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Motivation

What does the substructure of
boosted jets tell us?

1-pronged pure QCD jet
2-pronged boosted, hadronically

decaying vector boson
3-pronged boosted, hadronically

decaying top quark
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Introduction
Reminder

N -subjettiness [1, 2]

τ
(β)
N tests the compatibility of N axes in a jet with fully-merged N -prong
decays:

τ
(β)
N ∝ 1

pT

∑
i∈jet

p
(i)
T min

{
∆Rβ

1i, . . . ,∆Rβ
Ni

}

β regulates how much soft radiations should contribute (IRC for β ≥ 0).
The N axes need be defined to calculate τ

(β)
N , e.g. by running the kT jet

clustering algorithm in exclusive mode.
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Introduction
Reminder

Grooming techniques
1 Jets acquire mass from splittings in PS.
2 Apply grooming to better discriminate pure

QCD jets, boosted V jets or boosted top
jets.

3 CMS typically uses the soft-drop (SD)
algorithm to remove soft and wide-angle
radiations [3] with β = 0 and zcut = 0.1.

Taggers
N -subjettiness ratio τNM = τN/τM (at CMS often with

β = 1) to separate N - and
M -pronged jets [2].

energy correlator function (ECF) ratios where
ECF are also function sensitive to
the number of prongs, but w/o
the need to define axes [4].

ParticleNet GNN approach [5].
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N-subjettiness in various topologies
Observables

We want to measure the following set of observables in jets obtained from
pure QCD jets and boosted hadronic W/top-enriched jets:{

τ
(0.5)
1 , τ

(1)
1 , τ

(2)
1 , . . . , τ

(0.5)
M−2, τ

(1)
M−2, τ

(2)
M−2, τ

(1)
M−1, τ

(2)
M−1

}
−→ The 3M − 4 observables completely determine the kinematics of M resolved emissions.

We choose M = 6 and include also β = 0.25, 1.5.
−→ Overcomplete (OC) basis to mitigate the finite resolution.

For each data set, calculate statistical correlations among all observables.
−→ Repeat (nearly) the same analysis procedure for 3 different topologies.

−→ 3 × 25 observables in total!

Application
Test state-of-the-art models.
Input for tuning of MC generators.
Input for training of ML-based discriminants.
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N-subjettiness in various topologies
Generalities

Full Run-2 data set (135− 138 fb−1 at
√
s = 13 TeV).

Using AK8 (a.k.a. fat) jets with |y| < 1.7 to ensure full reconstruction in
tracker acceptance and pT > 200 GeV.

Dijet topology
Follow similar strategy as in dijet cross
section measurements [6].
Require back-to-back, isolated jets.

Boosted topologies
Both rely on semileptonic t̄t events.
−→ Require exactly one isolated muon (pT > 55 GeV)
and no additional leptons, MET > 30 GeV, one
b-tagged jet, ...

Then define orthogonal, enriched regions.
−→ Purity above 80%.
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N-subjettiness in various topologies
Unfolding
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Procedure
Using TUNFOLD package without regularisation (i.e. equivalent to pseudo-inversion).
For each category, unfold all 25 observables simultaneously.
Unfolding is repeated for each systematic variation independently.
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N-subjettiness in various topologies
Results
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Observations
In dijet selection, predictions generally envelope the data and show
disagreements of 10-20%.
In boosted W- and top-enriched selections, predictions demonstrate similar
shape differences to the data.
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Boosted W-jet groomed mass
Measurements of groomed mass

quark/gluon jets top quark jets W jets
SMP-16-010 [7] TOP-21-012 [8] SMP-24-012

Motivation
Such jets are subject to many direct BSM
searches and SM measurements.
Often limited by imperfect modelling of the jet
substructure.

This analysis
Measurement of groomed jet mass of fully
hadronic W(qq′) + jets events in bins of pT:

Standard candle jet substructure observable to
help constrain MC models.
First determination of W mass in hadronic
decay at a hadron collider.

W,Z

q

q̄

g

q̄0

q

Z

q

q̄

g

b̄

b
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Boosted W-jet groomed mass

Strategy
1 Apply standard jet reconstruction and
calibration procedures at CMS to a data
set obtained from single fat jet triggers
with pHLT

T > 450, 500 GeV
(poffline

T > 575, 650 GeV).
2 Groom jets with soft-drop (SD) algorithm

(cf. introduction).
3 Classify events using two different

mass-decorrelated jet substructure
taggers [9].

4 Use a data-driven approach to control the
large QCD background.

5 Unfold using a maximum-likelihood
approach.

Classification
N1,DDT

2

εW jets εbackg.

pass 18.54% 4.14%
fail 81.46% 95.86%
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Boosted W-jet groomed mass

Background
Shape of mSD for the multijet
background is assumed to be the
same in the pass and fail
regions [10, 11].
−→ Ideally, it should only be a single
factor.

However, tagging efficiency varies
with pT & mass-decorrelation
scheme is not perfect.

−→ 2D transfer function
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Boosted W-jet groomed mass
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Unfolding
Nominal unfolding using PPN,DDT

Wvs.QCD
in the background estimation,
An explicit matching to a
particle-level W (qq′) is required,
including N1

2 < 0.2 in the
particle-level definition.
Unfolding is implemented as a
likelihood function in
COMBINE [12], treating all
systematic uncertainties with
nuisance parameters.
SVD regularisation is applied
(minimising the global correlation
coefficient).
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Boosted W-jet groomed mass
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Results
The background stays the dominant limitation, especially in the tails.
Both PYTHIA & MADGRAPH+PYTHIA describe the peak reasonably well.
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Boosted W-jet groomed mass
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Extracting the W boson mass
We generate several PYTHIA 8 samples with different W mass hypotheses:
79.0, 80.0, 80.385, 81.0, 82.0 GeV
We exclude the two outermost mass bins, which suffer from large
uncertainties from the hadronization model.
We have checked that the fit closes using
MADGRAPH5_AMC@NLO+PYTHIA/HERWIG as pseudodata.
The final template fit is carried out in 70 < mSD < 90:

mW = 80.77± 0.57 GeV
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Summary & Conclusions

CMS has just released two new results on
jet substructure using full Run-2.
A better understanding of jet substructure
provides further insights on QCD and helps
improve our searches for new physics.
The first result consists in a measurement
of an OC basis of N -subjettiness in pure
QCD jets, boosted W -jets, and boosted
top-jet events.
The second result extends a series of
differential measurements of jet groomed
mass, here for boosted W -jets, and
includes a measurement of the W mass in
the hadronic channel.

Merci de votre attention!
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Acronyms I

AK anti kT algorithm. 11–14

BSM beyond the SM. 20–22

CMS Compact Muon Solenoid. 1, 6, 7, 23–26,
32, 33

ECF energy correlator function. 6, 7

GNN graph neural network. 6, 7

IRC infrared and collinear safe. 5

MC Monte Carlo. 9, 10, 20–22

MET missing transverse energy. 11–14

ML machine learning. 9, 10

OC overcomplete. 9, 10, 32, 33

PS parton shower. 6, 7

QCD quantum chromodynamics. 3, 4, 6, 7, 9, 10,
23–26, 32, 33

SD soft-drop. 6, 7, 23–27, 30

SM standard model. 20–22

SVD singular value decomposition. 28
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