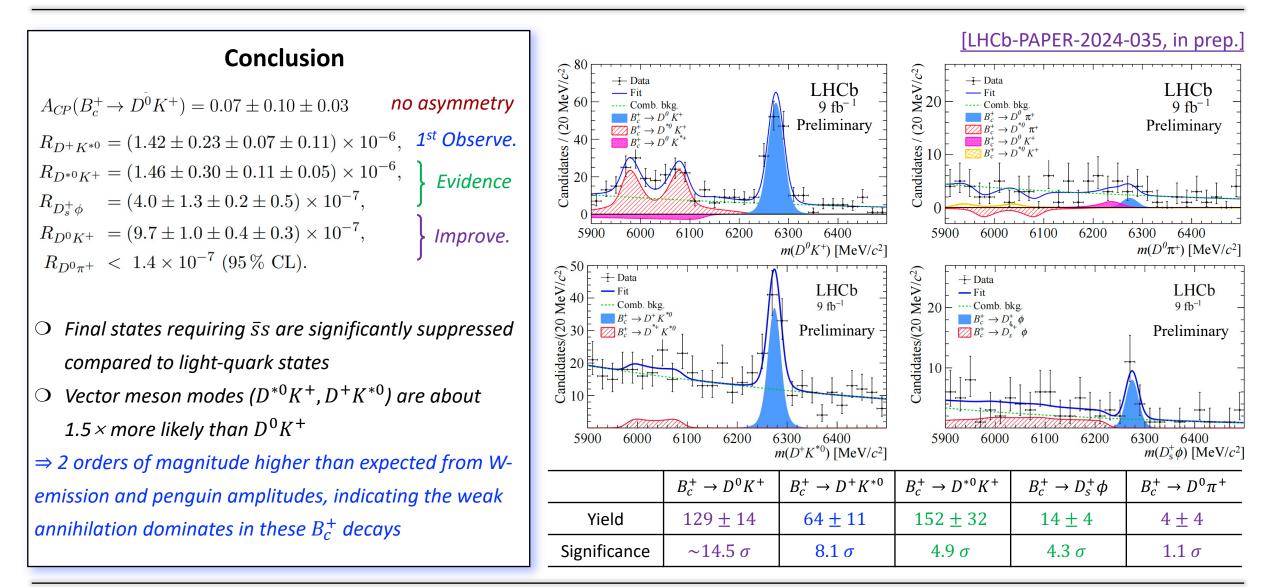

### New measurement of $B_c^+$ decays into single charm final states


[LHCb-PAPER-2024-035, in prep.]

Preliminary

## New measurement of $B_c^+ \rightarrow DX$ decays




• The measurement suggests a dominance of weak annihilation over  $b \rightarrow u$  transition



Motivation: to further establish the dominance of annihilation,

- (search for new decay modes)

### New measurement of $B_c^+ \rightarrow DX$ decays

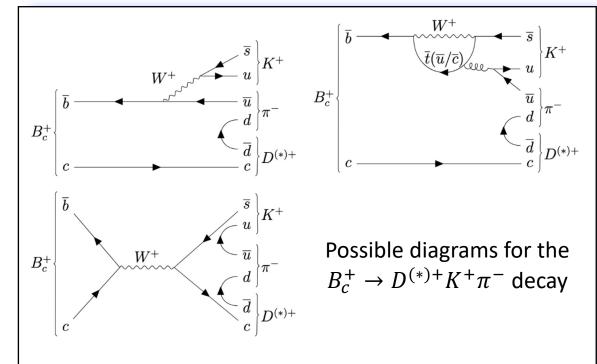




### **Observation of** $B_c^+ \rightarrow Dh^+ h^-$ **decays**

[LHCb-PAPER-2025-028, in prep.]

Preliminary


## **Observation of** $B_c^+ \rightarrow Dh^+ h^-$ decays

• Complementary to the analysis of previous  $B_c^+ \rightarrow DX$  decays

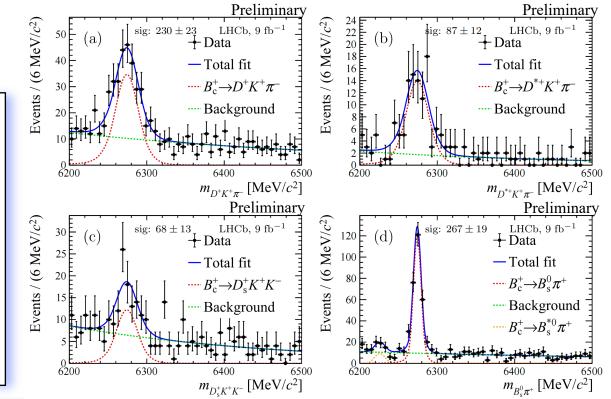
[LHCb-PAPER-2025-028, in prep.]

- **X** Comparing to  $B_c^+ \rightarrow DX$  decays, the three-body decays are theoretically challenging to predict
- ✓ Experimentally, this study serves as a pathfinder for future CPV studies via new decay mode searches
- Aim to measure the BFs of  $B_c^+ \to D^+ K^+ \pi^-$ ,  $B_c^+ \to D^{*+} K^+ \pi^-$ ,  $B_c^+ \to D_s^+ K^+ K^-$
- Outries  $B_c^+ \to B_s^0 \pi^+$  as the normalization channel

   The BF ratios are measured using Run1+Run2 data
    $\frac{\mathcal{B}(B_c^+ \to Dh^+h^-)}{\mathcal{B}(B_c^+ \to B_s^0\pi^+)} = \frac{N_{B_c^+ \to Dh^+h^-}}{N_{B_c^+ \to B_s^0\pi^+}} \cdot \frac{\varepsilon_{B_c^+ \to B_s^0\pi^+}}{\varepsilon_{B_c^+ \to Dh^+h^-}} \cdot \frac{\mathcal{B}(B_s^0)}{\mathcal{B}(D_{(s)}^{(*)+})}$  Signal yield Estimated from BF rom pDG
    $B_c^+$

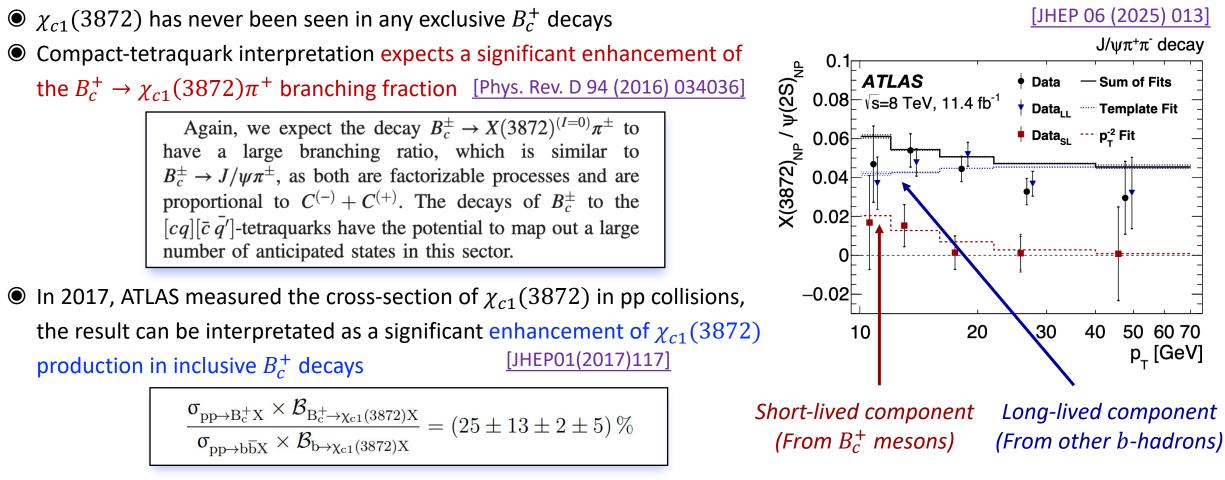


## **Observation of** $B_c^+ \rightarrow Dh^+ h^-$ decays


• Complementary to the analysis of previous  $B_c^+ \rightarrow DX$  decays

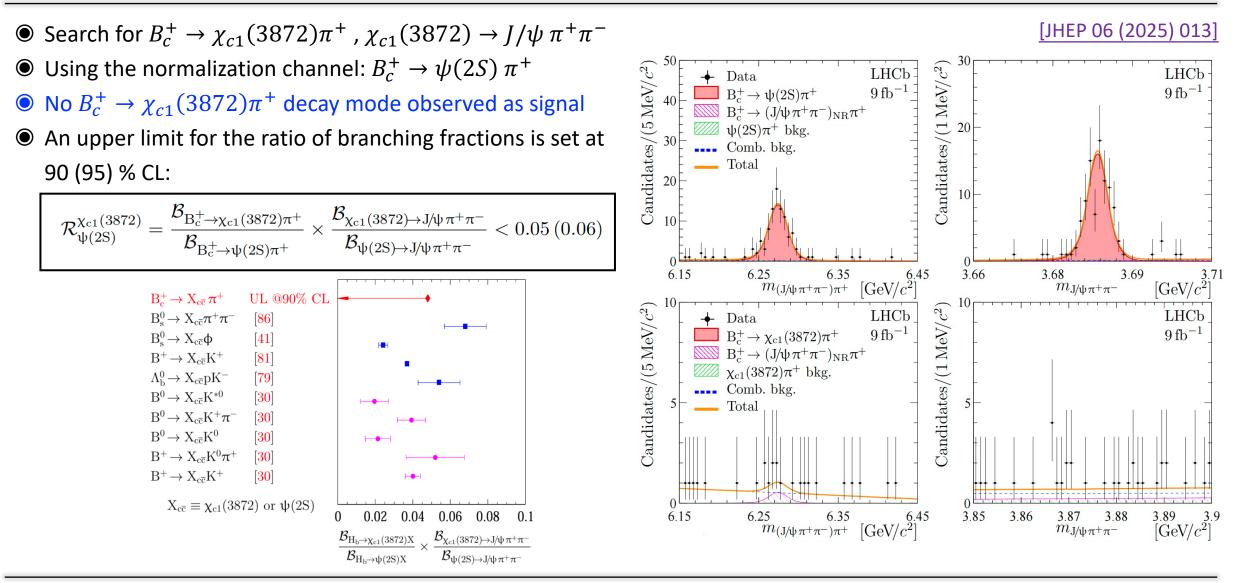
#### [LHCb-PAPER-2025-028, in prep.]

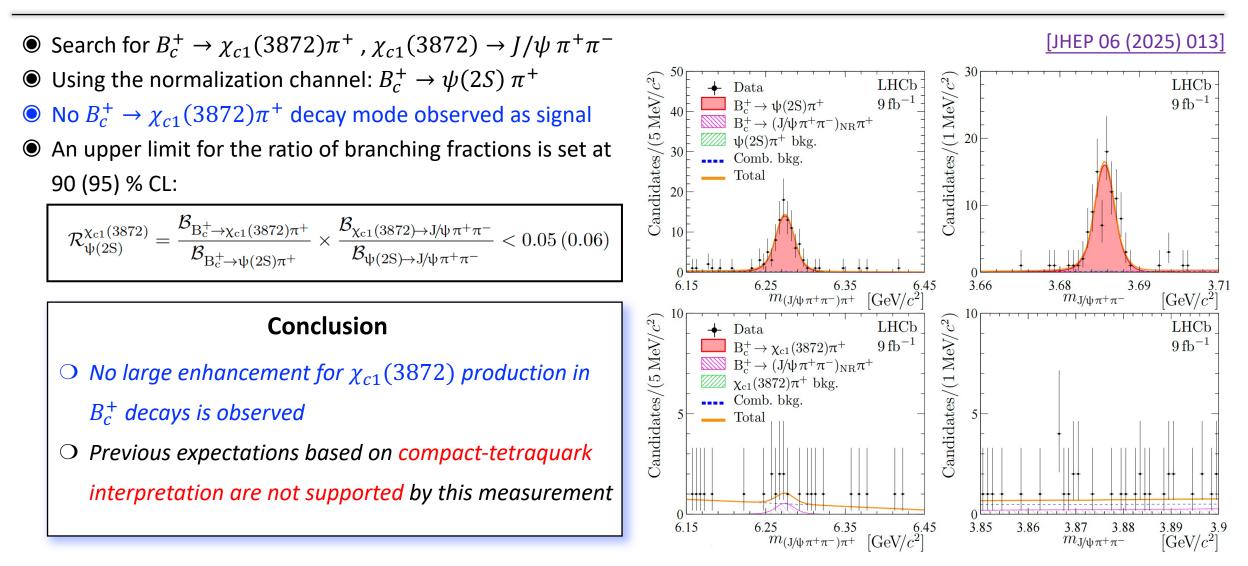
- **X** Comparing to  $B_c^+ \rightarrow DX$  decays, the three-body decays are theoretically challenging to predict
- ✓ Experimentally, this study serves as a pathfinder for future CPV studies via new decay mode searches
- Aim to measure the BFs of  $B_c^+ \to D^+ K^+ \pi^-$ ,  $B_c^+ \to D^{*+} K^+ \pi^-$ ,  $B_c^+ \to D_s^+ K^+ K^-$
- Using  $B_c^+ \rightarrow B_s^0 \pi^+$  as the normalization channel
- The BF ratios are measured using Run1+Run2 data


### Conclusion

- All three decay modes are observed with significance above  $5\sigma \rightarrow 1^{st}$  Observation
  - $\mathcal{R}(B_c^+ \to D^+ K^+ \pi^-) = (1.96 \pm 0.23 \pm 0.08 \pm 0.10) \times 10^{-3}$  $\mathcal{R}(B_c^+ \to D^{*+} K^+ \pi^-) = (3.67 \pm 0.55 \pm 0.24 \pm 0.20) \times 10^{-3}$  $\mathcal{R}(B_c^+ \to D_s^+ K^+ K^-) = (1.61 \pm 0.35 \pm 0.13 \pm 0.07) \times 10^{-3}$
- Using  $BF(B_c^+ \rightarrow B_s^0 \pi^+) \sim 16.4 \%$ , the study gives the absolute BFs  $\sim 10^{-4}$  [arXiv:hep-ph/0211021]







[JHEP 06 (2025) 013]



## $\Rightarrow$ aim to provide additional experimental input and impose constraints on theoretical models

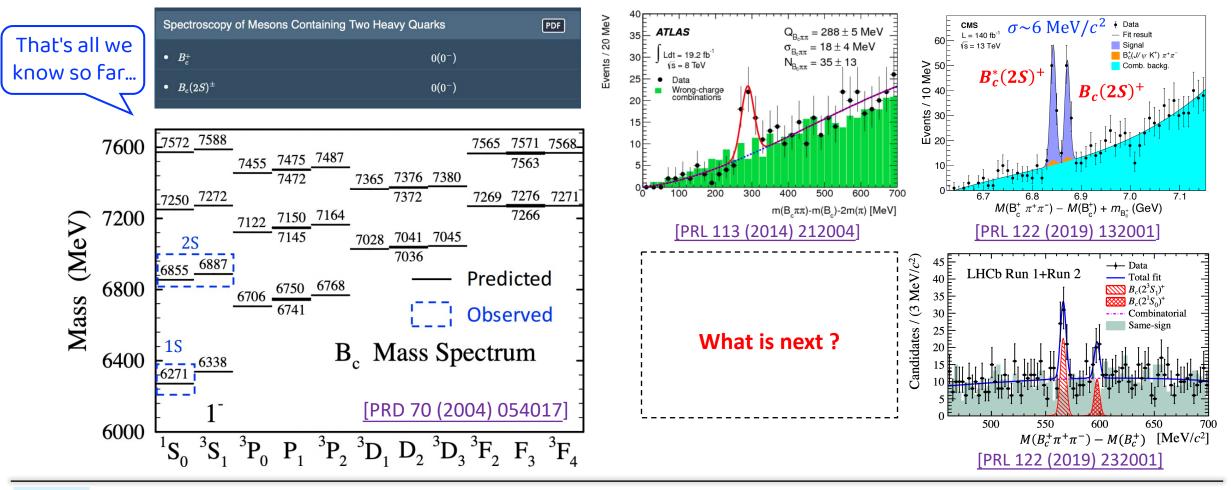








[arXiv:2507.02149]


[arXiv:2507.02142]

## A brief history: expanding the $B_c^+$ meson family

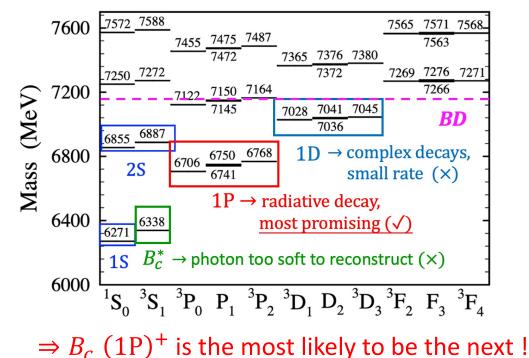
#### [arXiv:2507.02149] [arXiv:2507.02142]

• In 1998, the  $B_c^+$  meson was discovered at the Tevatron

• Despite its ground state, only the 2S states have been observed at the LHC in 2014 and 2019



### A brief history: expanding the $B_c^+$ meson family

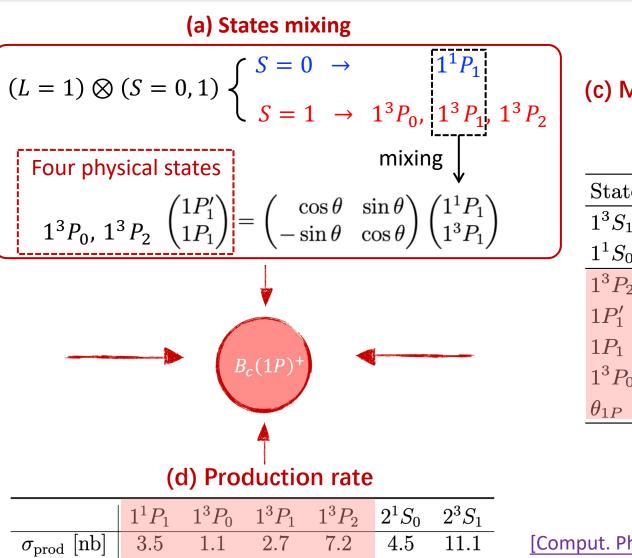

• In 1998, the  $B_c^+$  meson was discovered at the Tevatron

• Despite its ground state, only the 2S states have been observed at the LHC in 2014 and 2019

• What is next ?  $\Rightarrow$  Check the predicted properties of  $B_c^+$  excitations [PRD 70 (2004) 054017]

 $\square$   $M(B_c^{**})$  above the BD threshold :  $B_c^{**} \rightarrow BD$ 

 $\square$   $M(B_c^{**})$  below the BD threshold : radiative and pionic decay to  $B_c^+$ 




## $B_c(1P)^+$ in theory

#### (b) Decay branching fraction

|              | $B_{c}(1P)^{+}$ – | $\rightarrow B_c^{(*)+} \gamma$ |      |
|--------------|-------------------|---------------------------------|------|
| Initial      | Final             | Width                           | B.F. |
| state        | state             | $(\mathrm{keV})$                | (%)  |
| $1^{3}S_{1}$ | $1^1S_0$          | 0.08                            | 100  |
| $1^{3}P_{2}$ | $1^3S_1$          | 83                              | 100  |
| $1P_1'$      | $1^3S_1$          | 11                              | 12.1 |
|              | $1^1S_0$          | 80                              | 87.9 |
|              | Total             | 91                              | 100  |
| $1P_1$       | $1^3S_1$          | 60                              | 82.2 |
|              | $1^1S_0$          | 13                              | 17.8 |
|              | Total             | 73                              | 100  |
| $1^{3}P_{0}$ | $1^3S_1$          | 55                              | 100  |

### \* $\Gamma \sim O(100 \text{ KeV})$ negligible comparing to resolution



#### (c) Masses and mixing angle

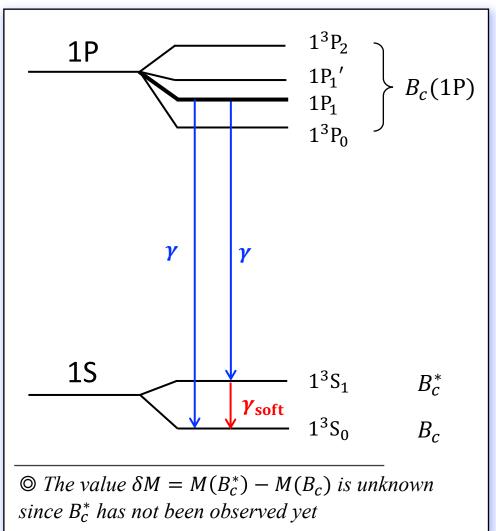
 $M \in (6.68, 6.80) \text{ GeV}$ 

| State         | GI[ <u>6</u> ] | EFG [12]       | FUII [ <u>10</u> ] |
|---------------|----------------|----------------|--------------------|
| $1^{3}S_{1}$  | 6338           | 6332           | 6341               |
| $1^1S_0$      | 6271           | 6270           | 6286               |
| $1^{3}P_{2}$  | 6768           | 6762           | 6772               |
| $1P_1'$       | 6750           | 6749           | 6760               |
| $1P_1$        | 6741           | 6734           | 6737               |
| $1^{3}P_{0}$  | 6706           | 6699           | 6701               |
| $\theta_{1P}$ | $22.4^{\circ}$ | $20.4^{\circ}$ | $28.5^{\circ}$     |

#### [PRD 70 (2004) 054017] [Comput. Phys. Commun. 197 (2015) 335]

# $B_c(1P)^+$ in experiment

• The mass shift due to the unreconstructed  $\gamma_{soft}$  from  $B_c^*$ • Spin singlet  $1^1P_1$  fully decay to  $B_c\gamma$ :  $M_{reco} = M(B_c\gamma)$ • Spin triplet  $1^3P_{1,2,3}$  transition to  $B_c^*(1^3S_1)$  and then to  $B_c\gamma$  $M_{reco} = M(B_c\gamma) - \delta M$ 

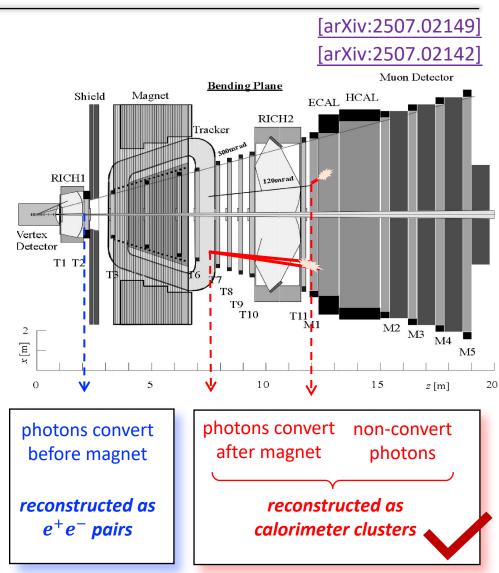

 $\Rightarrow$  triplet-derived mass peaks will shift downward by  $\delta M$ 

• Recall that the  $1P'_1$ ,  $1P_1$  are mixtures of  $1^1P_1$ ,  $1^3P_1$  states

| States | $1^{3}P_{0}$                      | 1 <i>P</i> <sub>1</sub>                               | $1P'_{1}$                                             | 1 <sup>3</sup> P <sub>2</sub>     |
|--------|-----------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Decays | $B_c^{*+}(\to B_c^+\gamma)\gamma$ | $\frac{B_c^+\gamma}{B_c^{*+}(\to B_c^+\gamma)\gamma}$ | $\frac{B_c^+\gamma}{B_c^{*+}(\to B_c^+\gamma)\gamma}$ | $B_c^{*+}(\to B_c^+\gamma)\gamma$ |
| #peaks | 1                                 | 2                                                     | 2                                                     | 1                                 |

**Four states**  $\Rightarrow$  **Six peaks** 

 $\Rightarrow M(B_c\gamma)_{reco} - M(B_c)$  is predicted within (340, 520) MeV



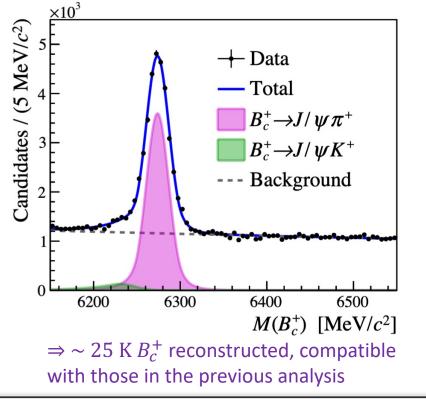

### Analysis overview

- **a** Run1 + Run2 dataset at LHCb corresponding to 9  $fb^{-1}$
- $\Box$   $B_c(1P)^+$  reconstruction
  - $\checkmark \quad B_c(1P)^+ \to B_c^+ \gamma \text{ with } B_c^+ \to J/\psi \pi^+, \ J/\psi \to \mu^+ \mu^-$
  - ✓ Calorimeter photon used (worse resolution, larger statistics)
- $\Box$   $B_c(1P)^+$  selection
  - ✓ BDT classifier used to maximize  $S/\sqrt{S+B}$  for  $B_c^+$  candidates
  - ✓ Cut-based selection performed in signal decay mode
- □ Simulation
  - ✓ BcVegPy is employed to produce  $B_c(1P)^+$  and  $B_c^+$  states
  - ✓ The photon energy is corrected using  $\chi_{c1}$  →  $J/\psi \gamma$  decay

 $\Rightarrow$  following the selection criterion in  $B_c(2S)^+$  measurement

[PRL 122 (2019) 232001]






• A pronounced wide peaking structure is seen within the predicted mass range!

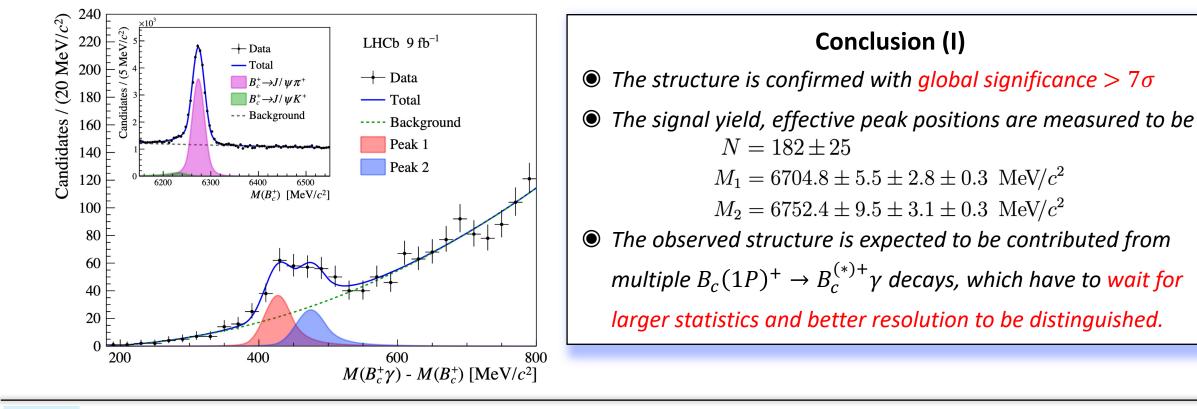
[arXiv:2507.02149] [arXiv:2507.02142]

- $\Box$  Distribution of  $B_c^+$  sideband ( (6340, 6550) MeV) is shown as comparison
- □ Structure is confirmed across different data-taking periods, magnet polarities, alternative selection criteria

• How to interpretate the observed structure ?  $\rightarrow$  theory-independent and theory-constraint interpretation!






 $\Rightarrow$  recall the predicted mass region is (340, 520) MeV

### Theory-independent interpretation

Yuhao Wang

[arXiv:2507.02149] [arXiv:2507.02142]

- $\Box$  The mass-resolution relation of  $B_c(1P)^+$  signal is studied using an ensemble of corrected simulation samples
- $\Box$  The visible width of the peaking structure is ~ 37 MeV, while the width of a single peak is determined to be
  - $\sim 20 \text{ MeV} \Rightarrow$  a minimal two-peak model is used to effectively describe the structure



### Theory-constrained interpretation

- Considering the possible presence of six peaks using Run2 data at  $\sqrt{s} = 13$  TeV
- □ For a given theoretical model, several properties constrained to predictions
  - $\checkmark$  Fix the position of each peak to the prediction
  - ✓ Fix the relative yields of six peaks, for  $N_i$

Different theoretical models were investigated

 $\Box$  The total signal yield of  $B_c(1P)^+$  can be extracted, with the relative production rate calculated

$$R = \frac{N(B_c(1P)^+ \to B_c^+ \gamma)}{N(B_c^+)} \cdot \frac{\varepsilon(B_c^+)}{\varepsilon(B_c(1P)^+ \to B_c^+ \gamma)}$$

 $N_i = L \cdot \sigma_{\text{prod},i} \cdot BR_i \cdot \varepsilon_i \longrightarrow$ 

 $\Rightarrow$  represent the fraction of  $B_c^+$  comes from  $B_c(1P)^+$ , predicted to be (0.17, 0.19) based on NRQCD-based prediction

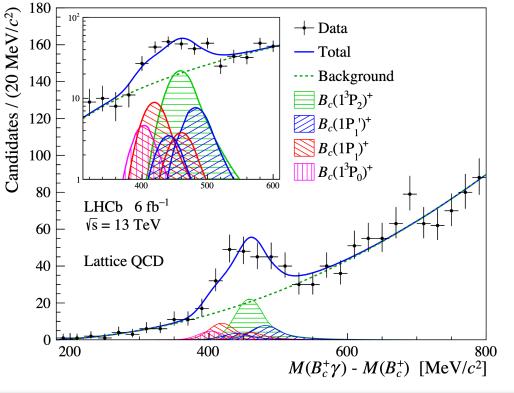


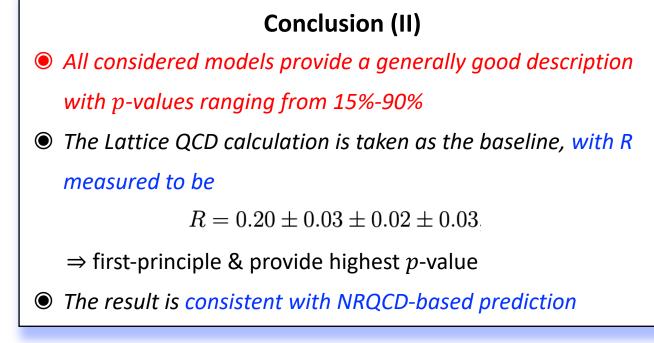
[arXiv:2507.02149] [arXiv:2507.02142]

calculated using BcVegPy generator

estimated with simulation

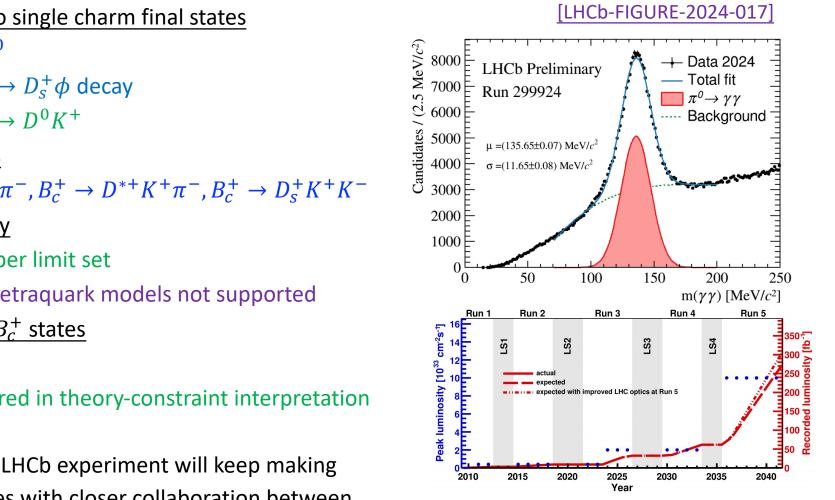
obtained from GI model with masses and mixing angle modified for each specific model


### Theory-constrained interpretation


Yuhao Wang

□ Considering the possible presence of six peaks with several properties constrained to predictions

Different theoretical models were investigated


 $\Box$  The total signal yield of  $B_c(1P)^+$  can be extracted, with the relative production rate calculated





[arXiv:2507.02149] [arXiv:2507.02142]

### Summary



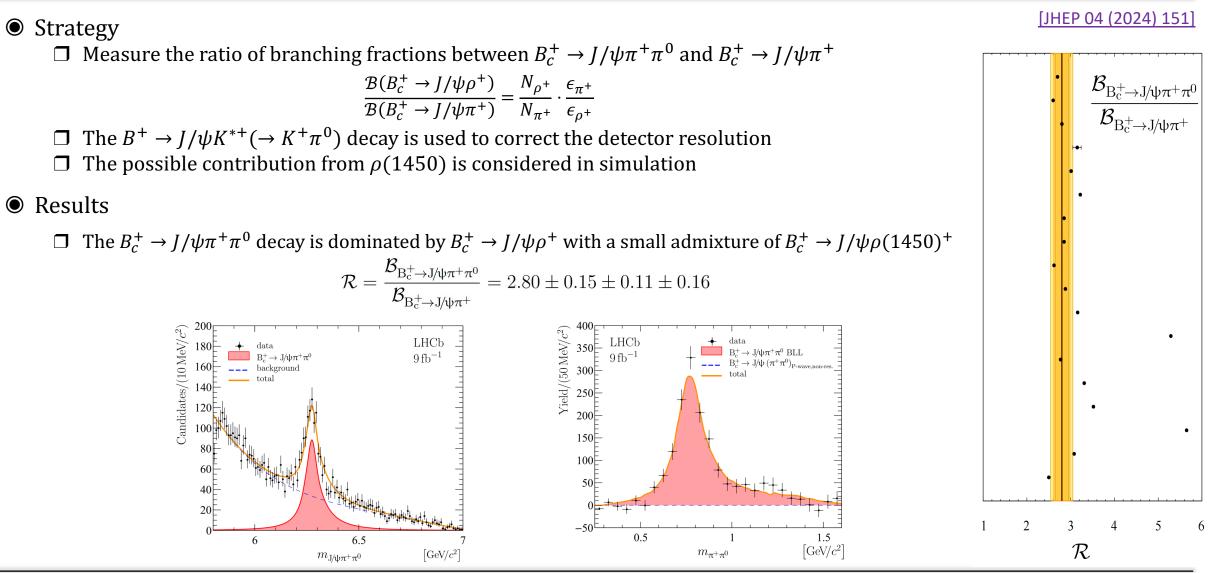
### Thanks a lot for your attention!

#### New measurement of $B_c^+$ decays into single charm final states $\bigcirc$

- ✓ New decay mode:  $B_c^+ \to D^+ K^{*0}$
- $\checkmark$  Evidence for  $B_c^+ \rightarrow D^{*0}K^+$ ,  $B_c^+ \rightarrow D_s^+\phi$  decay
- ✓ Improved measurement of  $B_c^+ \to D^0 K^+$
- Observation of  $B_c^+ \rightarrow Dh^+h^-$  decays
  - $\checkmark$  New decay mode:  $B_c^+ \rightarrow D^+ K^+ \pi^-, B_c^+ \rightarrow D^{*+} K^+ \pi^-, B_c^+ \rightarrow D_s^+ K^+ K^-$
- Search for  $B_c^+ \rightarrow \chi_{c1}(3872)\pi^+$  decay
  - ✓ No enhancement observed, upper limit set
  - Predictions based on compact-tetraquark models not supported
- Observation of the orbitally excited  $B_c^+$  states
  - ✓ New states observed:  $B_c(1P)^+$
  - Relative production rate measured in theory-constraint interpretation
- With more opportunity in Run3, the LHCb experiment will keep making  $\bigcirc$ important contributions to  $B_c^+$  studies with closer collaboration between theorists and experimentalists !

### Backup

# **Observation of** $B_c^+ \rightarrow J/\psi \pi^+ \pi^0$ **decay**


[JHEP 04 (2024) 151]

# **Observation of** $B_c^+ \rightarrow J/\psi \pi^+ \pi^0$ **decay**

| Motivation                                                                       |                                       |                                                                                  | [JHEP 04                          | <u>(2024</u> | <u>) 151]</u> |
|----------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|--------------|---------------|
| $\Box$ Tree-level $b \rightarrow c$ transition                                   | · · · · · · · · · · · · · · · · · · · | $\mathcal{P}$                                                                    | Likhoded&Luchinsky                | 2009         | 16            |
|                                                                                  | •                                     | $\mathcal{B}_{ m B^+_c ightarrow J\!/\psi\pi^+\pi^0}$                            | Likhoded&Luchinsky                | 2009         | 16            |
| Various prediction values                                                        |                                       | $\mathcal{B}_{ m B^+_c ightarrow  m J/\psi\pi^+}$                                | Likhoded&Luchinsky                | 2009         | 16            |
| $\Rightarrow$ spin-counting: $3 \times \mathcal{B}(B_c^+ \to J/\psi\pi^+)$       | ⊦●                                    | $\mathbf{D}_{\mathbf{C}}$ $\mathbf{D}_{\mathbf{V}}$ $\mathbf{\psi}$ $\mathbf{U}$ | Zhang                             | 2023         | 17            |
| Study the structure of intermediate states                                       | •                                     |                                                                                  | Liu<br>Chang&Chen                 | 2023<br>1992 | 18            |
|                                                                                  | .                                     | •                                                                                | Liu&Chao                          | 1992<br>1997 | 19<br>20      |
| $\Rightarrow$ potential tiny contribution from $\rho(1450)$ [PhysRevD.61.112002] | •                                     |                                                                                  | Colangelo&De Fazio                | 1997         | 20            |
|                                                                                  | •                                     |                                                                                  | Abd El-Hadi, Muniz&Vary           | 1999         | 22            |
|                                                                                  | •                                     |                                                                                  | Ebert,Faustov&Galkin              | 2003         | 23            |
|                                                                                  | •                                     |                                                                                  | Ivanov, Körner&Santorelli         | 2006         | 24            |
| $\overline{\mathrm{d}}$                                                          | •                                     | •                                                                                | Hernandez, Noeves, &Verde-Velasco | 2006         | 25            |
| $\pi^+, \rho^+, a_1^+,$                                                          | •                                     | -                                                                                | Naimuddin <i>et al.</i>           | 2012         | 26,27         |
|                                                                                  |                                       | •                                                                                | Qiao <i>et al.</i><br>Rui&Zou     | 2012 $2014$  | 28            |
| $\overline{\mathbf{b}}$ $\mathbb{W}^+ \mathbf{b}$ $\overline{\mathbf{a}}$        |                                       | •                                                                                | Issadykov&Ivanov                  | 2014         | 30            |
|                                                                                  |                                       | •                                                                                | Cheng <i>et al.</i>               | 2021         | 31            |
| $\rm B_c^+$ J/ $\psi$                                                            | •                                     |                                                                                  | Kiselev,Kovalsky&Likhoded         | 2000         | 32, 33        |
|                                                                                  | •                                     |                                                                                  | Wang,Shen&Lu                      | 2007         | 34            |
|                                                                                  |                                       | · · · · · · · · · · · · · · · · · · ·                                            |                                   |              |               |
|                                                                                  | 1 2 3<br>1                            | 4 5 6<br><b>D</b>                                                                |                                   |              |               |
| * Full RunI + RunII dataset: 9 fb <sup>-1</sup>                                  | J <sup>.</sup>                        | R                                                                                |                                   |              |               |



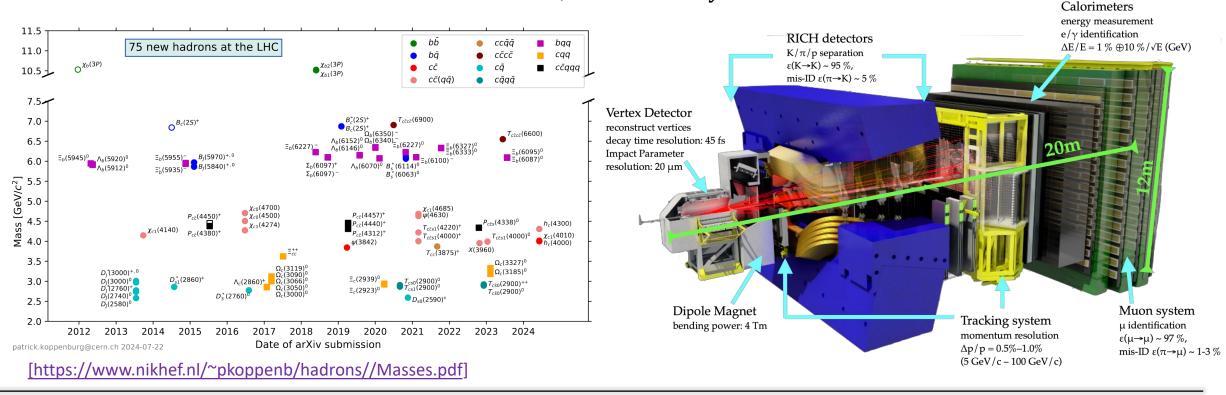
# Observation of $B_c^+ \rightarrow J/\psi \pi^+ \pi^0$ decay






### New measurement of $B_c^+ \rightarrow DX$ decays

• Five  $R_{DX}$  and one  $A_{CP}$  asymmetry are measured

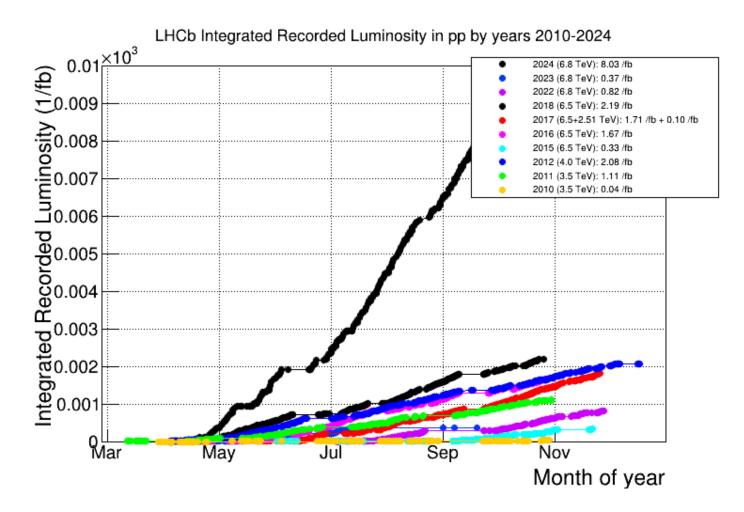

$$A_{CP}(B_c^+ \to D^0 K^+) = \frac{\mathcal{N}(B_c^+ \to D^0 K^+) - \mathcal{N}(B_c^- \to \overline{D}^0 K^-)}{\mathcal{N}(B_c^+ \to D^0 K^+) + \mathcal{N}(B_c^- \to \overline{D}^0 K^-)}$$

| Observable                                                  | Signal                                                                   | Norm                                                | alisation                                                                                     | Common $D$ mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{R_{D^+K^{*0}}}{R_{D_s^+\phi}}$                       | $B_c^+ \to D^+[K^+ \\ B_c^+ \to D_s^+[K^+]$                              |                                                     | $\rightarrow D^+[K^+\pi^-]_{\overline{D}^0}$ $\rightarrow D^+[K^+K^-]_{=0}$                   | $D^+ \to K^- \pi^+ \pi^+$ $D^+_s \to K^+ K^- \pi^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $R_{D^{*0}K^+} = R_{D^0K^+}$                                | $\begin{array}{c} B_c^+ \to D^{*0} K^+ \\ B_c^+ \to D^0 K^+ \end{array}$ | )                                                   | $\rightarrow D^0 \pi^-$                                                                       | $D_s^0 \to K^- \pi^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $R_{D^0\pi^+}$                                              | $B_c^+ \to D^0 \pi^+$                                                    | J                                                   |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $R_{D^0h^+} = \frac{\mathcal{N}(x)}{\mathcal{N}(x)}$        | $\frac{B_c^+ \to D^0 h^+)}{B^+ \to \overline{D}{}^0 \pi^+)}$             | $\cdot \mathcal{B}(B^+ \to \overline{D}{}^0 \pi^+)$ | $\cdot \frac{\varepsilon(B^+ \to \overline{D}{}^0 \pi^+)}{\varepsilon(B_c^+ \to D^0 h^+)}$    | $h,  h \in \{K, \pi\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $R_{D^{*0}K^+} = \frac{\mathcal{N}(A)}{\mathcal{N}}$        | $\frac{B_c^+ \to D^{*0} K^+)}{(B^+ \to \overline{D}{}^0 \pi^+)}$         | $\cdot \mathcal{B}(B^+ \to \overline{D}{}^0 \pi^+)$ | $\cdot \frac{\varepsilon(B^+ \to \overline{D}{}^0 \pi^+)}{\varepsilon(B^+_c \to D^{*0} K^+)}$ | $\frac{)}{+)}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $R_{D^+K^{*0}} = \frac{\mathcal{N}(A)}{\mathcal{N}(A)}$     | $\frac{B_c^+ \to D^+ K^{*0})}{(B^+ \to D^+ \overline{D}{}^0)}$           | $\cdot \mathcal{B}(B^+ \to D^+ \overline{D}^0)$     | $\cdot \frac{\varepsilon(B^+ \to D^+ \overline{D}^0)}{\varepsilon(B_c^+ \to D^+ K^*)}$        | $\stackrel{()}{\overset{()}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}}{\overset{(0)}{\overset{(0)}}{\overset{(0)}{\overset{(0)}}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}}{\overset{(0)}{\overset{(0)}}{\overset{(0)}{\overset{(0)}{\overset{(0}}{\overset{(0)}{\overset{(0)}{\overset{(0}{\overset{(0)}{\overset{(0}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0}{\overset{(0)}{\overset{(0)}{\overset{(0)}{\overset{(0)}{$ |
| $R_{D_s^+\phi} = \frac{\mathcal{N}(x_s)}{\mathcal{N}(x_s)}$ | $\frac{(B_c^+ \to D_s^+ \phi)}{B^+ \to D^+ \overline{D}{}^0)}$           | $\mathcal{B}(B^+ \to D^+ \overline{D}{}^0)$         | $\cdot \frac{\varepsilon(B^+ \to D^+ \overline{D}{}^0)}{\varepsilon(B_c^+ \to D_s^+ \phi)}$   | $\frac{\partial}{\partial t} \cdot \frac{\mathcal{B}(\overline{D}^0 \to K^+ K^-)}{\mathcal{B}(\phi \to K^+ K^-)}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             | Yield                                                                    | PDG                                                 | Estimated                                                                                     | from simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



### **The LHCb detector**

- A general purpose detector covering the forward region: 2 <  $\eta$  < 5</li>
- Excellent tracking, particle identification and trigger systems
- Perfect conditions for both precision measurements & observations of new states/decays
- Successful operation in RunI and RunII with various collision systems (pp, p-Pb, Pb-Pb)
- ${\ensuremath{ \bullet}}$  So far 75 hadrons have been discovered at the LHC, of which 67 by LHCb




[IJMPA 30 (2015) 1530022]

[JINST 3 (2008) S08005]

### LHCb dataset

RunI: 3 fb<sup>-1</sup> pp collision @ 7,8 TeV
RunII: 6 fb<sup>-1</sup> pp collision @ 13 TeV



https://lbgroups.cern.ch/online/OperationsPlots/index.htm

