Measurement of Groomed Event Shapes

in Deep Inelastic Scattering at HERA

Stefan Schmitt, DESY

on behalf of the H1 collaboration

 \rightarrow not discussed in detail, see

H1 talk earlier in this session

- The H1 experiment at HERA
- Definition of the Breit Frame
- The Centauro jet algorithm
- Event shapes studied: 1-jettiness and groomed invariant mass
- Comparison to MC predictions and analytic predictions

The new H1 results presented here are published in: Eur.Phys.J.C84 (2024), 718 [arxiv:2403.10134]

The Centauro jet algorithm

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

- Study final state in DIS: Breit Frame (BF) Incoming photon: (0;0,0,-Q/2) Incoming proton: (Q/2x_{Bj};0,0,+Q/2x_{Bj}) Scattered parton: (Q/2;0,0,-Q/2)
- At leading order, no P_T in the BF:
 - $\rightarrow k_T$ type jet algorithms not optimal
- **Centauro**: hybrid of longitudinally- and spherically-invariant jet algorithms

Asymmetric jet clustering in deep-inelastic scattering

M. Arratia, Y. Makris, D. Neill, F. Ringer, N. Sato

Phys. Rev. D 104 (2021) 034005, [arXiv:2006.10751]

Grooming techniques

- Widely used in pp to reconstruct jet final states
- This analysis: test grooming in ep events
- Grooming procedure (modified Mass-Drop Tagging algorithm): remove jets and particles failing condition on a distance parameter z_i

reject "soft" particles/jets with z<z_{cut}

HEI MHO

Example result from Centauro paper: Suppress proton remnant for z>0.2

Phys. Rev. D 104 (2021) 034005, [arXiv:2006.10751]

EPSHEP 2025, Marseille

EPSHEP 2025, Marseille

S.Schmitt (H1) groomed event shapes

5

Groomed event shapes studied here

- Groomed 1-jettiness
 - 1-jettiness is designed to measure properties of the current hemishpere
 - Particles are projected onto the direction of either the incoming or the scattered parton
 - Expect to have only moderate effects from grooming in the regime of pOCD

$$\tau_1^b = \frac{2}{Q^2} \sum \min(p_i \cdot q_B, p_i \cdot q_J)$$

 $q_{\rm B} = xP$ (incoming parton direction) $q_1 = xP + q$ (scattered parton direction)

The sums Σ run over all particles contained in jets which pass the grooming condition

•

$$GIM = \ln\left(\frac{\left(\sum p_i\right)^2}{2}\right)$$

Invariant mass collects all particles

 \rightarrow not usable without grooming

Expect to see large effects from

 Q_{\min}^2

Groomed invariant mass

grooming

S.Schmitt (H1) groomed event shapes

Results on the groomed 1-jettiness τ_1^{b}

do/dr^b [pb] H1 Measurement of 4000 e- p τ₁^b without $L = 351.1 \text{ pb}^{-1}$ 3000 s = 319 GeV grooming, similar 200<Q2/GeV2<1700 0.2<y<0.7 kinematic 2000 selection 1000

H1 Data

Svs unc

Study three grooming conditions:

 z_{cut} ={0.05, 0.1, 0.2}

- Stronger grooming: large shape change near $r_1^b \sim 0.15$, corresponding to single-jet $\tau_1^{b} \sim 0.15$, corresponding to single-jet events+fragmentation (i.e. soft QCD)
- The pQCD regime τ_1^{b} >0.2 changes less in shape with changing z_{cut}

HEI MHOI TZ

Comparison of groomed τ_1^{b} to models (1)

Comparison of groomed τ_1^{b} to models (2)

- Pythia 8.3 and Herwig 7.2: fail to describe the groomed τ_1^{b} within the data accuracy
 - Pythia 8.3 fails at small τ_1^b and is low at large τ_1^b
 - Herwig 7.2 is above the data at medium τ_1^{b} and below at large τ_1^{b}
- Does the poor description at high τ_1^{b} have a common cause for Pythia & Herwig?

EPSHEP 2025, Marseille

S.Schmitt (H1) groomed event shapes

Pythia 8.3

- Herwig7.2

Diangoh

H1 data

Sherpa2+AHADIC++

Groomed invariant mass GIM

- Small GIM: single, collimated jet
- Large GIM: multijet events
- None of the model is able to describe the first two bins
- Reasonable description by models for larger GIM, and improving with increasing z_{cut}
- Similar to large τ₁^b, Pythia and Herwig have difficulties to describe the region of large GIM

HEI MHOLTZ

Double-differential measurements

H1

H1 Data, z___ = 0.1

H1 Data, z = 0.2

[ub]

مراط^ل ور. ا

10

 10^{-2}

0.2

0.4

0.6

- Measurements are repeated . double-differentially in Q² and the groomed event shapes, each for three choices of z_{cut}
- Very detailed comparisons to • models are possible using these data \rightarrow tune your MC
- For example: double-differential • comparison to Sherpa3 shows that the description at small τ_1^{b} is difficult but improves significantly with increasing O^2 and increasing z_{cut}

HEI MHO

Comparison of GIM to SCET predictions

 $Z_{cut} = 0.05$

- SCET (Soft Collinear • Effective Theory) predictions address the region of small GIM
- At large GIM, the theory is • not expect to work (singlejet approximation)

EPSHEP 2025, Marseille

- SCET does not describe the data well, not even at small GIM
- The data seem to prefer large settings for the non-perturbative • parameter Ω_{NP} - perhaps even larger than was tested here

SCET predictions: Phys. Rev. D 103 (2021) 054005 [arXiv:2101.02708]

H1 data — SCET ($\Omega_{NP} = 1.1 \text{ GeV}$)

H1

S.Schmitt (H1) groomed event shapes

 $Z_{cut} = 0.1$

H1

--- SCET ($\Omega_{NP} = 1.5 \text{ GeV}$)

H1

 $Z_{cut} = 0.2$

S.Schmitt (H1) groomed event shapes

SCET predictions: Phys. Rev. D 103 (2021) 054005 [arXiv:2101.02708]

Test of GIM shape universality

- Within SCET, the shape of the GIM distribution is predicted to be scale-independent at low GIM
- Shown here: GIM distribution measured in different Q² regions
- Within data uncertainties, the scaleindependence of the GIM shape is confirmed

HEI MHOI

Summary

- Grooming techniques are widely used in pp collisions
- A first measurement of groomed events shapes in ep collisions is presented by the H1 collaboration
- The grooming is performed in the Breit frame, with the help of the Centauro jet clustering algorithm
- Event shapes studied: groomed 1-jettiness τ_1^{b} and groomed invariant mass GIM
- Groomed τ_1^{b} is well described by an analytic prediction and by Sherpa 3, with the exception of very low τ_1^{b} at the lowest Q². Pythia and HERWIG match less well
- MC models do not describe the region of very small GIM accurately
- Predictions for GIM using SCET are not yet at the same level as MC models, however the predicted shape universality is confirmed by data

EPSHEP 2025, Marseille

Backup

EPSHEP 2025, Marseille

The HERA ep collider

- HERA collider:
 - operated from 1992 to 2007
 - Circumference 6.3 km
 - Electrons or positrons colliding with protons
 - Proton: 460-920 GeV, Leptons 27.6 GeV
 - Peak luminosity ~7×10³¹ cm⁻²s⁻¹

HEI MHOLTZ

The H1 Experiment

EPSHEP 2025, Marseille

Deep-inelastic scattering at HERA

 Hadrons in the central tracker and LAr (~current hemisphere)

 Proton remnants in forward direction mostly escape detection

EPSHEP 2025, Marseille

 \bullet

S.Schmitt (H1) groomed event shapes

HEI MHOLTZ

The Breit frame (BF)

- proton along +z axis
- virtual photon along -z axis with energy=0
- in LO, the quark is scattered along the -z axis of the BF
- Current hemisphere: particles with p_z<0 in BF (scattered parton, full acceptance)
- Target hemisphere: particles with p_z>0
 - (proton remnants, limited acceptance)

