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Introduction & Motivation - Anomaly Detection

QCD (Standard Model)
1-prong

3-prong2-prong

● Plenty of direct searches the past decade - 
no hints of new physics

● Are we missing something?

● Anomaly detection → search for outliers

● Model agnostic → wide coverage → reduce 
reliance on specific hypotheses

2



Aritra Bal (aritra.bal@kit.edu) Institute of Experimental Particle Physics (ETP), KIT

3

Why Quantum ML?

● Future experiments → higher data rates, faster inference requirements

● Existing classical techniques → could saturate in future

● Way out - newer computing paradigms → potentially unlock:
○ Better representations
○ Powerful operations to manipulate data?
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Why Quantum ML?

● Quantum mechanical phenomena→ entanglement, 
superposition, tunneling → no classical equivalents → entirely 
new paradigms

○ Entanglement → uncover deeper patterns in data and 
capture higher order correlations

○ Superposition → efficient representation of 
multidimensional data

● Quantum representations of data →more information

● Parameter complexity advantage
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● Building block: qubits

● Classical bit: either 0 or 1

● Qubit → superposition of |0⟩’s and |1⟩’s →      and 

● Point on unit sphere → described by two parameters (θ, ϕ) 
→same for a qubit

What is Quantum Computing?

5



Aritra Bal (aritra.bal@kit.edu) Institute of Experimental Particle Physics (ETP), KIT

6

Building Quantum Circuits

● Manipulation of qubits → quantum mechanical operators (rotation, entanglement) : called gates

● Recipe → Encode, Entangle, Rotate, Measure

ENCODE ENTANGLE ROTATE MEASURE

Observable

QML: makes these 
trainable

Most existing work focused 
here
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Building Quantum Circuits

● Manipulation of qubits → quantum mechanical operators (rotation, entanglement) : gates

● Recipe → Encode, Entangle, Rotate, Measure

ENCODE ENTANGLE ROTATE MEASURE

Most existing work focused 
here1P1Q: target improvements here

Introducing One-Particle → 
One-Qubit
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● Keep it simple:

○ 1P1Q → 1 Particle gets represented by 1 Qubit 
○ Encode kinematic features (pT , η , ϕ) per 

particle using rotations
○ 1 Jet → N qubits = N hardest particles

● Highly flexible encoding for anomaly detection and 
beyond

● Purely quantum → no classical pre-processing or 
hybrid learning approach

Introducing 1P1Q
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Introducing 1P1Q

Scaled to lie in [-π,π]

trainable scale parameter 
→ improves flexibility 

Current implementation: Quantum Simulator library 
(Pennylane)

ENCODING
OPERATION
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The Autoencoder Principle

Train on non-anomalous inputs:

Apply to real-world examples

● Pass information through a bottleneck → retain 
core information

● Reconstruct original input
● Anomalous inputs → reconstruction performance 

drops → use as anomaly metric
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TRASHREFERENCE

The Quantum Autoencoder (QAE)
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● Compression into bottleneck → not trivial in a 
quantum circuit

● Unitary operators → preserve inner products

● Workaround → replace (some) qubits by fresh |0⟩ 
state qubits

Bottleneck → Latent Space
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TRASHREFERENCE

What about 
reconstruction quality?

The Quantum Autoencoder (QAE)
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● Compression into bottleneck → not trivial in a 
quantum circuit

● Unitary operators → preserve inner products

● Workaround → replace (some) qubits by fresh |0⟩ 
state qubits

Bottleneck → Latent Space



Aritra Bal (aritra.bal@kit.edu) Institute of Experimental Particle Physics (ETP), KIT

TRASHREFERENCE

What about 
reconstruction quality?

The Quantum Autoencoder (QAE)
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● Compression into bottleneck → not trivial

● Unitary operators → preserve inner products

● Way out → throw out (some) qubits altogether

Inner Product 
Also known as

 Quantum Fidelity

Optimise classically (or 
quantum-mechanically)
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Results: Anomaly Detection Performance

● QAE is trained with:
○ only 10 jet constituents:
○ O(30) trainable parameters

● Outperforms classical autoencoders with far 
more parameters

● Crosscheck with open data from CMS Run 2 
(first time)

○ similar performance on data  → robust 
behaviour 
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Results: Anomaly Detection Performance

● Best performance: 2 
qubit bottleneck

● QAE trained on data 
or simulated QCD → 
almost identical 
performance → high 
degree of robustness
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● 1P1Q → simple and effective data encoding
○ Outperforms classical benchmarks of more complexity for 

anomaly detection

● Quantum ML holds promise for the future → data complexity, 
inference speed, etc

○ For now, classical algorithms outperform quantum as N → ∞

● Deployment on real devices → work in progress

● Newer quantum computing paradigms → photonic, adiabatic, etc.
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Conclusion
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