Measurement of 1-jettiness Event Shapes

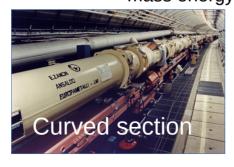
and Empty Hemisphere Events in Deep Inelastic Scattering at HERA

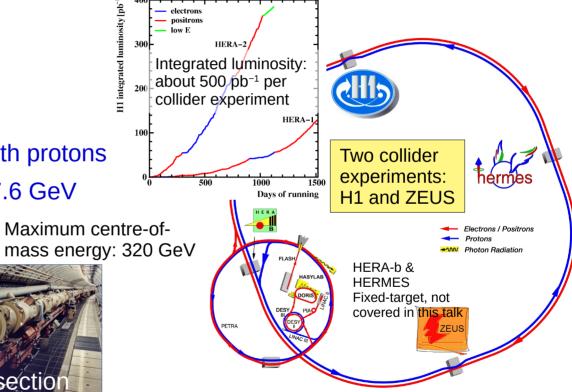
Stefan Schmitt, DESY

on behalf of the H1 collaboration

Outline

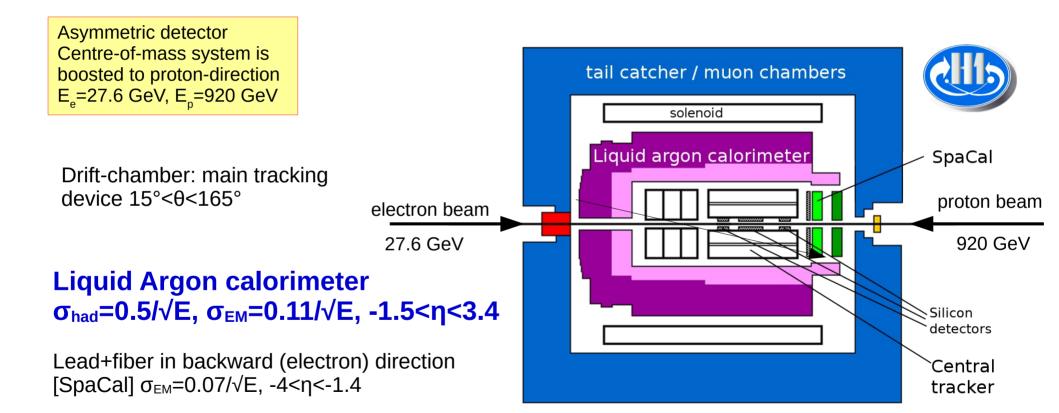
- The H1 experiment at HERA
- The 1-jettiness event shape
- Empty hemisphere events
- Results


The new results presented here are published in: Eur.Phys.J.C84 (2024), 785 [arxiv:2403.10109] (1-jettiness) Eur.Phys.J.C84 (2024), 720 [arxiv:2403.08982] (empty hemisphere events)

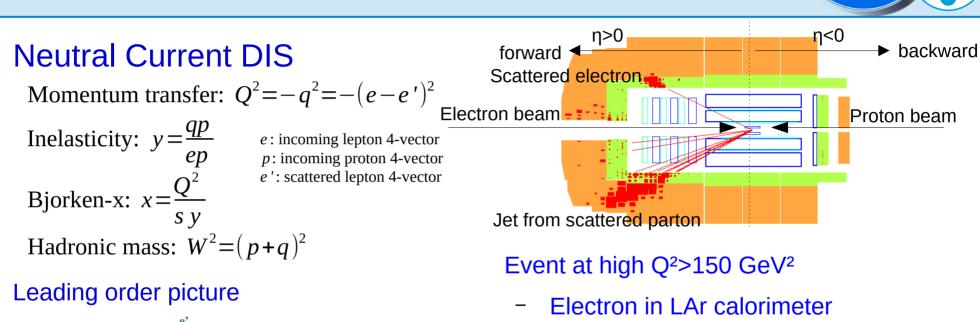

The HERA ep collider

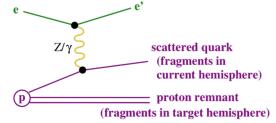
HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

- HERA collider:
 - operated from 1992 to 2007
 - Circumference 6.3 km
 - Electrons or positrons colliding with protons
 - Proton: 460-920 GeV, Leptons 27.6 GeV
 - Peak luminosity ~7×10³¹ cm⁻²s⁻¹



EPSHEP 2025, Marseille


The H1 Experiment


EPSHEP 2025, Marseille

S.Schmitt (H1) 1-jettiness measurement

HEI MHOLTZ

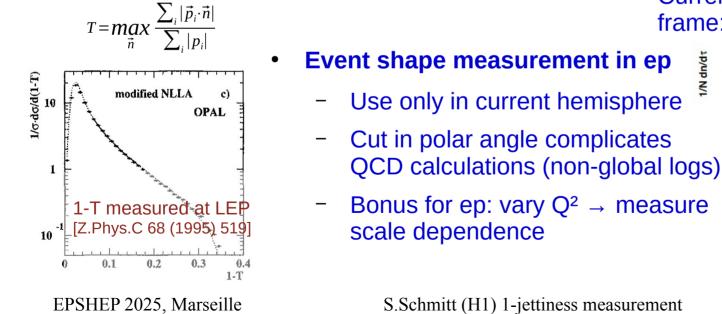
Deep-inelastic scattering at HERA

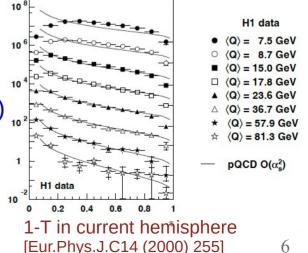
 Hadrons in the central tracker and LAr (~current hemisphere)

HEI MHOLTZ

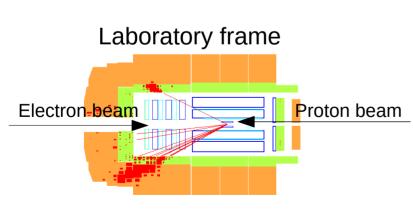
 Proton remnants in forward direction mostly escape detection

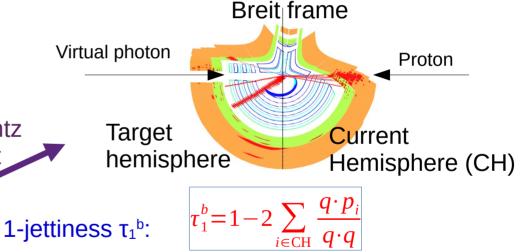
EPSHEP 2025, Marseille


 \bullet


Event shapes in e+e- and ep

- "Classical" event shapes in e+e-: thrust 1-T, jet broadening, etc: extract α_s
- e+e- event: two equivalent hemispheres


- ep scattering: two distinct hemispheres
 - Target hemisphere: proton remnant, limited acceptance
 - Current hemisphere of the Breit frame: good acceptance

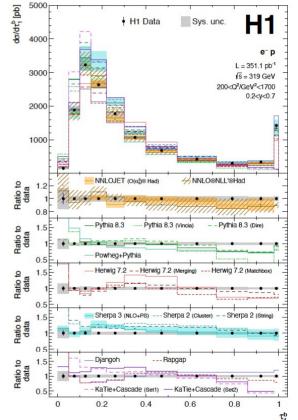

Breit frame (BF) and definition of τ_1^{b}

- proton along +z axis
- After boost: virtual photon along -z axis with energy=0
- in LO, the quark is scattered along the -z axis

Lorentz boost

- Current hemisphere: particles with $p_z < 0$ in BF
- Target hemisphere: particles with p_z>0

- Can be written as a sum including all particles
- Infrared & collinear save, free of non-global logs

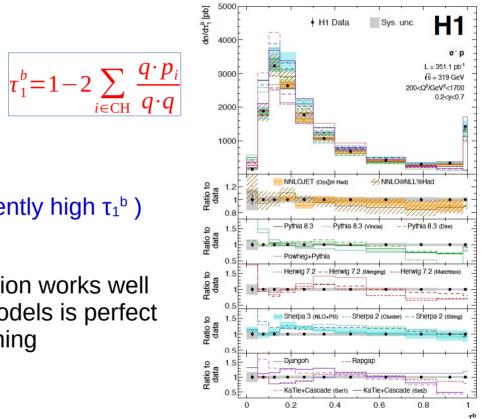

EPSHEP 2025, Marseille

 $\tau_1^b = 1 - 2 \sum_{i \in CH} \frac{q \cdot p_i}{q \cdot q}$

8

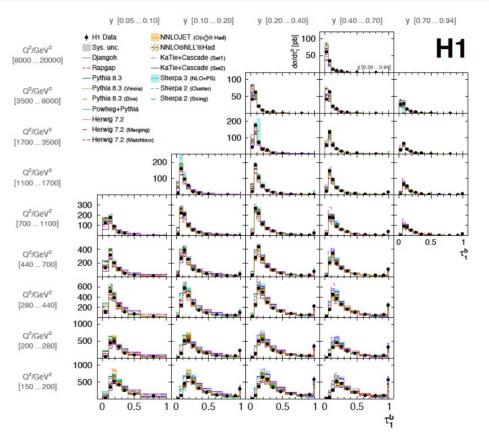
Precision measurement of τ_1^{b} at high Q²

- Measurement phase space:
 - $200 < Q^2 < 1700 \text{ GeV}^2$ and 0.2 < y < 0.7
- Results are unfolded to particle level
- Only depends on current hemisphere particles \rightarrow free of acceptance corrections, high precision <5% in most bins
- Peak structure around 0.15: single jet events
- Tail towards larger τ_1^{b} : higher orders, hard QCD radiation
- Peak at $\tau_1^{b} = 1$: events where the current hemisphere is empty
- Test against a variety of models \rightarrow next slide



9

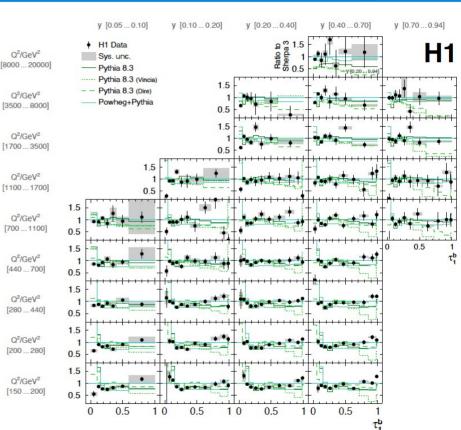
Precision measurement of τ_1^{b} at high Q²


- Measurement phase space: •
 - 200<Q²<1700 GeV² and 0.2<y<0.7
- Results are unfolded to particle level •
- Comparison to
 - NNLOJET: NNL QCD (only for sufficiently high τ_1^{b})
 - Pythia 8.3
 - Powheg+Pythia
 - Herwig 7.2
 - Sherpa 2, Sherpa 3
 - Rapgap. Djangoh

NNLO calculation works well None of the models is perfect \rightarrow room for tuning

Triple-differential measurement of $\tau_1{}^{\scriptscriptstyle b}$

- Measurement of τ_1^{b} in Q^2 and y bins
- With increasing Q²: peak shifts and is less broad, tail towards high τ_1^{b} is reduced
 - \rightarrow QCD evolution with the scale
- Peak position also shifts with y: could be related to varying contributions from quark or gluon induced scattering
- Detailed comparison to models \rightarrow ratio plots (next slide)



Triple-differential: Ratio to Pythia 8.3

- Example of triple-differential model comparison: Sherpa3 and PYTHIA 8.3
- Dots: ratio of Data/Sherpa3
- Line at unity: Sherpa 3, describes the data well
- Green lines: ratio Pythia8.3/Sherpa3
- Pythia 8.3: difficulties to describe the data at very low τ_1^{b} – already evident from 1D distribution
- Additional feature: high τ_1^{b} is not described accurately by Pythia and Pythia variants. At high y, Vinca and Dire definitely do not perform well, Powheg and "plain" Pythia are doing better.

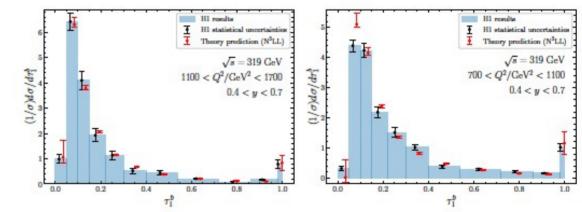
Sherpa2, NNLOJET, HERWIG7.2 in backup

EPSHEP 2025, Marseille

EPSHEP 2025, Marseille

S.Schmitt (H1) 1-jettiness measurement

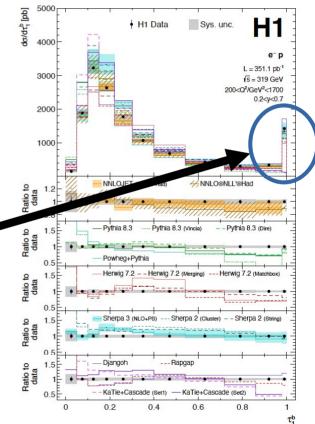
12


- A recent paper confronts N3LL calculations with the H1 data Accurate predictions over the full τ_1^{b} range (c.f. NNLO jet predictions only down to ~0.15)
- Can we use triple-differential HERA data (Q²,y, τ_1^{b}) for PDF+ α_s fits in the future?

Recent calculations confronted to data

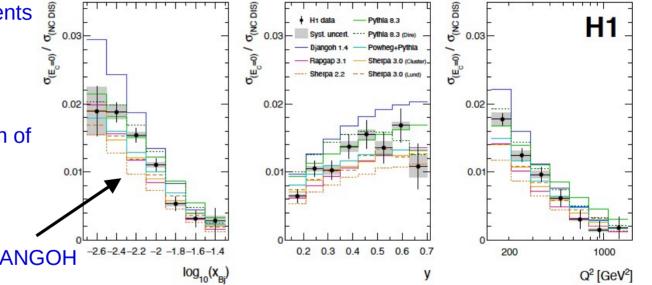
Paper: Precision DIS thrust predictions for HERA and EIC

June-Haak Ee, Daekyoung Kang, Christopher Lee, Iain W. Stewart arXiv:2504.05234


Figure 17. Comparison of differential cross section measurements from the H1 collaboration at HERA [26] (black points) with our theoretical predictions (red points). The left and right panels show results from two different bins in Q^2 with the same bin in y.

Empty hemisphere (EH) events

- Empty hemisphere events are predicted at NLO: dijet events can have both jets in the target hemisphere
 - Leading order: scattered parton is massless
 - Next order: dijet system with finite mass
 - Boost to Breit Frame can bring both jets into the target hemisphere (given certain kinematic conditions)
- The current hemisphere can be empty, $\tau_1^{b}=1$
- Exact predictions are difficult, as this is a pure higher-order effect. At even higher orders (third jet), or with hadronisation, the rate of these events may be smaller than expected from the lowest order parton-level dijet prediction


Kinematic properties of EH events

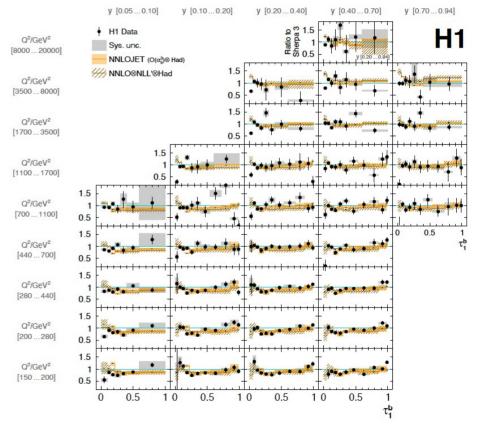
- The rate of empty hemisphere events is measured at the particle level
- Measurement phase space 150<Q²<1500 GeV², 0.14<y<0.7
- The rate is measured as a function of log(x_{Bj}), y, Q²
- Confronting with MC models, the data have discriminative power
- The "traditional" HERA models DJANGOH^{-2.6} and RAPGAP bracket the data:

 \rightarrow estimate model uncertainties from DJANGO-RAPGAP differences. Unfolding uses extra bins (=extra nuisance parameters) to obtain results with small model uncertainties

Result integrated over full phase space: $r = 0.0112 \pm 3.9 \,\%_{\text{stat}} \pm 4.5 \,\%_{\text{syst}} \pm 1.6 \,\%_{\text{mod}}$

EPSHEP 2025, Marseille

- The H1 collaboration presents new precision data on the 1-jettiness event shape variable $\tau_1{}^{\text{b}}$
- The data are measured triple-differential and "inclusive", such that for a given Q²,y all possible hadronic final state are quantified in terms of τ_1^{b} (there is no acceptance limitation in τ_1^{b}) see backup for inclusive τ_1^{b} integrated cross sections in (Q²,y)
- Modern ep MC generators do a good job in describing τ_1^{b} , but there is also room for further improvements
- At τ₁^b=1 there is a special event topology with an empty hemisphere. The kinematic properties of these events are studied in detail. In particular the xdependence is very sensitive to details of MC models

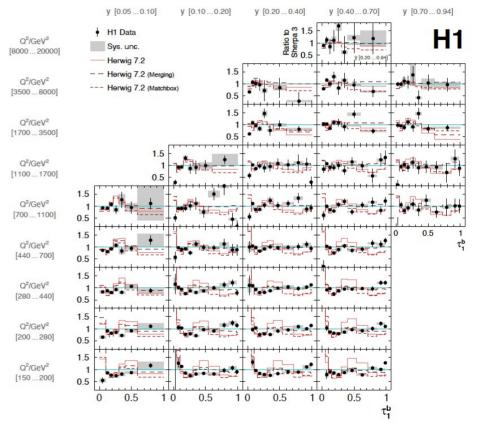


Backup

EPSHEP 2025, Marseille

Triple-differential: Ratio to NNLOJET

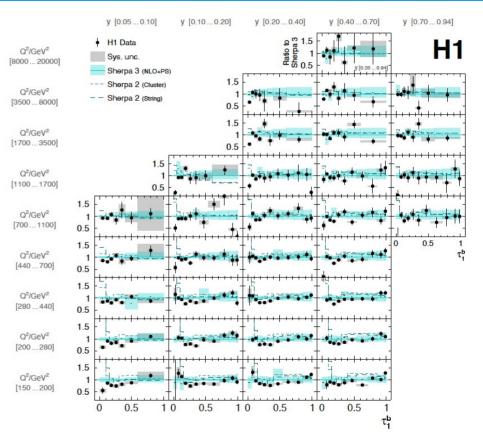
- Example of triple-differential model comparison: NNLOJET
- Line at unity: Sherpa 3
- Dots: ratio of Data/Sherpa3
- Orange band: ration NNLOJET/Sherpa3
- Overall good description, however prediction is not available at low τ_1^{b}
- In large parts of the phase space, the data are more precise than the theory within scale uncertainties



18

Triple-differential: Ratio to HERWIG7.2

- Example of triple-differential model comparison: NNLOJET
- Line at unity: Sherpa 3
- Dots: ratio of Data/Sherpa3
- Red lines: ratio HERWIG7.2/Sherpa3
- Test: default, mering, matchbox
- In most cases, merging and matchbos are superior to plain HERWIG, but there is room for improvenet in all cases



S.Schmitt (H1) 1-jettiness measurement

Triple-differential: Ratio to SHERPA

- Example of triple-differential model comparison: NNLOJET
- Line at unity: Sherpa 3
- Dots: ratio of Data/Sherpa3
- Blue band: Sherpa3 NLO+PS with scale uncertainty
- Dashed lines: Sherpa 2 variants
- Overall very reasonable description
- Sherpa 3 is superior to Sherpa 2

105 H1

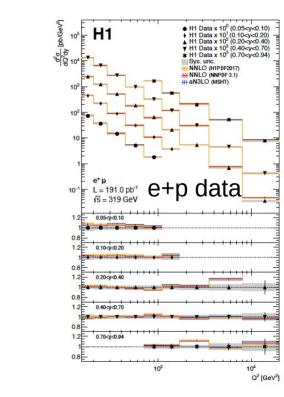
L = 160.1 pb⁻¹

√s = 319 GeV

0.05<v<0.10

0.40<v<0.70

0.70</


10³

Q² [GeV²]

e-p data

Inclusive cross sections in (Q²,y)

- By integrating cross sections over τ₁^b one obtains double-differential cross sections measured in (Q²,y)
- These complement traditional doubledifferential measurements of structure functions
 - Structure functions: good for fits of analytics predictions
 - Cross sections measured in bins: good for confronting MC predictions

