

Observation of a family of all-charm tetraquarks with spin-2 and positive parity at CMS

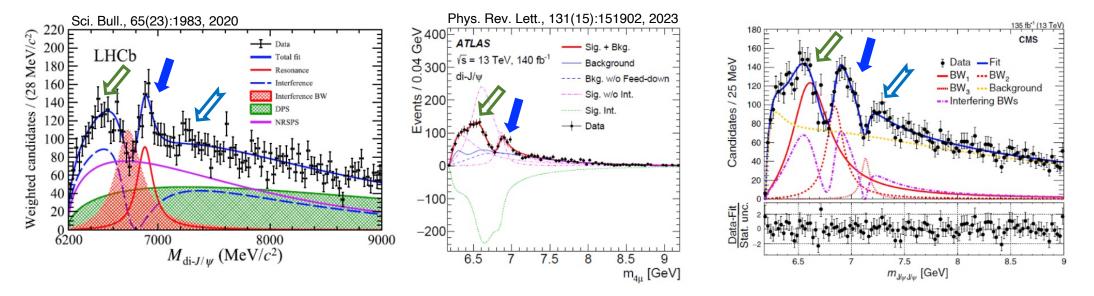
Xining Wang

Tsinghua University / Nanjing Normal University

D Motivation

 $\Box J/\psi J/\psi$ updated result

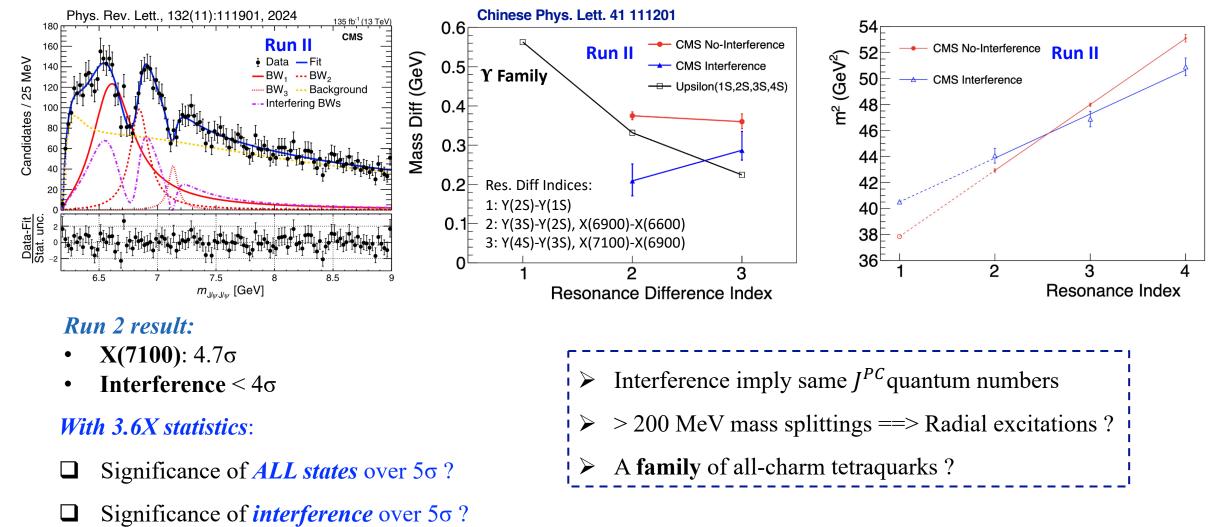
 $\Box J/\psi\psi(2S)$ result


Spin-parity measurement

G Summary

* All-charm Tetraquark on LHC in J/ψJ/ψ channel

□ ALL exp observe X(6900) + additional structure

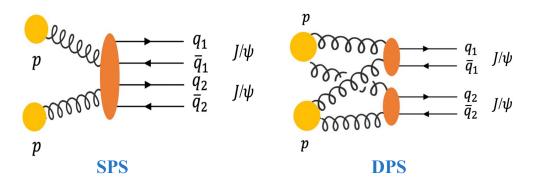

- Hump @ 6.6 GeV: Different modeling
- Hint (a) 7.2 GeV: LHCb not consider; ATLAS 3σ hint in $J/\psi\psi(2S)$
- □ All exp use interference, but in diff ways
 - LHCb: extra BW interfere with SPS, X(6900) NOT interfering!
 - ATLAS and CMS: different multi-resonance interference
- □ All exp see a threshold excess, NOT explained! Classified as background

Only CMS claimed X(6600) & X(7100)

 \sim A number of unresolved questions !

Status

A FAMILY of all-charm tetraquark states with same J^{PC} ?


Datasets, MC, trigger, and event selection

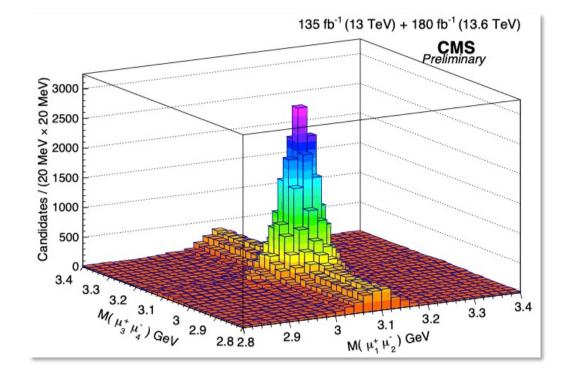
Data samples (315 fb⁻¹)

- Run 2: 135 fb⁻¹ data taken in 2016, 2017 and 2018
- Run 3: 180 fb⁻¹ data taken in 2022, 2023 and 2024

Signal and Background simulated events:

- Signal $X \to J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$ by JHUGen
- NRSPS and Feeddown by Pythia8
- **DPS** event-mixing
- Feeddown: $X(6900) \rightarrow J/\psi\psi(2S) \rightarrow J/\psi J/\psi + anything$

***** Triggers


- **Run 2 trigger:**
 - Level 1 requirements: 3 muons
 - $2.95 < M(\mu^+\mu^-) < 3.25 \text{ GeV}$
 - $p_T(\mu) > 3.5 \text{ GeV}$
- Run3 trigger (new):
 - Level 1 requirements: 2 muons
 - $0.2 < M(\mu^+\mu^-) < 8.5 \text{ GeV}$
 - One muon $p_T(\mu) > 4$ GeV; The other $p_T(\mu) > 3$ GeV
 - $p_T(\mu^+\mu^-) > 4.9 \text{ GeV}$
- > increase 30% $J/\psi J/\psi$ statistics compared to old trigger

Event selection

• Follow Run 2 cuts + new trigger for Run 3

$J/\psi J/\psi$ yield: two-dimensional fit

□ Luminosity Run 2 135 fb⁻¹ Run 3 180 fb⁻¹ □ $J/\psi J/\psi$ yield Run 2: 12622 ± 165 Run 2+3 44936 ± 692 □ $J/\psi J/\psi$ yield per unit luminosity Run 2 ~ 93 events / fb⁻¹ Run 3 ~ 177 events / fb⁻¹

\blacktriangleright Run 2+3 $J/\psi J/\psi$ yield is 3.6X of Run 2

Run 2+3 *luminosity* is 2.3X of Run 2

Signal and background models

- Signal shape: Relativistic Breit-Wigner
- Background component: NRSPS + NRDPS + Feeddown + Comb + BW0

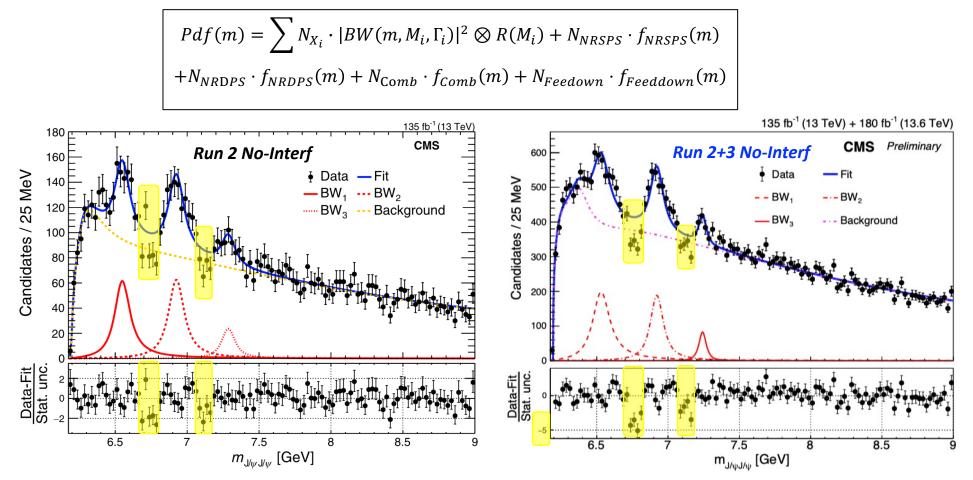
$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)},$$
$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \frac{m_0}{m} \left(B'_L(q, q_0, d)\right)^2$$

- Non-interference model:
 - Signal-hypothesis: NRSPS + NRDPS + Comb + Feeddown + BW0 + BW1 + BW2 + BW3

$$Pdf(m) = \sum N_{X_i} \cdot |BW(m, M_i, \Gamma_i)|^2 \otimes R(M_i) + N_{NRSPS} \cdot f_{NRSPS}(m)$$
$$+ N_{NRDPS} \cdot f_{NRDPS}(m) + N_{Comb} \cdot f_{Comb}(m) + N_{Feedown} \cdot f_{Feeddown}(m)$$

***** Interference model:

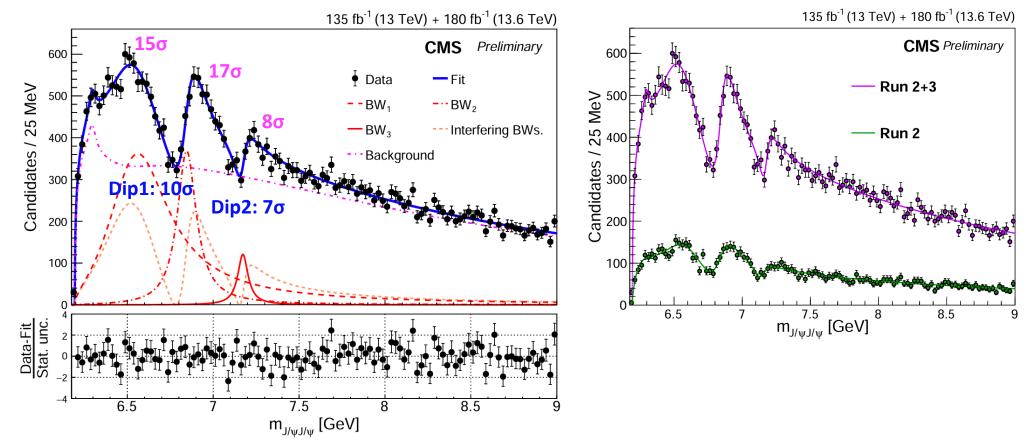
Signal-hypothesis: NRSPS + NRDPS + Comb + Feeddown + BW0 + BW123 Interf. Term


$$\begin{split} Pdf(m) &= N_{X_0} \cdot |BW_0|^2 \otimes R(M_0) \\ &+ N_{X \text{ and interf}} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2 \\ &+ N_{NRSPS} \cdot f_{NRSPS}(m) + N_{DPS} \cdot f_{DPS}(m) \\ &+ N_{Feeddown} \cdot f_{Feeddown}(m) + N_{Comb} \cdot f_{Comb}(m), \end{split}$$

Run 2 & 3 no-interference fit result

No-interference model:

• Signal-hypothesis: NRSPS + NRDPS + Comb + Feeddown + BW0 + BW1 + BW2 + BW3



> Dips poorly described — *no-Interf. model no longer sufficient* !

Run 2 & 3 interference fit result

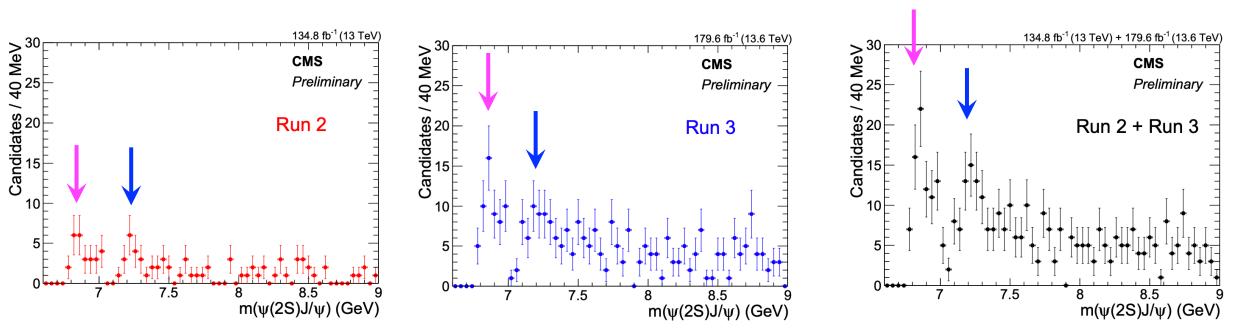
***** Interference model with Run 2 + 3:

- > All states and dips well above 5σ !
- Quantum interference among structures validated!

Run 2 & 3 interference fit result

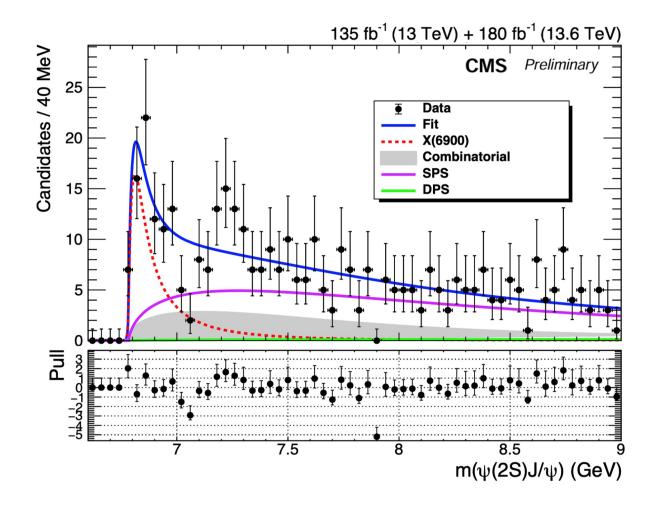
Dominant sources	Δm_{BW_1}	$\Delta\Gamma_{BW_1}$	$\Delta m_{\rm BW_2}$	$\Delta\Gamma_{BW_2}$	$\Delta m_{\rm BW_3}$	$\Delta\Gamma_{BW_3}$
Signal shape	25	52	2	11	3	5
NRSPS shape	3	7	<1	1	<1	5
DPS shape	$<\!\!1$	5	<1	<1	<1	1
Combinatorial bkg shape	<1	22	<1	2	<1	4
Feeddown	<1	1	<1	<1	<1	<1
Mass resolution	4	58	15	7	12	5
Efficiency	<1	4	<1	<1	<1	<1
Without BW ₀	<1	29	2	3	2	1
Total uncertainty	25	87	15	14	13	10

Params	M(BW1)	Г(BW1)	M(BW2)	Г(BW2)	M(BW3)	Г(ВW3)
Run II & III Interf. [MeV]	$6593^{+15}_{-14}\pm25$	$446^{+66}_{-54}\pm87$	$6847 \pm 10 \pm 15$	$135^{+16}_{-14}\pm14$	$7173^{+9}_{-10}\pm13$	$73^{+18}_{-15}\pm10$
Run II Interf. [MeV]	6638^{+43+16}_{-38-31}	$440^{+230+110}_{-200-240}$	6847^{+44+48}_{-28-20}	191^{+66+25}_{-49-17}	7134_{-25-15}^{+48+41}	97^{+40+29}_{-29-26}

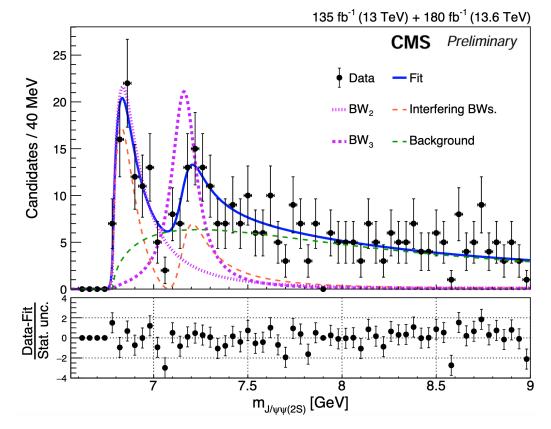

- ✤ VS. Run 2 result
 - ✓ Statistical uncertainty reduced by a factor of 3
 - ✓ Systematic uncertainty reduced by about a factor of 2
 - ✓ Large mass splittings (> 200MeV) still exist, with improved precision

Explore $J/\psi\psi$ (2S) channel with Run 2 & 3 data

- X(6900) near threshold obvious
- X(7100) is visible
- According to $J/\psi J/\psi$ channel, should be an X(6900) and an X(7100)
- Signal dominated by Run 3
- Two dimensional fit for $J/\psi\psi(2S)$ yield $\sim 2.6 X of Run 2$


Run 2 $\sim 109 \pm 14$ Run 3 $\sim 281 \pm 22$ Run 2+3 $\sim 386 \pm 26$

Explore $J/\psi\psi$ (2S) channel with Run 2 & 3 data

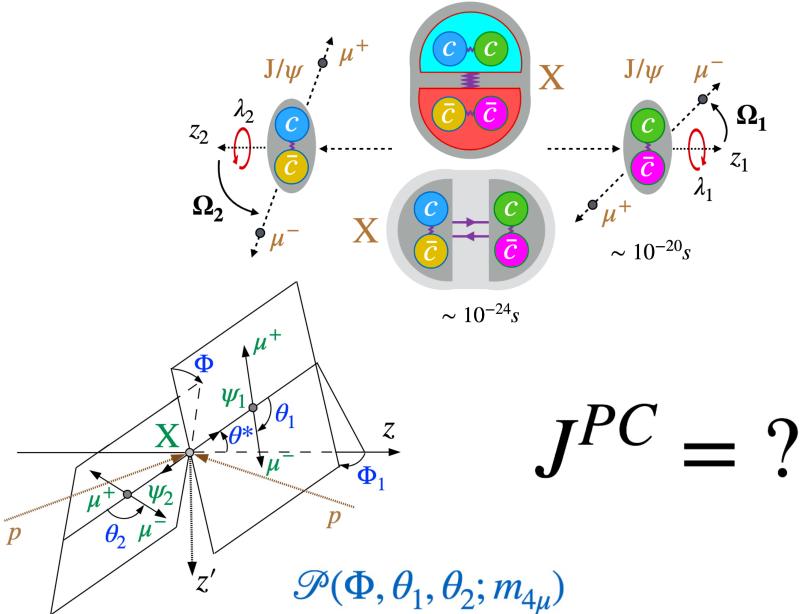

* Only consider X6900 in $J/\psi\psi(2S)$ channel

M(X(6900)) = 6841 ± 14 MeV Γ(X(6900)) = 150 ± 28 MeV Significance of X(6900) = 7.5 σ

Explore $J/\psi\psi$ (2S) channel with Run 2 & 3 data

- Significance of $X(6900) = 7.9\sigma$
- > Significance of $X(7100) = 4.0\sigma$

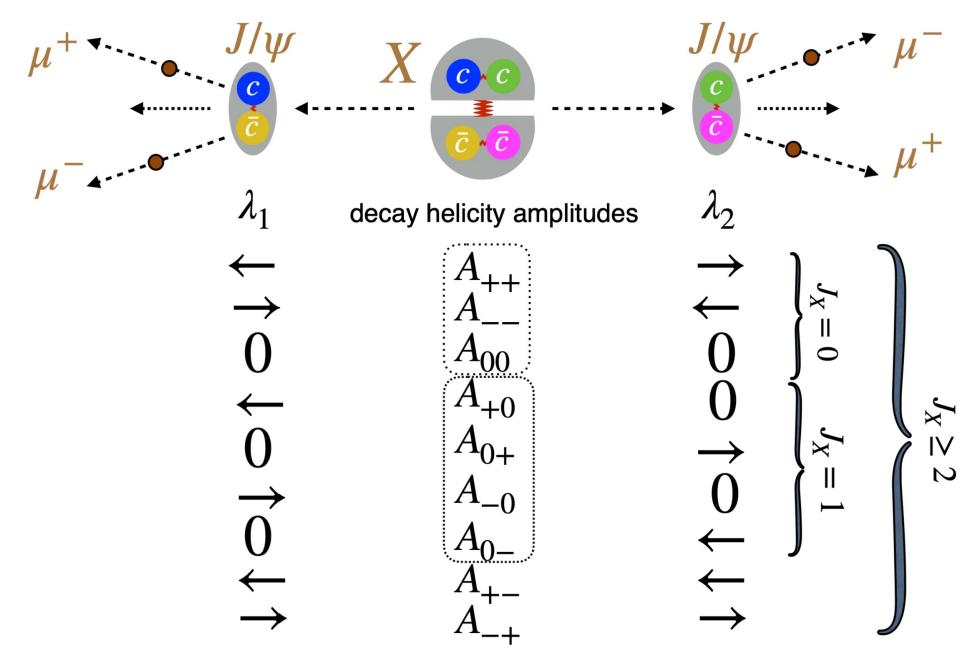
ATLAS only claim X(6900) 4.7 σ in J/ $\psi\psi$ (**2S**) channel


Dominant sources	$M_{X(6900)}$	$\Gamma_{X(6900)}$	$M_{X(7100)}$	$\Gamma_{X(7100)}$
Signal shape	±29	±79	±22	±131
NRSPS shape	± 14	± 54	± 14	±29
Combinatorial background shape	± 15	± 51	± 15	± 20
Mass resolution	± 5	± 7	± 5	± 9
Efficiency	±7	± 27	±7	± 10
Add X(6600) peak	± 104	± 14	± 61	± 31
Fitter bias	+9 -11	$^{+43}_{-37}$	$^{+29}_{-14}$	$^{0}_{-80}$
Tatal	+110	+120	+74	+140
Total	-110	-120	-70	-160

Params	<i>J/ψψ</i> (28) [MeV]	<i>J/ψJ/ψ</i> [MeV]
M(BW2)	$6876^{+46+110}_{-29-110}$	$6847 \pm 10 \pm 15$
Γ(BW2)	$253^{+290+120}_{-100-120}$	$135^{+16}_{-14}\pm14$
M(BW3)	7169^{+26+74}_{-52-70}	$7173^{+9}_{-10}\pm13$
Γ(BW3)	$154^{+110+140}_{-82-160}$	$73^{+18}_{-15}\pm10$

✓ Consistent with J/ψJ/ψ result!
✓ Confirmed in a different channel!

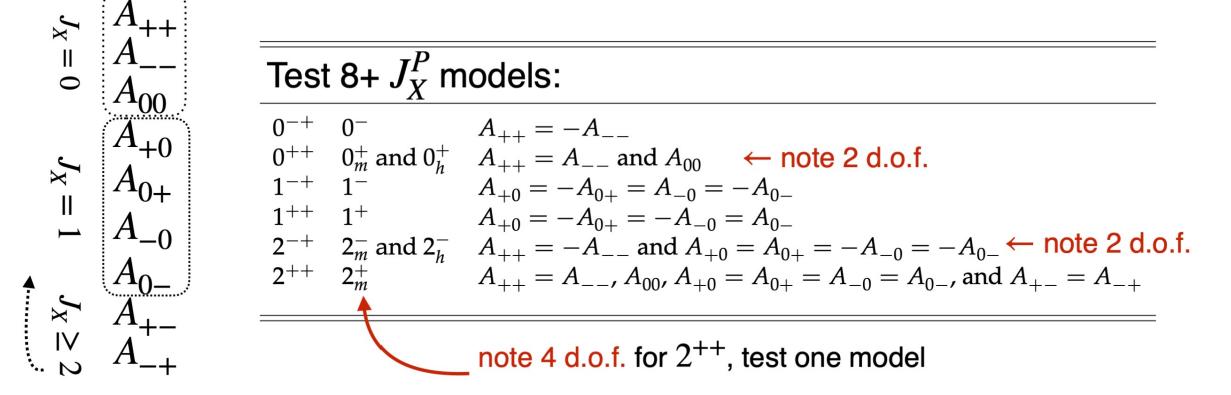
Spin parity analysis



eriment at the LHC, CERN orded: 2016-Aug-13 06:39:34.675328 G vent / LS: 278769 / 13873923 / 76

14

J/ψ polarizations



J/ψ polarizations

- Symmetries:
 - angular momentum: $|\lambda_1 \lambda_2| \leq J$
 - identical J/ψ bosons $A_{\lambda_1\lambda_2} = (-1)^J A_{\lambda_2\lambda_1}$

- *P* & *C* conserved in QCD: $X \text{ with definite } J^{PC}$ C = + 1 $A_{\lambda_1 \lambda_2} = P (-1)^J A_{-\lambda_1 - \lambda_2}$

А

A

 $\mathbf{)}\mathbf{0}$

+0

)+

-0

Angular Analysis

$$\begin{split} F_{0,0}^{J}(\theta^{*}) &\times \left[4|A_{00}|^{2} \sin^{2} \theta_{1} \sin^{2} \theta_{2} + 2|A_{++}||A_{--}| \sin^{2} \theta_{1} \sin^{2} \theta_{2} \cos(2\Phi - \phi_{--} + \phi_{++}) \right] \\ &+ |A_{++}|^{2} \left(1 + 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1} \right) \left(1 + 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2} \right) \\ &+ |A_{--}|^{2} \left(1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1} \right) \left(1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2} \right) \\ &+ 4|A_{00}||A_{++}|(A_{f_{1}} + \cos \theta_{1}) \sin \theta_{1}(A_{f_{2}} + \cos \theta_{2}) \sin \theta_{2} \cos(\Phi + \phi_{++}) \\ &+ 4|A_{00}||A_{--}|(A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1}(A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(\Phi - \phi_{--}) \\ &+ F_{1,1}^{J}(\theta^{*}) \times \left[2|A_{+0}|^{2} (1 + 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1}) \sin^{2} \theta_{2} + 2|A_{0-}|^{2} \sin^{2} \theta_{1} (1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \\ &+ 2|A_{-0}|^{2} (1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1}) \sin^{2} \theta_{2} + 2|A_{0-}|^{2} \sin^{2} \theta_{1} (1 + 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \\ &+ 4|A_{+0}||A_{0-}|(A_{f_{1}} + \cos \theta_{1}) \sin \theta_{1}(A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(\Phi + \phi_{+0} - \phi_{0-}) \\ &+ 4|A_{0+}||A_{0-}|(A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1}(A_{f_{2}} + \cos \theta_{2}) \sin \theta_{2} \cos(\Phi + \phi_{0-} + \phi_{0-}) \\ &+ 4|A_{0-}||A_{-0}|(A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1}(A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{0-}) \\ &+ 4|A_{0-}||A_{-0}|(A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1}(A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{0-}) \\ &+ 4|A_{0-}||A_{-0}|(A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1}(A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{0-}) \\ &+ 4|A_{0-}||A_{-0}|(A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1}(A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{0-}) \\ &+ 4|A_{0-}||A_{-0}|(A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1}(A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{0-}) \\ &+ 4|A_{0-}||A_{-0}|(A_{f_{1}} - \cos \theta_{1} + \cos^{2} \theta_{1})(1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \\ &+ F_{2,2}^{J}(\theta^{*}) \times \left[|A_{++}|^{2}(1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1})(1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \\ &+ |A_{-+}|^{2}(1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1})(1 + 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \right] \\ &+ F_{2,-}^{J}(\theta^{*}) \times \left[2|A_{+-}||A_{-+}| \sin^{2} \theta_{1} \sin^{2} \theta_{2} \cos(4\Psi - \phi_{+-} + \phi_{-+}) \right] + \text{other 26 interference terms for spin} \\ &\text{wher } \Psi = \Phi_{1} + \Phi/2$$

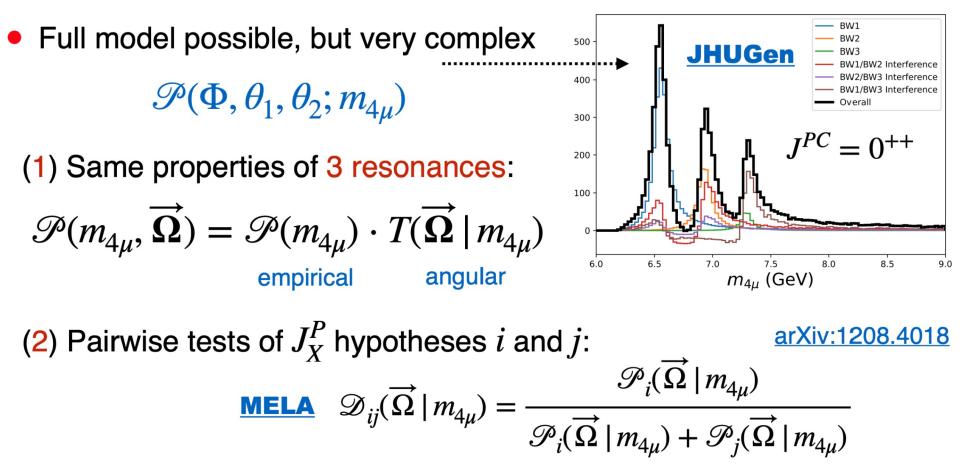
Valid for any J

Lorentz-Invariant Amplitude

• Expect three X resonances to have the same tensor structure:

$$A(X_{j=2} \rightarrow V_{1}V_{2}) = 2c_{1}(q^{2})t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2c_{2}(q^{2})t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu,\beta} + c_{3}(q^{2})\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2,\mu} + f^{*2,\mu\nu}f^{*1,\mu}) + c_{4}(q^{2})\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{3}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2,\mu\nu}f^{*1,\mu}) + c_{4}(q^{2})\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{3}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{6}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}(e_{1}^{*\nu}e_{2}^{*\alpha} - e_{1}^{*\alpha}e_{2}^{*\nu}) + c_{7}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}e_{1}^{*}e_{2}^{*}) + c_{8}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{10}(q^{2})\frac{\tilde{t}_{\mu\mu}\tilde{q}^{\mu}}{\Lambda^{2}}e_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}(e_{1}^{*\nu}(qe_{2}^{*}) + e_{2}^{*\nu}(qe_{1}^{*})) ; 2\frac{1}{h}$$

$$(A_{++} = -A_{--}) \qquad (A_{+0} = A_{0+} = -A_{-0} = -A_{0-})$$

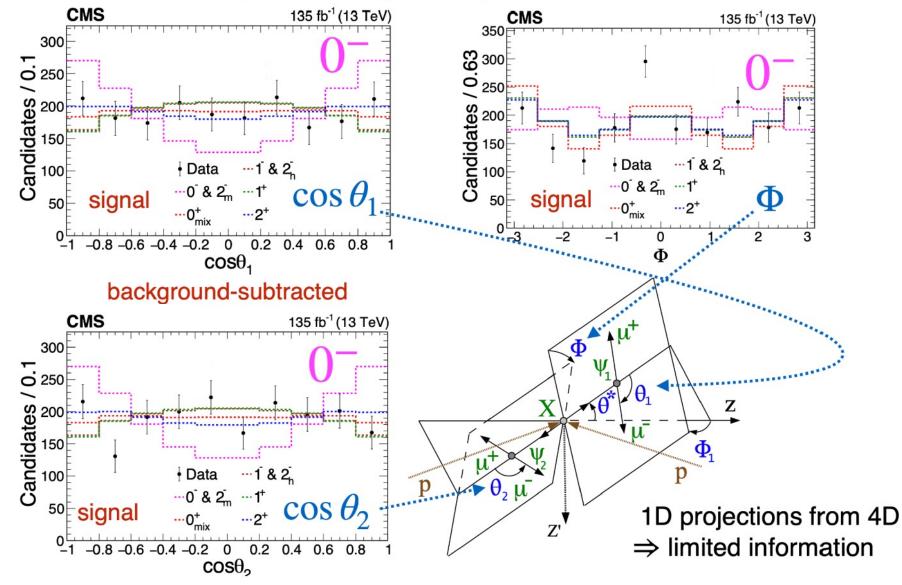

$$+ \qquad \text{minimal representative model including all amplitudes:}$$

$$4 \text{ d.o.f.} A_{00}, A_{++} = A_{--}; A_{+0} = A_{0+} = A_{-0} = A_{0}, A_{+-} = A_{-+} \qquad \text{for } 2^{++} (\text{or } J \geq 2)$$

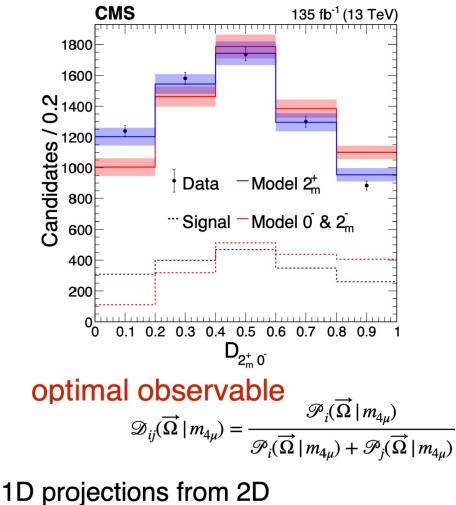
basis of 2⁺⁺ could be equivalent to 2_m^+ , 0_m^+ , 0_h^+ , 1^+ if data consistent with $2_m^+ \Rightarrow$ unambiguously 2⁺⁺ (or $J \ge 2$)

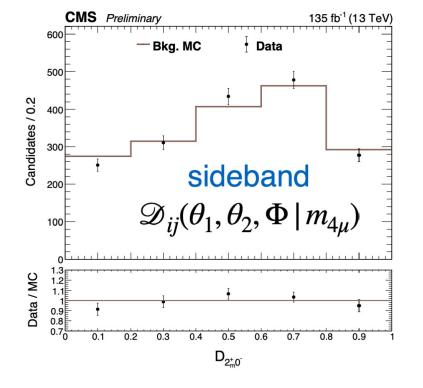
Simplification in Angular Analysis

1 optimal observable


• Final 2D model: $\mathscr{P}_{ijk}(m_{4\mu}, \mathscr{D}_{ij}) = \mathscr{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathscr{D}_{ij} \mid m_{4\mu})$

Production angles not use Consistent with unpolarized (backup)


decay angles (consistency check): distinguish models



Optimal Observable

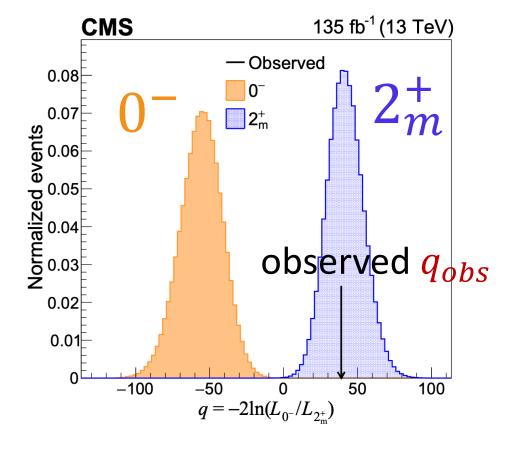
• 1D projection of data, optimal for $j = 0^{-}(2_m^{-})$ vs $i = 2_m^{+}$

background model from MC control in sidebands systematic variations

 \Rightarrow limited information

Statistical Analysis

 0^{-} vs 2_{m}^{+}


 2_{m}^{+}

- Hypothesis test with toy MC for $J_1^P = 2_m^+ \text{ vs } J_2^P = 0^-$
- Test statistic $q = -2\ln(\mathcal{L}_{J_2^P}/\mathcal{L}_{J_1^P})$
- Consistency of data with J_1^P/J_2^P using p-value: $p = P(q \le q_{obs}|J_1^P + bkg)$ $p = P(q \ge q_{obs}|J_2^P + bkg)$
- Significance:

Converted from p-value via Gaussian one-sided tail integral

• Confidence level

$$CL_{s} = \frac{P(q \ge q_{obs}|J_{2}^{P} + bkg)}{P(q \ge q_{obs}|J_{1}^{P} + bkg)}$$

Observed

Z-score

 0^{-} 2.7 × 10⁻¹³ 7.2 6.5 × 10⁻¹⁴

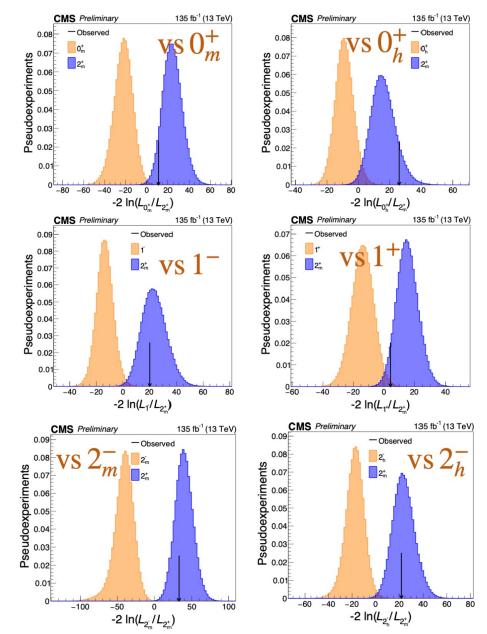
0.2

p-value

 4.2×10^{-1}

Z-score

7.4


Expected

p-value

0.50

Hypothesis test

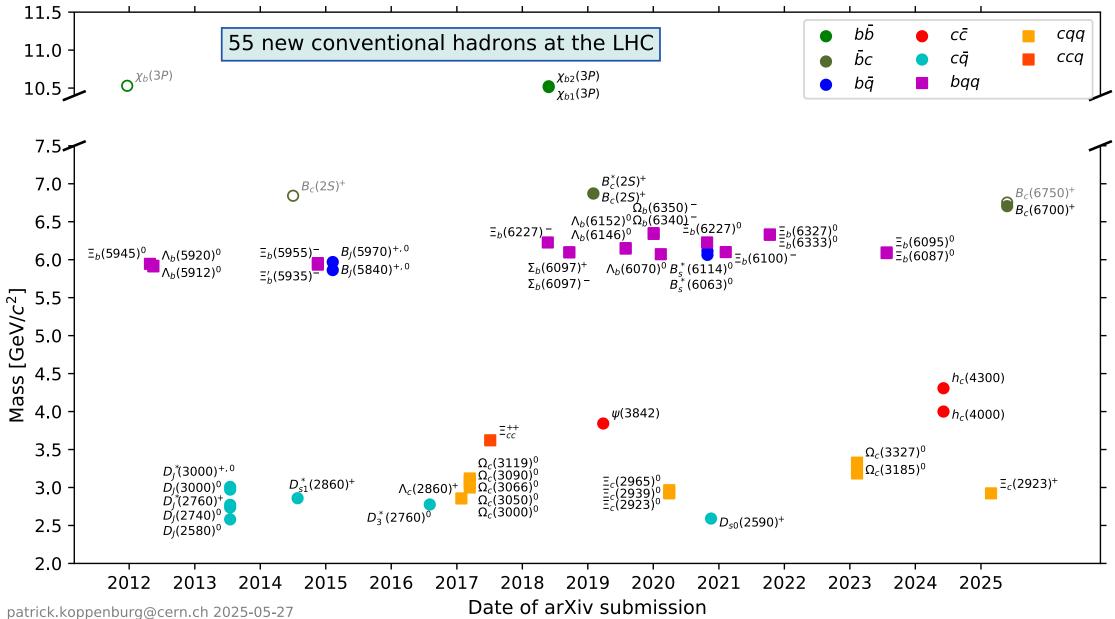
• Combine 2D fit:
$$\mathscr{P}_{ijk}(m_{4\mu}, \mathscr{D}_{ij})$$

 $-J^P = 2_m^+ \mod l survives$
 $J_x^P p - value Z - score reject J_x^P
 $0^- 2.7 \times 10^{-13}$ 7.2
 $0^+ 4.3 \times 10^{-5}$ 3.9
 $0_m^+ 4.3 \times 10^{-5}$ 3.9
 $0_m^+ 3.1 \times 10^{-9}$ 5.8
 $1^- 8.0 \times 10^{-8}$ 5.2
 $1^+ 4.7 \times 10^{-3}$ 2.6
 $2_m^- 4.1 \times 10^{-12}$ 6.8
 $2_m^- 4.1 \times 10^{-12}$ 6.8
 $2_m^- 2.2 \times 10^{-8}$ 5.5
 $J = 2 \text{ consistent, rare}$$

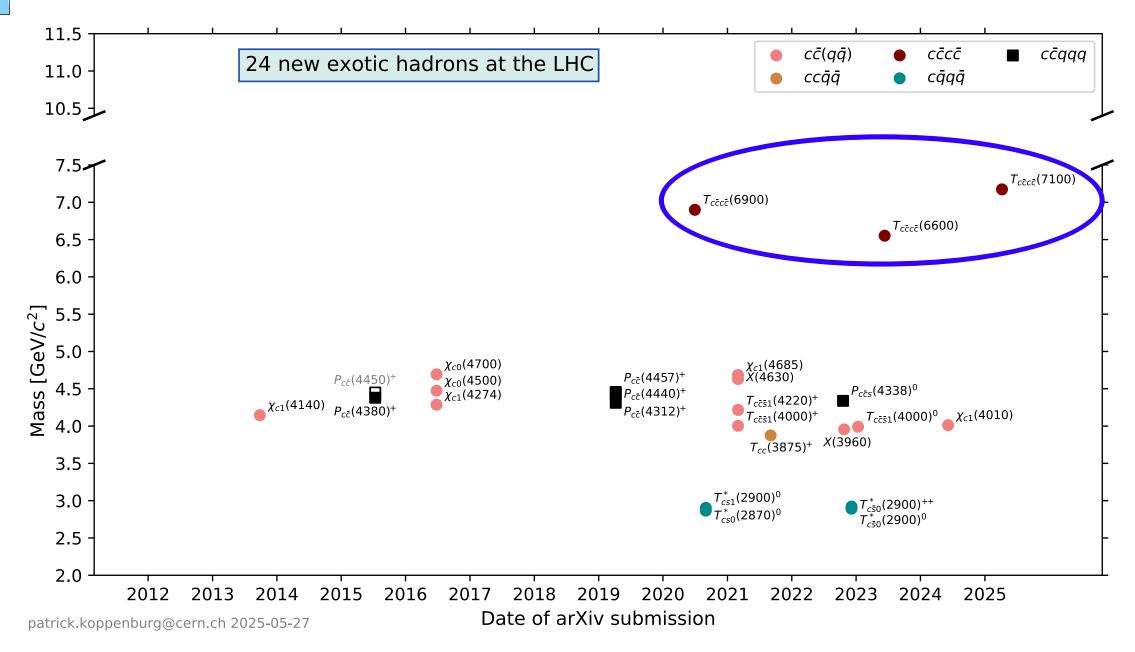
Summary

- * A family of all-charm tetraquarks with $J^{PC} = 2^{++}$
 - > Three structures X(6600), X(6900), X(7100) established with significances > 5σ
 - The first two analyses including 2024 data among LHC 3 exps
 - Precision improved by factor of 3
 - Multiple states makes comparisons possible
 - > Quantum interference among structures validated with significances > 5σ
 - ==> States have common J^{PC}, measured as 2⁺⁺
 - Large mass splittings, Regge trajectory
 - ==> radial family of states

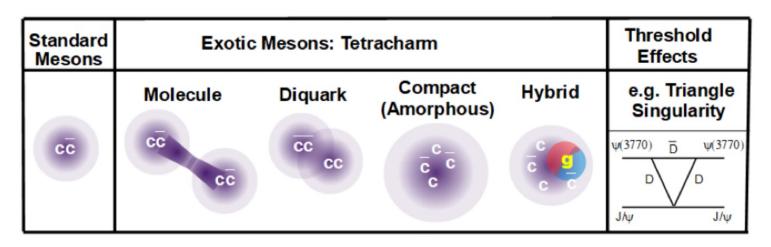
CMS is painting a coherent picture of $J/\psi J/\psi$ structures



BACKUP

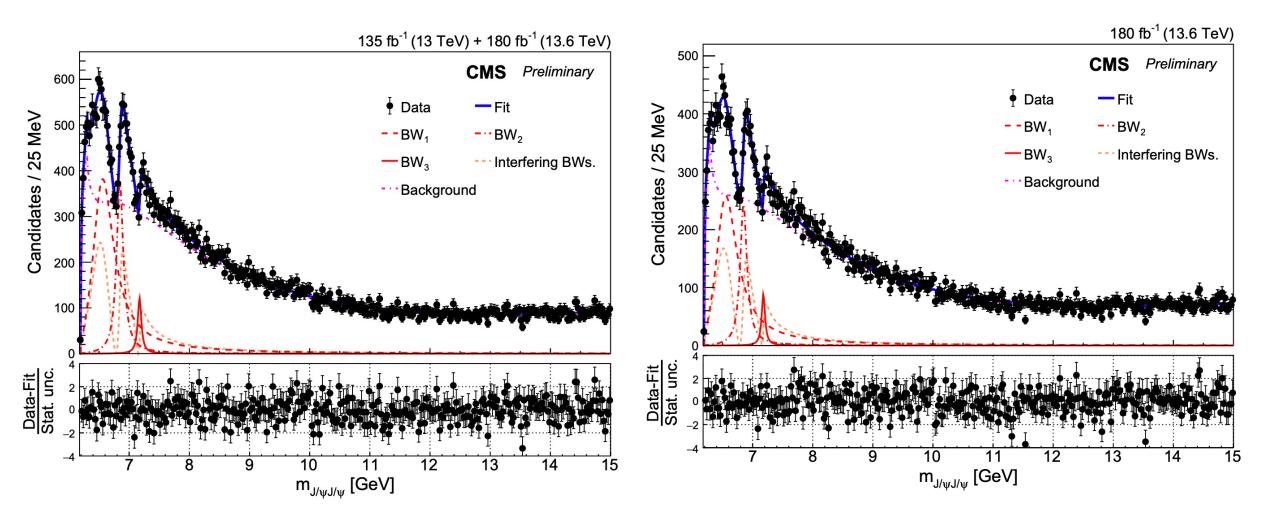


New conventional hadrons at LHC


New exotic hadrons at LHC

CMS

Status

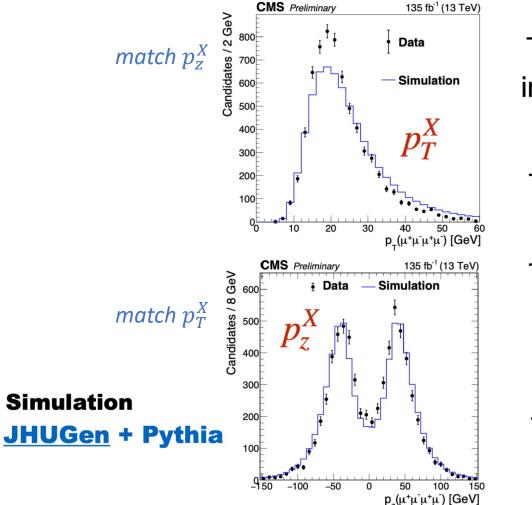

* Models of potential quark configurations for $J/\psi J/\psi$ mesons.

- Meson-meson "molecule" $(c\bar{c} c\bar{c})$
- Pair of diquarks $(cc-c\bar{c}\bar{c})$
- Hybrid with a valence gluon
- Peaks as artifact of dicharmonia production thresholds
-

Family of all-charm tetraquarks with same J^{PC} offers new perspectives on interpretation for exotics

$J/\psi J/\psi$: 6-15 GeV fits

Fit model


□ Final 2D fit model (0⁺ vs. 0⁻): $P(m_X, D_{0^-}) =$ $+N_{(interf-BW1BW2BW3)} * [f_{0_m^+} * P_{0_m^+(interf-BW1BW2BW3)}(m_X, D_{0^-})$ $+(1 - f_{0_m^+}) * P_{0^-(interf-BW1BW2BW3)}(m_X, D_{0^-})]$ $f_{0_m^+}$: fraction of 0_m^+ signal component

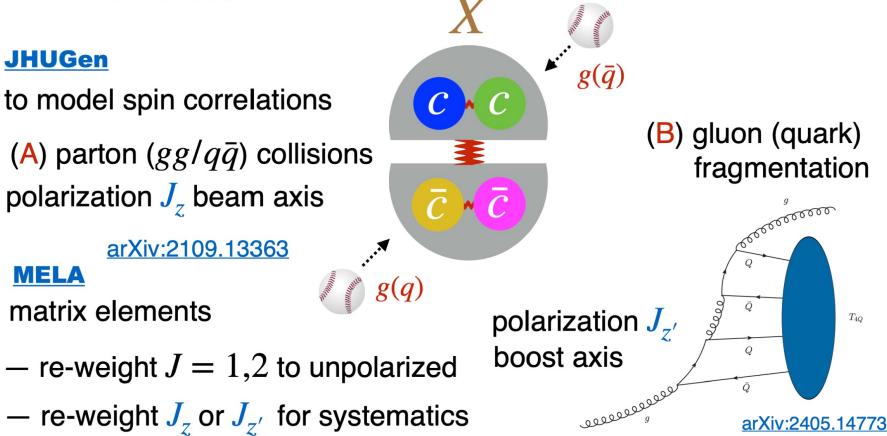
Concept of Analysis: Production

• We do not know the production mechanism

— empirical model to reproduce p_T^X and p_z^X in data

- tune **Pythia** to match p_T^X in sideband and signal region

- fine-tune re-weighting p_T^X


- residual p_T^X and p_z^X consistency tests coverage in systematics

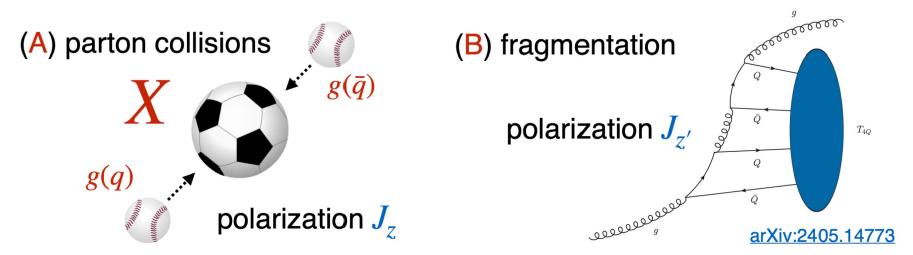
essential to model
 detector acceptance

Concept of Analysis: Production

- We do not know the production mechanism — empirical model to reproduce p_T^X and p_z^X in data
- Monte Carlo tools:

Angular Analysis

- Observations: $-1^+ \& 1^-$ identical in 1D, differ in 3D
 - -0^+ & 1^+ cannot be distinguished from general 2^+
 - unique to 2^+ (or $J \ge 2$): A_{+-} , A_{-+} , "mixture" of $0^+ \& 1^+$
 - $-0^{-} \& 2_{m}^{-}$ identical
 - -1^{-} & 2_{h}^{-} identical
 - unique to 2^- : "mixture"
 - $\text{ for } J \ge 3$ $J^P \Leftrightarrow 2^P$
 - polarized $J \ge 1$ unique Φ_1, θ^*


not used here...

arXiv:1001.3396

$$\begin{split} F_{0,0}^{J}(\theta^{*}) & \times \left[4 |A_{00}|^{2} \sin^{2} \theta_{1} \sin^{2} \theta_{2} + 2 |A_{++}| |A_{--}| \sin^{2} \theta_{1} \sin^{2} \theta_{2} \cos(2\Phi - \phi_{--} + \phi_{++}) \right] \\ & + |A_{++}|^{2} \left(1 + 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1} \right) \left(1 + 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2} \right) \\ & + |A_{--}|^{2} \left(1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1} \right) \left(1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2} \right) \\ & + |A_{--}|^{2} \left(1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1} \right) \left(1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2} \right) \\ & + 4 |A_{00}| |A_{++}| (A_{f_{1}} + \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} + \cos \theta_{2}) \sin \theta_{2} \cos(\Phi + \phi_{++}) \\ & + 4 |A_{00}| |A_{--}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(\Phi - \phi_{--}) \\ & + F_{1,1}^{J}(\theta^{*}) \times \left[2 |A_{+0}|^{2} (1 + 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1}) \sin^{2} \theta_{2} + 2 |A_{0-}|^{2} \sin^{2} \theta_{1} (1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \\ & + 2 |A_{-0}|^{2} (1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1}) \sin^{2} \theta_{2} + 2 |A_{0+}|^{2} \sin^{2} \theta_{1} (1 + 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \\ & + 4 |A_{+0}| |A_{0-}| (A_{f_{1}} + \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(\Phi + \phi_{+0} - \phi_{0-}) \\ & + 4 |A_{0+}| |A_{0-}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} + \cos \theta_{2}) \sin \theta_{2} \cos(\Phi + \phi_{+0} - \phi_{0-}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} + \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{+0} + \phi_{0+}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{0-}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{0-}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{0-}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1}) \sin \theta_{1} (A_{f_{2}} - \cos \theta_{2}) \sin \theta_{2} \cos(2\Psi - \phi_{0-} + \phi_{0-}) \\ & + 4 |A_{0-}| |A_{-0}| (A_{f_{1}} - \cos \theta_{1} + \cos^{2} \theta_{1}) (1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \\ & + F_{2,2}^{J}(\theta^{*}) \times \left[|A_{+-}|^{2} (1 - 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1}) (1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \right] \\ & + F_{2,-2}^{J}(\theta^{*}) \times \left[2 |A_{+-}| |A_{-+}| \sin^{2} \theta_{1} \sin^{2} \theta_{2} \cos(4\Psi - \phi_{+-} + \phi$$

Polarization in Production

• Helicity amplitudes appear in production. For parton collision:

- spin-0: unpolarized in any case, e.g. $gg \rightarrow X$
- spin-1: $q\bar{q} \rightarrow X$ produce $J_z = \pm 1$ (not 0!)

- spin-2: $gg \rightarrow X$ produce $J_z = 0, \pm 2$, minimal coupling: $J_z = \pm 2$ $q\bar{q} \rightarrow X$ produce $J_z = \pm 1$

• Similar ideas in fragmentation of g or Q

- re-weight MELA to any model: unpolarized, polarized z' or z

Lorentz-Invariant Amplitude

• Expect three *X* resonances to have the same tensor structure:

$$A(X_{J=0} \rightarrow V_{1}V_{2}) = \begin{pmatrix} a_{1}(q^{2})m_{V}^{2}e_{1}^{*}e_{2}^{*} + a_{2}(q^{2})f_{\mu\nu}^{*(1)}f^{*(2),\mu\nu} + a_{3}(q^{2})f_{\mu\nu}^{*(1)}\tilde{f}^{*(2),\mu\nu} \end{pmatrix}$$

$$O_{m}^{+} O_{h}^{+} O_{h}^{-}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

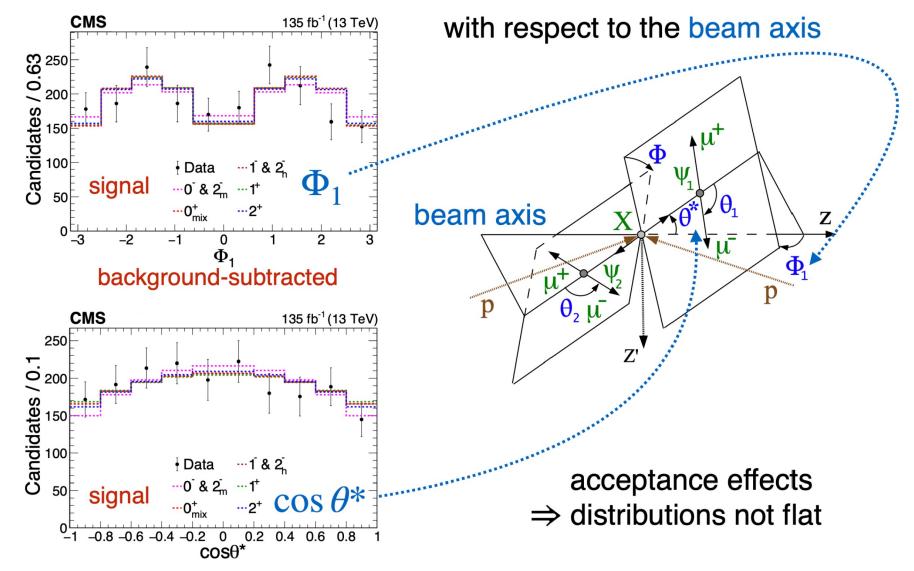
$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

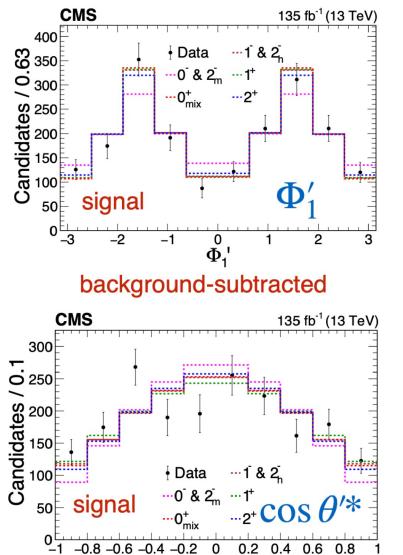
$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

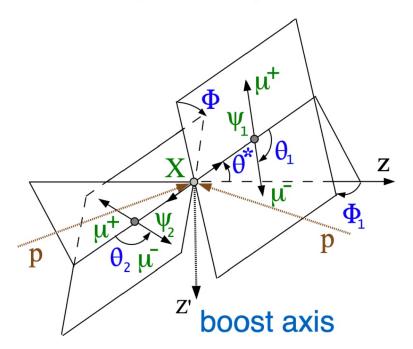

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{1} = A_{0} = A_{0} + e_{0} + e_{0}$$

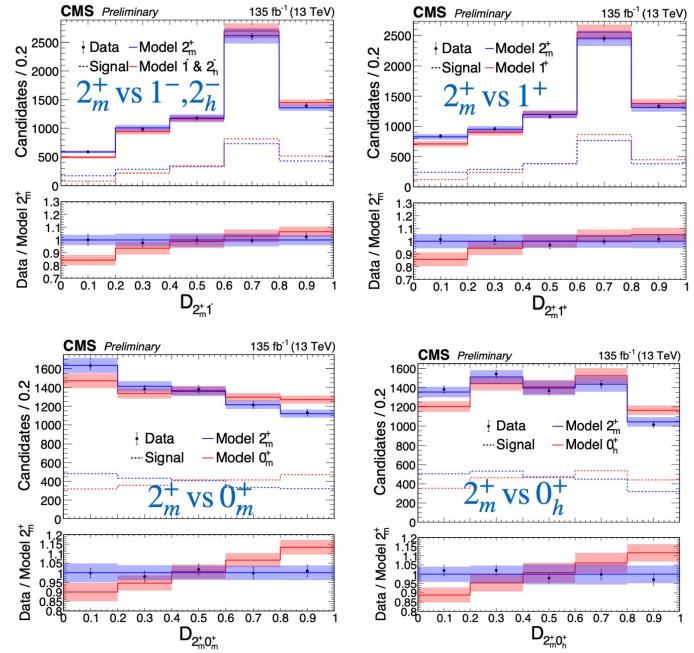
Production Angles


(4) production angles consistent with unpolarized resonances

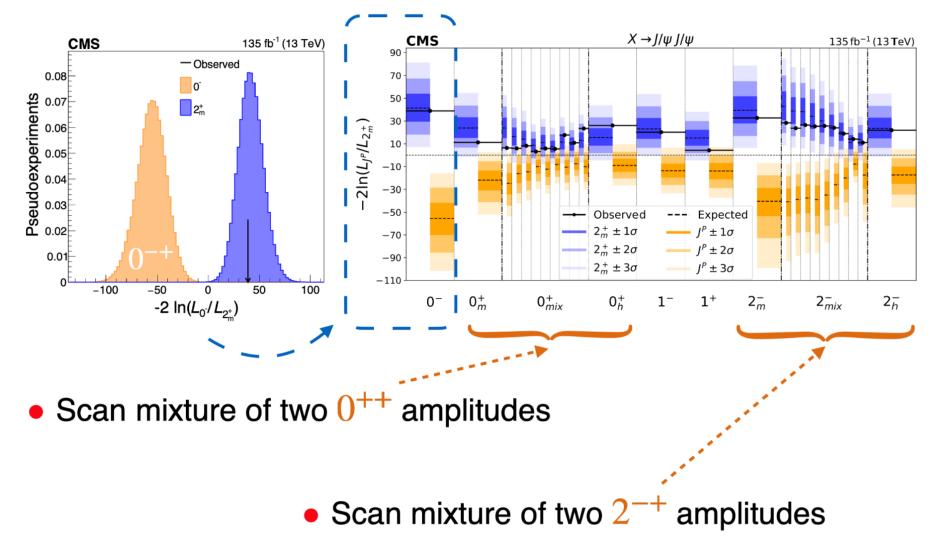
Production Angles


(4) production angles consistent with unpolarized resonances

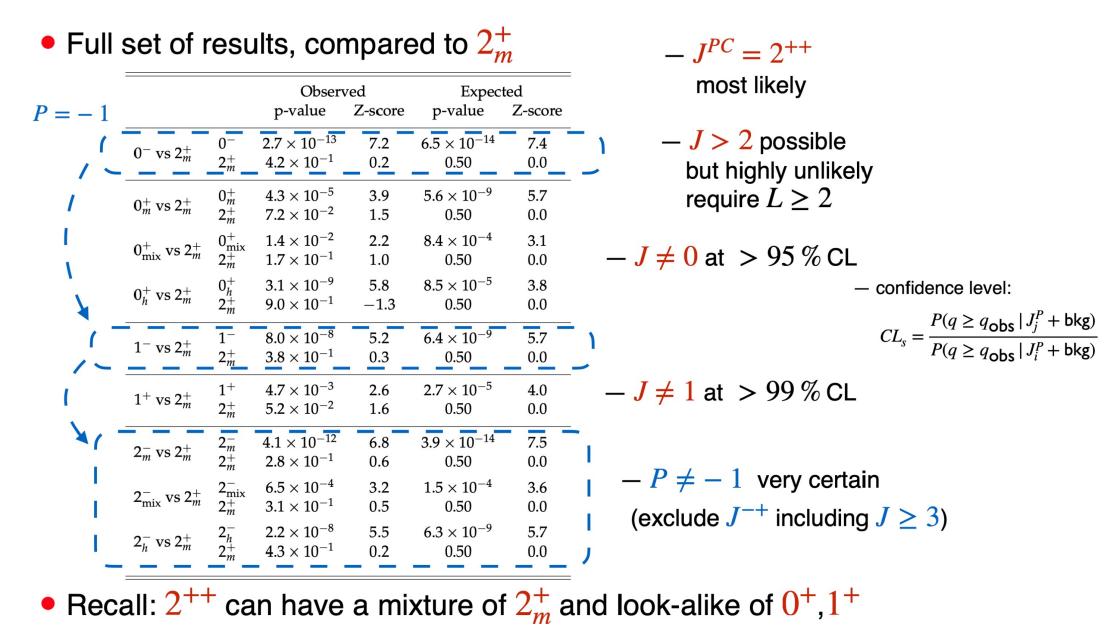
 $\cos\theta'^*$


with respect to the boost axis

does not prove unpolarized



Discriminant Distributions


Hypothesis test

• Data are consistent with a 2^{++} model, inconsistent with others

Summary of Results

