N-subjettiness

Summary & Conclusions

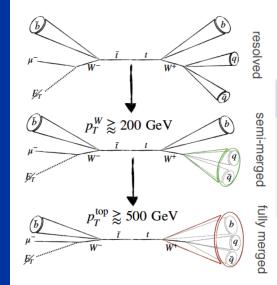
Back-up

Recent jet (substructure) measurements at CMS ESP-HEP 2025 Marseille

Patrick L.S. CONNOR on behalf of the CMS Collaboration

Organisation européenne pour la recherche nucléaire

8 July 2025

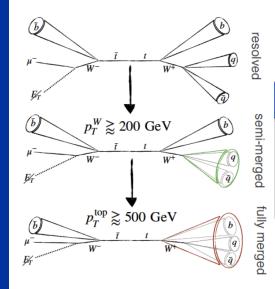

Introduction

Motivation Reminder

Introduction Motivation Reminder N-subjettiness W-jet mass Summary & Conclusions

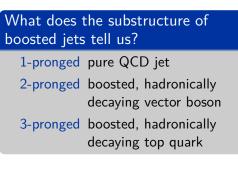
Back-up

Introduction


Motivation

	pure QCD jet		
	boosted, hadronically decaying vector boson		
	boosted, hadronically decaying top quark		

Introduction Motivation Reminder N-subjettiness W-jet mass Summary &


Back-up

Introduction

Motivation

Introduction Motivation Reminder N-subjettines Introduction

Reminder

N-subjettiness [1, 2]

 $\tau_N^{(\beta)}$ tests the compatibility of N axes in a jet with fully-merged N-prong decays:

$$au_N^{(eta)} \propto rac{1}{p_{\mathrm{T}}} \sum_{i \in \mathsf{jet}} p_{\mathrm{T}}^{(i)} \min\left\{\Delta R_{1i}^eta, \dots, \Delta R_{Ni}^eta
ight\}$$

β regulates how much soft radiations should contribute (IRC for β ≥ 0).
 The N axes need be defined to calculate τ^(β)_N, e.g. by running the k_T jet clustering algorithm in exclusive mode.

Introduction Motivation Reminder

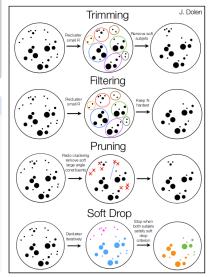
N-subjettiness

W-jet mass

Summary & Conclusions Back-up

Grooming techniques

- 1 Jets acquire mass from splittings in PS.
- Apply grooming to better discriminate pure QCD jets, boosted V jets or boosted top jets.
- **3** CMS typically uses the soft-drop (SD) algorithm to remove soft and wide-angle radiations [3] with $\beta = 0$ and $z_{\text{cut}} = 0.1$.


Taggers

N-subjettiness ratio $\tau_{NM} = \tau_N / \tau_M$ (at CMS often with $\beta = 1$) to separate N- and M-pronged jets [2].

energy correlator function (ECF) ratios where ECF are also function sensitive to the number of prongs, but w/o the need to define axes [4].

Introduction

Reminder

Introduction Motivation Reminder

N-subjettiness

W-jet mass

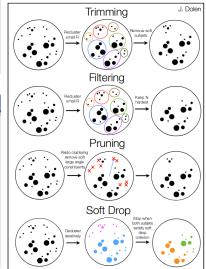
Summary & Conclusions

CERN 4/15

Grooming techniques

- 1 Jets acquire mass from splittings in PS.
- Apply grooming to better discriminate pure QCD jets, boosted V jets or boosted top jets.
- **3** CMS typically uses the soft-drop (SD) algorithm to remove soft and wide-angle radiations [3] with $\beta = 0$ and $z_{\text{cut}} = 0.1$.

Taggers


N-subjettiness ratio $\tau_{NM} = \tau_N / \tau_M$ (at CMS often with $\beta = 1$) to separate N- and M-pronged jets [2].

energy correlator function (ECF) ratios where ECF are also function sensitive to the number of prongs, but w/o the need to define axes [4].

ParticleNet GNN approach [5].

Introduction

Reminder

N-subjettiness in various topologies

Goal Methodology Unfolding Results

Introduction

N-subjettine Goal Methodology Unfolding

W-jet mass

Summary & Conclusions

Back-up

N-subjettiness in various topologies

Observables

We want to measure the following set of observables in jets obtained from pure QCD jets and boosted hadronic W/top-enriched jets:

$$\left\{\tau_1^{(0.5)}, \tau_1^{(1)}, \tau_1^{(2)}, \dots, \tau_{M-2}^{(0.5)}, \tau_{M-2}^{(1)}, \tau_{M-2}^{(2)}, \tau_{M-1}^{(1)}, \tau_{M-1}^{(2)}\right\}$$

 \longrightarrow The 3M-4 observables completely determine the kinematics of M resolved emissions.

 \blacksquare We choose M=6 and include also $\beta=0.25, 1.5.$

 \rightarrow Overcomplete (OC) basis to mitigate the finite resolution.

• For each data set, calculate statistical correlations among all observables.

 \longrightarrow Repeat (nearly) the same analysis procedure for 3 different topologies.

 $\longrightarrow 3 imes 25$ observables in total!

Application

- Test state-of-the-art models.
- Input for tuning of MC generators.
- Input for training of ML-based discriminants.

Introduction

N-subjettine Goal Methodology Unfolding

W-jet mass

Summary & Conclusions

Back-up

N-subjettiness in various topologies

Observables

 We want to measure the following set of observables in jets obtained from pure QCD jets and boosted hadronic W/top-enriched jets:

$$\left\{\tau_1^{(0.5)}, \tau_1^{(1)}, \tau_1^{(2)}, \dots, \tau_{M-2}^{(0.5)}, \tau_{M-2}^{(1)}, \tau_{M-2}^{(2)}, \tau_{M-1}^{(1)}, \tau_{M-1}^{(2)}\right\}$$

 \longrightarrow The 3M-4 observables completely determine the kinematics of M resolved emissions.

 \blacksquare We choose M=6 and include also $\beta=0.25, 1.5.$

 \longrightarrow Overcomplete (OC) basis to mitigate the finite resolution.

• For each data set, calculate statistical correlations among all observables.

 \longrightarrow Repeat (nearly) the same analysis procedure for 3 different topologies.

 $\longrightarrow 3 imes 25$ observables in total!

Application

- Test state-of-the-art models.
- Input for tuning of MC generators.
- Input for training of ML-based discriminants.

N-subjettiness in various topologies

Generalities

N-subjettiness Goal Methodology Unfolding Results

W-jet mass

Summary & Conclusions

- Full Run-2 data set $(135 138 \text{ fb}^{-1} \text{ at } \sqrt{s} = 13 \text{ TeV}).$
- Using AK8 (a.k.a. fat) jets with |y| < 1.7 to ensure full reconstruction in tracker acceptance and $p_{\rm T} > 200~{\rm GeV}$.

Dijet topology

- Follow similar strategy as in dijet cross section measurements [6].
- Require back-to-back, isolated jets.

- **Both rely on semileptonic** $t\overline{t}$ events.
 - \rightarrow Require exactly one isolated muon ($p_T > 55 \text{ GeV}$) and no additional leptons, MET > 30 GeV, one *b*-tagged jet, ...
- Then define orthogonal, enriched regions. → Purity above 80%.

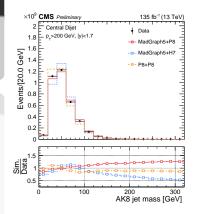
N-subjettiness in various topologies

Generalities

N-subjettiness Goal Methodology Unfolding Results

W-jet mass

Summary & Conclusions



- Full Run-2 data set $(135 138 \text{ fb}^{-1} \text{ at } \sqrt{s} = 13 \text{ TeV}).$
- Using AK8 (a.k.a. fat) jets with |y| < 1.7 to ensure full reconstruction in tracker acceptance and $p_{\rm T} > 200$ GeV.

Dijet topology

- Follow similar strategy as in dijet cross section measurements [6].
- Require back-to-back, isolated jets.

- **Both rely on semileptonic** $t\overline{t}$ events.
 - \rightarrow Require exactly one isolated muon ($p_T > 55 \text{ GeV}$ and no additional leptons, MET > 30 GeV, one *b*-tagged jet, ...
- Then define orthogonal, enriched regions. → Purity above 80%.

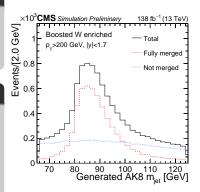
N-subjettiness in various topologies

Generalities

N-subjettiness Goal Methodology Unfolding Results

W-jet mass

Summary & Conclusions



- Full Run-2 data set $(135 138 \text{ fb}^{-1} \text{ at } \sqrt{s} = 13 \text{ TeV}).$
- Using AK8 (a.k.a. fat) jets with |y| < 1.7 to ensure full reconstruction in tracker acceptance and $p_{\rm T} > 200$ GeV.

Dijet topology

- Follow similar strategy as in dijet cross section measurements [6].
- Require back-to-back, isolated jets.

- Both rely on semileptonic $t\bar{t}$ events.
 - \rightarrow Require exactly one isolated muon ($p_T > 55 \text{ GeV}$) and no additional leptons, MET > 30 GeV, one *b*-tagged jet, ...
- Then define orthogonal, enriched regions.
 - \longrightarrow Purity above 80%.

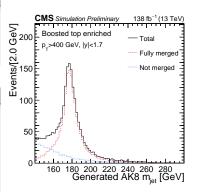
N-subjettiness in various topologies

Generalities

N-subjettiness Goal Methodology Unfolding Results

W-jet mass

Summary & Conclusions



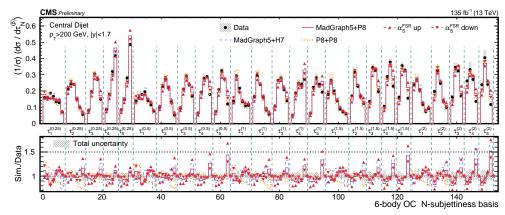
- Full Run-2 data set $(135 138 \text{ fb}^{-1} \text{ at } \sqrt{s} = 13 \text{ TeV}).$
- Using AK8 (a.k.a. fat) jets with |y| < 1.7 to ensure full reconstruction in tracker acceptance and $p_{\rm T} > 200~{\rm GeV}$.

Dijet topology

- Follow similar strategy as in dijet cross section measurements [6].
- Require back-to-back, isolated jets.

- Both rely on semileptonic $t\overline{t}$ events.
 - \rightarrow Require exactly one isolated muon ($p_T > 55 \text{ GeV}$) and no additional leptons, MET > 30 GeV, one *b*-tagged jet, ...
- Then define orthogonal, enriched regions.
 - \longrightarrow Purity above 80%.

N-subjettiness in various topologies


Unfolding

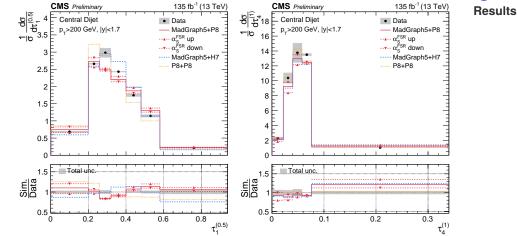
Summary & Conclusion

Procedure

- Using TUNFOLD package without regularisation (i.e. equivalent to pseudo-inversion).
- For each category, unfold all 25 observables simultaneously.
- Unfolding is repeated for each systematic variation independently.

Connor

CMS P.l.s. Connor


W-jet mass

Summary & Conclusion

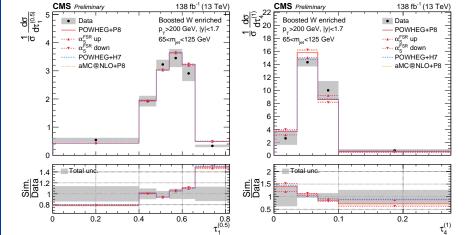
Back-up

N-subjettiness in various topologies

Observations

- In dijet selection, predictions generally envelope the data and show disagreements of 10-20%.
- In boosted W- and top-enriched selections, predictions demonstrate similar shape differences to the data.

Introduction N-subjettiness Goal Methodology Unfolding Results W-iet mass


Summary & Conclusions

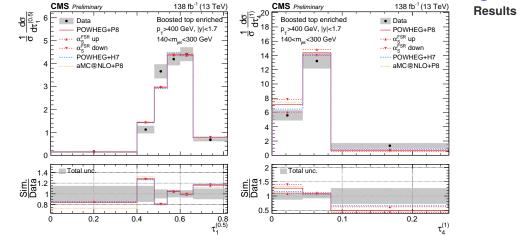
Back-up

N-subjettiness in various topologies

Results

Observations

- In dijet selection, predictions generally envelope the data and show disagreements of 10-20%.
- In boosted W- and top-enriched selections, predictions demonstrate similar shape differences to the data.


Introduction N-subjettiness Goal Methodology Unfolding Results

Summary & Conclusions

Back-up

N-subjettiness in various topologies

Observations

- In dijet selection, predictions generally envelope the data and show disagreements of 10-20%.
- In boosted W- and top-enriched selections, predictions demonstrate similar shape differences to the data.

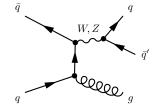
Boosted W-jet groomed mass

Goal Methodology Results

N-subjettines W-jet mass Goal Methodology

Summary & Conclusions

Back-up


Boosted W-jet groomed mass

Measurements of groomed mass

quark/gluon jets	top quark jets	W jets
SMP-16-010 [7]	TOP-21-012 [8]	SMP-24-012

Notivation

- Such jets are subject to many direct BSM searches and SM measurements.
- Often limited by imperfect modelling of the jet substructure.

This analysis

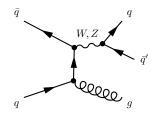
Measurement of groomed jet mass of fully hadronic W(qq') + jets events in bins of p_{T} :

- Standard candle jet substructure observable to help constrain MC models.
- First determination of *W* mass in hadronic decay at a hadron collider.

N-subjettines: W-jet mass Goal Methodology

Summary & Conclusions

Back-up


Boosted W-jet groomed mass

Measurements of groomed mass

quark/gluon jets	top quark jets	W jets
SMP-16-010 [7]	TOP-21-012 [8]	SMP-24-012

Motivation

- Such jets are subject to many direct BSM searches and SM measurements.
- Often limited by imperfect modelling of the jet substructure.

This analysis

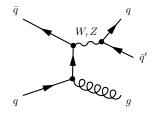
Measurement of groomed jet mass of fully hadronic W(qq') + jets events in bins of p_T :

- Standard candle jet substructure observable to help constrain MC models.
- First determination of *W* mass in hadronic decay at a hadron collider.

Introduction N-subjettines: W-jet mass Goal Methodology Results

Summary & Conclusions

Back-up


Boosted W-jet groomed mass

Measurements of groomed mass

quark/gluon jets	top quark jets	W jets
SMP-16-010 [7]	TOP-21-012 [8]	SMP-24-012

Motivation

- Such jets are subject to many direct BSM searches and SM measurements.
- Often limited by imperfect modelling of the jet substructure.

This analysis

Measurement of groomed jet mass of fully hadronic W(qq') + jets events in bins of p_T :

- Standard candle jet substructure observable to help constrain MC models.
- First determination of W mass in hadronic decay at a hadron collider.

Introduction N-subjettiness W-jet mass Goal Methodology Results

Summary & Conclusions

Back-up

Strategy

Apply standard jet reconstruction and calibration procedures at CMS to a data set obtained from single fat jet triggers with p_T^{HLT} > 450, 500 GeV (p_T^{offline} > 575, 650 GeV).

Classification

$N_2^{1,\mathrm{DDT}}$	

- **2 Groom** jets with soft-drop (SD) algorithm (cf. introduction).
- Classify events using two different mass-decorrelated jet substructure taggers [9].
- ④ Use a data-driven approach to control the large QCD background.
- **5 Unfold** using a maximum-likelihood approach.

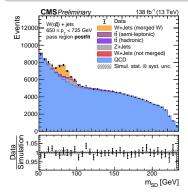
Boosted W-jet groomed mass

Introduction N-subjettiness W-jet mass Goal Methodology

Strategy

Summary & Conclusions

Back-up


Apply standard jet reconstruction and calibration procedures at CMS to a data set obtained from single fat jet triggers with p_T^{HLT} > 450,500 GeV (p₂^{effline} > 575,650 GeV)

- **Groom** jets with soft-drop (SD) algorithm (cf. introduction).
- Classify events using two different mass-decorrelated jet substructure taggers [9].
- Output: Use a data-driven approach to control the large QCD background.
- **6 Unfold** using a maximum-likelihood approach.

Boosted W-jet groomed mass

Classification

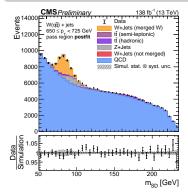
	$N_2^{1,\mathrm{DDT}}$		
	$\varepsilon_{ m W}$ jets	$\varepsilon_{\mathrm{backg.}}$	
pass	18.54%	4.14%	
fail	81.46%	95.86%	

Introduction N-subjettiness W-jet mass Goal Methodology

Summary & Conclusions

Back-up

Strategy Apply standard jet reconstruct calibration procedures at CMS set obtained from single fat jet


with $p_{\rm T}^{\rm HLT} > 450,500 {\rm ~GeV}$ $(p_{\rm T}^{\rm offline} > 575,650 {\rm ~GeV}).$

- **Groom** jets with soft-drop (SD) algorithm (cf. introduction).
- **3** Classify events using two different mass-decorrelated jet substructure taggers [9].
- Output: Use a data-driven approach to control the large QCD background.
- **6 Unfold** using a maximum-likelihood approach.

Boosted W-jet groomed mass

Classification

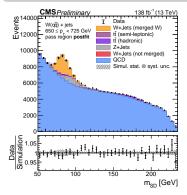
	$P_{ m Wvs.QCD}^{ m PN,DDT}$		
	$\varepsilon_{ m W~jets}$	$\varepsilon_{\rm backg.}$	
pass	38.20%	4.20%	
fail	61.80%	95.80%	

Introduction N-subjettiness W-jet mass Goal Methodology

Strategy

Summary & Conclusions

Back-up


● Apply standard jet reconstruction and calibration procedures at CMS to a da set obtained from single fat jet triggers with p_T^{HLT} > 450, 500 GeV (n^{offline} > 575, 650 GeV)

- **Groom** jets with soft-drop (SD) algorithm (cf. introduction).
- Classify events using two different mass-decorrelated jet substructure taggers [9].
- Use a data-driven approach to control the large QCD background.
- **5 Unfold** using a maximum-likelihood approach.

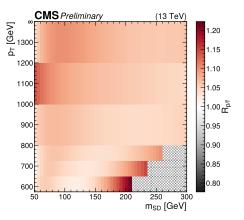
Boosted W-jet groomed mass

Classification

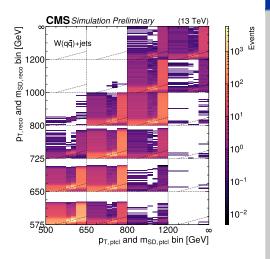
		$P_{ m Wvs.QCD}^{ m PN,DDT}$		
		$\varepsilon_{ m W~jets}$	$\varepsilon_{ m backg.}$	
-	pass	38.20%	4.20%	
	fail	61.80%	95.80%	

Introduction N-subjettines W-jet mass Goal Methodology Results

Summary & Conclusions

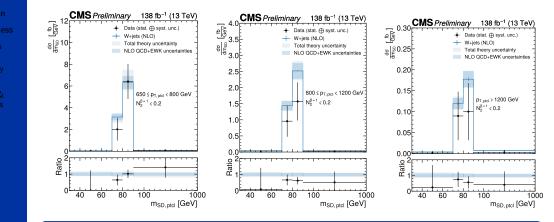

Back-up

Background


- Shape of m_{SD} for the multijet background is assumed to be the same in the pass and fail regions [10, 11].
 - \longrightarrow Ideally, it should only be a single factor.
- However, tagging efficiency varies with p_T & mass-decorrelation scheme is not perfect.
 - \longrightarrow 2D transfer function

Boosted W-jet groomed mass

- N-subjettiness W-jet mass Goal Methodology Results
- Summary & Conclusions
- Back-up

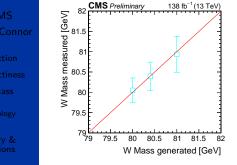


Boosted W-jet groomed mass

Unfolding

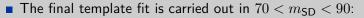
- Nominal unfolding using $P_{\rm Wvs.QCD}^{\rm PN,DDT}$ in the background estimation,
- An explicit matching to a particle-level W(qq') is required, including N₂¹ < 0.2 in the particle-level definition.</p>
- Unfolding is implemented as a likelihood function in COMBINE [12], treating all systematic uncertainties with nuisance parameters.
- SVD regularisation is applied (minimising the global correlation coefficient).

Boosted W-jet groomed mass



Results

- The background stays the dominant limitation, especially in the tails.
- Both PYTHIA & MADGRAPH+PYTHIA describe the peak reasonably well.


Results

Boosted W-jet groomed mass

Extracting the W boson mass

- We generate several PYTHIA 8 samples with different W mass hypotheses: 79.0, 80.0, **80.385**, 81.0, 82.0 GeV
- We exclude the two outermost mass bins, which suffer from large uncertainties from the hadronization model.
- We have checked that the fit closes using MADGRAPH5_AMC@NLO+PYTHIA/HERWIG as pseudodata.

$$m_{\rm W} = 80.77 \pm 0.57 \; {\rm GeV}$$

Results

Summary & Conclusions

Summary & Conclusions

P.L.S. Connor

Introduction N-subjettiness W-iet mass

Summary & Conclusions

Back-up

- CMS has just released two new results on jet substructure using full Run-2.
- A better understanding of jet substructure provides further insights on QCD and helps improve our searches for new physics.
- The first result consists in a measurement of an OC basis of *N*-subjettiness in pure QCD jets, boosted *W*-jets, and boosted top-jet events.
- The second result extends a series of differential measurements of jet groomed mass, here for boosted W-jets, and includes a measurement of the W mass in the hadronic channel.

Merci de votre attention!

Summary & Conclusions

Summary & Conclusions

CMS has just released two new results on jet substructure using full Run-2.

- A better understanding of jet substructure provides further insights on QCD and helps improve our searches for new physics.
- The first result consists in a measurement of an OC basis of *N*-subjettiness in pure QCD jets, boosted W-jets, and boosted top-jet events.
- The second result extends a series of differential measurements of jet groomed mass, here for boosted W-jets, and includes a measurement of the W mass in the hadronic channel.

Merci de votre attention!

Back-up

Acronyms References Visiting car

9, 10,

		MET	missing transverse energy. 11–14
AK	anti k_T algorithm. 11–14	ML	machine learning. 9, 10
BSM	beyond the SM. 20–22	ос	overcomplete. 9, 10, 32, 33
CMS	Compact Muon Solenoid. 1, 6, 7, 23–26, 32, 33	PS	parton shower. 6, 7
ECF	energy correlator function. 6, 7	QCD	quantum chromodynamics. 3, 4, 6, 7, 9 23–26, 32, 33
GNN	graph neural network. 6, 7		
IRC	infrared and collinear safe. 5	SD	soft-drop. 6, 7, 23–27, 30
		SM	standard model. 20–22
MC	Monte Carlo. 9, 10, 20–22	SVD	singular value decomposition. 28

References I

CMS P.L.S. Connor

Acronyms References Visiting care

- Jesse Thaler and Ken Van Tilburg. "Identifying Boosted Objects with N-subjettiness". In: JHEP 03 (2011), p. 015. DOI: 10.1007/JHEP03(2011)015¹. arXiv: 1011.2268 [hep-ph]¹.
- [2] Jesse Thaler and Ken Van Tilburg. "Maximizing Boosted Top Identification by Minimizing N-subjettiness". In: JHEP 02 (2012), p. 093. DOI: 10.1007/JHEP02(2012)093 . arXiv: 1108.2701 [hep-ph] .
- [3] Andrew J. Larkoski et al. "Soft Drop". In: JHEP 05 (2014), p. 146. DOI: 10.1007/JHEP05(2014)146 ℃. arXiv: 1402.2657 [hep-ph] ℃.
- [4] Andrew J. Larkoski, Gavin P. Salam, and Jesse Thaler. "Energy Correlation Functions for Jet Substructure". In: JHEP 06 (2013), p. 108. DOI: 10.1007/JHEP06(2013)108 arXiv: 1305.0007 [hep-ph] .
- [5] Huilin Qu and Loukas Gouskos. "ParticleNet: Jet Tagging via Particle Clouds". In: Phys. Rev. D 101.5 (2020), p. 056019. DOI: 10.1103/PhysRevD.101.056019 . arXiv: 1902.08570 [hep-ph] .
- [6] Aram Hayrapetyan et al. "Measurement of multidifferential cross sections for dijet production in proton-proton collisions at $\sqrt{s} = 13$ TeV". In: Eur. Phys. J. C 85.1 (2025), p. 72. DOI: 10.1140/epjc/s10052-024-13606-8 C. arXiv: 2312.16669 [hep-ex] C.

Acronyms References Visiting care [7] Albert M. Sirunyan et al. "Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at $\sqrt{s} = 13$ TeV". In: JHEP 11 (2018), p. 113. DOI: 10.1007/JHEP11(2018)113 C. arXiv: 1807.05974 [hep-ex] C.

References II

[8] Armen Tumasyan et al. "Measurement of the differential tt production cross section as a function of the jet mass and extraction of the top quark mass in hadronic decays of boosted top quarks". In: Eur. Phys. J. C 83.7 (2023), p. 560. DOI: 10.1140/epjc/s10052-023-11587-8 C. arXiv: 2211.01456 [hep-ex] C.

[9] James Dolen et al. "Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure". In: JHEP 05 (2016), p. 156. DOI: 10.1007/JHEP05(2016)156 . arXiv: 1603.00027 [hep-ph] .

[10] Albert M Sirunyan et al. "Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √s = 13 TeV". In: Phys. Rev. D 100.11 (2019), p. 112007. DOI: 10.1103/PhysRevD.100.112007 . arXiv: 1909.04114 [hep-ex] .

[11] Armen Tumasyan et al. "Search for Higgs Boson and Observation of Z Boson through their Decay into a Charm Quark-Antiquark Pair in Boosted Topologies in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV". In: Phys. Rev. Lett. 131 (2023), p. 041801. DOI: 10.1103/PhysRevLett.131.041801 . arXiv: 2211.14181 [hep-ex]

Acronyms References Visiting car

[12] Aram Hayrapetyan et al. "The CMS Statistical Analysis and Combination Tool: Combine". In: Comput. Softw. Big Sci. 8.1 (2024), p. 19. DOI: 10.1007/s41781-024-00121-4^C. arXiv: 2404.06614 [physics.data-an]^C.

Acronyms References Visiting card

Patrick L.S. CONNOR

patrick.connor@cern.ch 🗹 CERN, 40/A1-016

