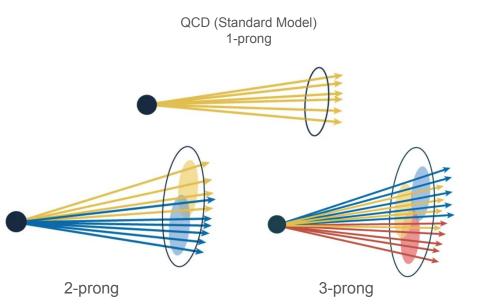


1P1Q: Particle Physics Data Encoding for Machine Learning on Quantum Computers

Aritra Bal¹, Markus Klute¹, Benedikt Maier², Michael Spannowsky³, Melik Oughton², Eric Pezone²

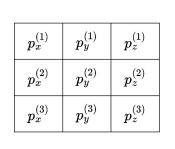
1. Karlsruhe Institute of Technology, Germany

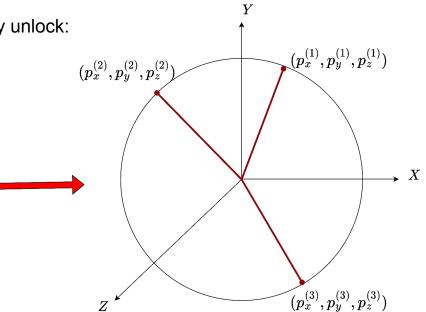

2. Imperial College, London

3. Durham University, UK

Institute of Experimental Particle Physics (ETP), KIT

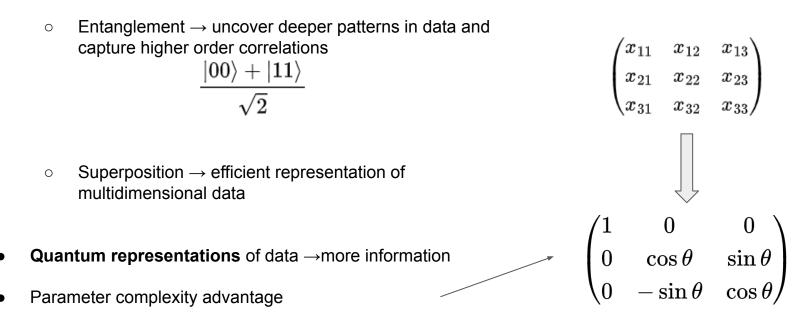
Introduction & Motivation - Anomaly Detection



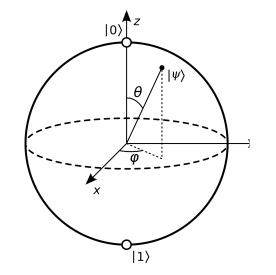

- Plenty of direct searches the past decade no hints of new physics
- Are we missing something?
- Anomaly detection \rightarrow search for outliers
- Model agnostic → wide coverage → reduce reliance on specific hypotheses

Why Quantum ML?

- Future experiments \rightarrow higher data rates, faster inference requirements
- Existing classical techniques \rightarrow could saturate in future
- Way out newer computing paradigms \rightarrow potentially unlock:
 - Better representations
 - Powerful *operations* to manipulate data?

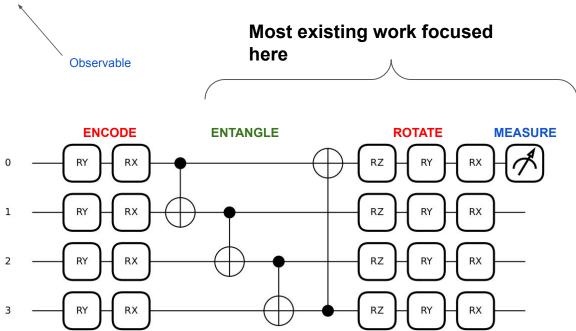


Why Quantum ML?


 Quantum mechanical phenomena→ entanglement, superposition, tunneling → no classical equivalents → entirely new paradigms

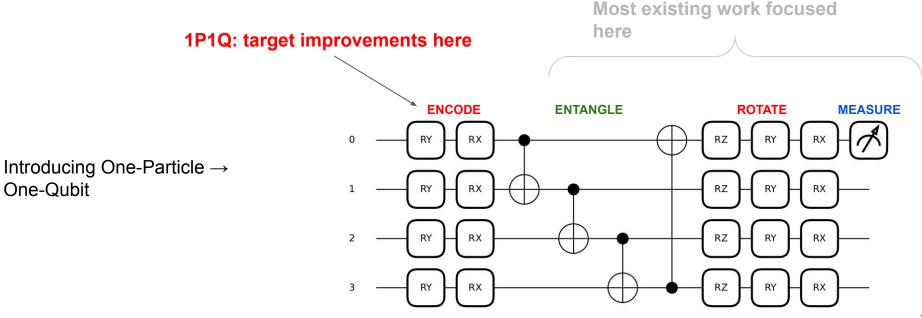
What is Quantum Computing?

- Building block: *qubits*
- Classical bit: either 0 or 1
- Qubit \rightarrow superposition of $|0\rangle$'s and $|1\rangle$'s \rightarrow /and
- Point on unit sphere \rightarrow described by two parameters (θ , ϕ) \rightarrow same for a **qubit**

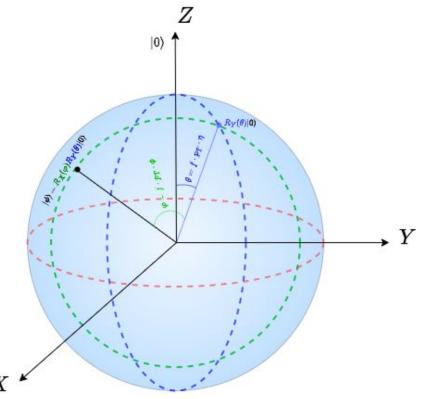


Building Quantum Circuits

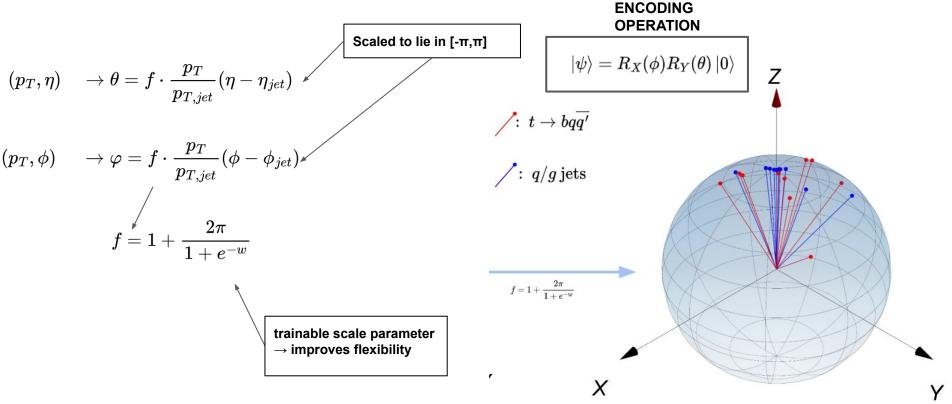
- Manipulation of qubits \rightarrow quantum mechanical operators (rotation, entanglement) : called **gates**
- Recipe → Encode, Entangle, Rotate, Measure


QML: makes these trainable

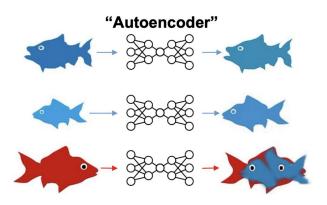
Building Quantum Circuits

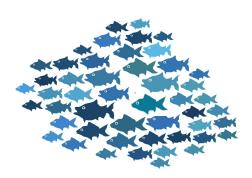

- Manipulation of qubits \rightarrow quantum mechanical operators (rotation, entanglement) : gates
- Recipe → Encode, Entangle, Rotate, Measure

Introducing 1P1Q


- Keep it simple:
 - **1P1Q** \rightarrow 1 Particle gets represented by 1 Qubit
 - Encode kinematic features (p_T , η , ϕ) per particle using rotations
 - \circ 1 Jet \rightarrow N qubits = N hardest particles
- Highly flexible encoding for **anomaly detection** and beyond
- Purely quantum → no classical pre-processing or hybrid learning approach

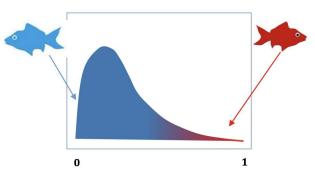
Current implementation: Quantum Simulator library (Pennylane)


Aritra Bal (aritra.bal@kit.edu)

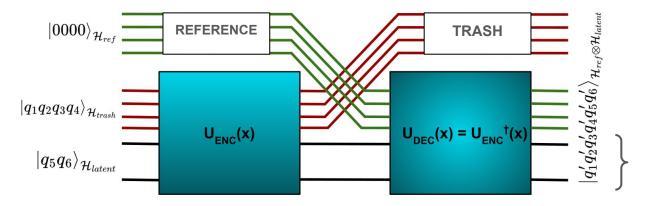

9

The Autoencoder Principle

Train on non-anomalous inputs:

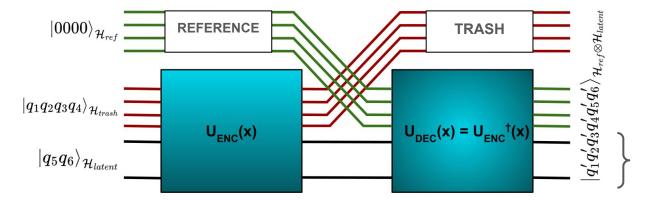


Apply to real-world examples


- Pass information through a **bottleneck** \rightarrow retain core information
- **Reconstruct** original input
- Anomalous inputs → reconstruction performance drops → use as anomaly metric

The Quantum Autoencoder (QAE)

- Compression into bottleneck \rightarrow not trivial in a quantum circuit
- Unitary operators \rightarrow preserve inner products
- Workaround \rightarrow **replace** (some) qubits by fresh $|0\rangle$ state qubits


 $\textbf{Bottleneck} \rightarrow \textbf{Latent Space}$

The Quantum Autoencoder (QAE)

- Compression into bottleneck \rightarrow not trivial in a quantum circuit
- Unitary operators \rightarrow preserve inner products
- Workaround \rightarrow **replace** (some) qubits by fresh $|0\rangle$ state qubits

What about reconstruction quality?

Bottleneck → Latent Space

The Quantum Autoencoder (QAE)

• Compression into bottleneck \rightarrow not trivial

REFERENCE

- Unitary operators → preserve inner products
- Way out → throw out (some) qubits altogether

What about reconstruction quality?

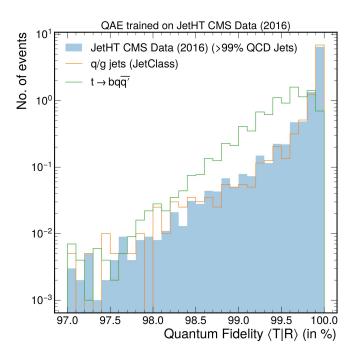
Inner Product

Also known as Quantum Fidelity

 $\langle \psi_1 | \psi_2
angle = egin{cases} 1, & ext{ when } | \psi_1
angle = | \psi_2
angle \ b, & ext{ otherwise} \end{cases}$

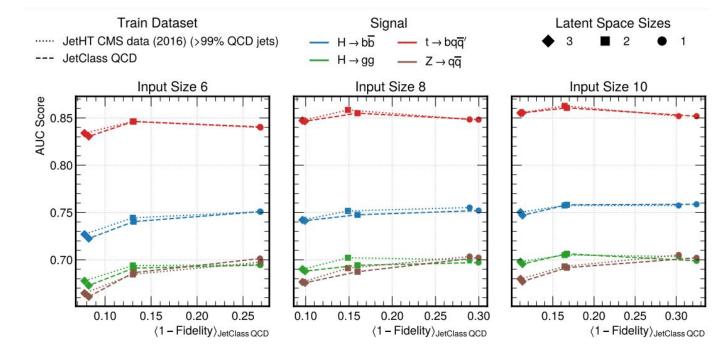
```
Optimise classically (or quantum-mechanically)
```

 $\ket{q_5q_6}_{\mathcal{H}_{latent}}$


TRASH

Results: Anomaly Detection Performance

- QAE is trained with:
 - only 10 jet constituents:
 - O(30) trainable parameters
- Outperforms classical autoencoders with far more parameters
- Crosscheck with open data from CMS Run 2 (first time)
 - o similar performance on data → robust behaviour


Model	Signals				
	$Z \to q \bar{q}$	$W \to q\bar{q}$	$H \rightarrow bb$	$H \to c\bar{c}$	$t \to b q \bar{q}$
QAE	0.715	0.715	0.774	0.810	0.872
CAE	0.676	0.675	0.739	0.767	0.858

Results: Anomaly Detection Performance

- Best performance: 2 qubit bottleneck
- QAE trained on data or simulated QCD → almost identical performance → high degree of robustness

Conclusion

- $1P1Q \rightarrow$ simple and effective data encoding
 - Outperforms classical benchmarks of more complexity for anomaly detection
- Quantum ML holds promise for the future \rightarrow data complexity, inference speed, etc
 - \circ ~ For now, classical algorithms outperform quantum as N \rightarrow \sim
- Deployment on real devices \rightarrow work in progress
- Newer quantum computing paradigms \rightarrow photonic, adiabatic, etc.

arXiv: 2502.17301