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Motivation
• QCD governs strong interactions in proton–proton collisions at LHC


• Jets stem from the emission of a quark or gluon + parton shower (quark/gluon 
radiation) + hadronisation 
 
→ Involves perturbative (calculable from first principles) and  
non-perturbative (from phenomenological models) regimes 
 
→ Jet studies (cross-section, substructure) probe QCD across both regimes 

• V + jets measurements sensitive to QCD and EW corrections


→  Provide valuable input for refining theoretical predictions 
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Outline
• Measurement of collinear W boson emission from high energy jets at  

√𝒔= 13 TeV with the full Run-2 ATLAS dataset (arxiv:2412.11644)


• First measurement of the LJP for jets initiated by  
W bosons and top-quarks, at √𝒔= 13 TeV with the full Run-2 ATLAS dataset (Eur. Phys. J. 
C 85 (2025) 416)


• Measurement of cross section ratios of inclusive jet multiplicity bins, at √𝒔= 13 TeV 
with the full Run-2 ATLAS dataset (Phys. Rev. D110, 072019 (2024))


• Differential cross-section measurement of Z+b, Z+2b and Z+c processes, at √𝒔= 13 TeV 
with the full Run-2 ATLAS dataset (Eur. Phys. J. C 84 (2024) 984)

3

https://arxiv.org/abs/2412.11644
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Collinear W+Jets
arxiv:2412.11644

• Measurement of collinear W boson emission from high energy jets at  
√𝒔= 13 TeV with the full Run-2 ATLAS dataset ( )


• Goal: test EW and pQCD in advantageous final state (clean signature, 
large cross-section)


• Inclusive and differentially in  (sensitive to collinear 
enhancement in the production rate),  


• Comparing the results with NLO-merged W+jets MC, with and without 
NLO EW corrections (Sherpa, Madgraph) and fixed order W+1jet 
NNLO predictions (MCFM)

140 fb−1

ΔRmin(ℓ, jet100
i )

pℓν
T
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Typically collinear topologies

Typically back-to-back 
topologies

https://arxiv.org/abs/2412.11644
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• Collinear/back-to-back region defined wrt 


• Total cross-section for each region:


• Experimental uncertainties ~3-4%, dominated 
by JES, JER, b-tagging, background modelling


• Sherpa, MG uncertainties larger, dominated by  
QCD scale uncertainties, MCFM uncertainties 
of same order of magnitude as exp unc


• Good data/theory agreement for all regions


• NLO EW corrections improve agreement for 
Sherpa but leads to underestimation of data  
by MCFM

Collinear W+Jets
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Collinear W+Jets
• Differential cross-sections


• ~5-15% experimental unc


• Inclusion of NLO EW  
corrections in Sherpa  
improve agreement with  
data in the collinear region 

• MCFM underestimates data 
for 


• Inclusion of NLO EW corrections in MCFM significantly improve agreement with data 
for large values of  


→ Provide insights for improving QCD modelling & MC generator tuning

ΔRmin > π
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Eur. Phys. J. C 85 (2025) 416

• First measurement of the LJP for jets initiated by  
W bosons and top-quarks, at √𝒔= 13 TeV with the  
full Run-2 ATLAS dataset ( )


• 2D representation of the jet substructure 

• Displays momentum fraction  and opening 
angle  of emissions inside a jet


• Proxy for kinematics of parton showers and hadronisation,  
factorise QCD effects 

• Built by reclustering emissions with Cambridge-Aachen algorithm  
(angular ordered) following the core branch, fill the LJP at each step


• W boson: large mass, colour-singlet

140 fb−1

z
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• Using  events, selecting W-initiated jets from  
 decay with selection on the jet mass and 

closeness to b-tagged jet 

• Experimental uncertainties ~10-40% dominated 
by signal modelling uncertainties 


• Sensitivity to W decay into highly boosted quarks 
in the hard and wide-angle emission region  
(Decay products have )


• Other densely populated region corresponds to 
subsequent emissions of softer QCD radiations

tt̄
t

ΔR ∝ m/pT

Lund jet plane 
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Lund jet plane 
• Comparison with various MC event generator setup using 

different matrix-element, parton-shower and hadronisation 
models, quantified with  test


• No generator agrees with the measurement across  
the whole LJP (p-values < 1%), better agreement in 
the subregions (consistent with other LJP  
measurements) 

→  Useful for improving the tuning of MC  event  
generators by targeting the parameters controlling  
sources of radiation that are poorly modelled in the  
LJPs
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Phys. Rev. D110, 072019 (2024)

• Measurement of cross section ratios of inclusive jet multiplicity bins, at √𝒔= 13 TeV 
with the full Run-2 ATLAS dataset ( ), and comparison with NNLO predictions 

• Direct sensitivity to  , cancellation of NP and PDF effects 

• Differentialy in variables sensitive to the energy scale of hard-scattering process or 
angular distribution of hadronic energy flow in the final state 

→ Input for improvement of theoretical predictions and MC generators,  extraction 

140 fb−1

αS

αS
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Jet cross section ratios R3/2 =
σ≥3j

σ≥2j

, sensitive to fixed-order effectsHT,2 = pT,1 + pT,2
, sensitive to PDF, VBF/VBS modellingmjj

https://arxiv.org/abs/2405.20206


•  a function of 


•  cut determines sensitivity to resummation  
effects (final state characterised by two different  
scales)


• NLO predictions from NLOJet++, NNLO from  
Czakon et al. + NP multiplicative corrections


• NNLO gives accurate description of value and  
shape, NLO tends to overestimate


• NNLO slightly overestimates where resummation effects plays a more important role 
(larger  lower  cuts)

R3/2 HT,2

pT,3

HT2 pT,3

Jet cross section ratios
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Jet cross section ratios
•  a function of 


• Large  values target large logarithmic corrections 

• High Energy Jets (HEJ) framework used for prediction 
including resummation to all order in   
(characteristic of VBS/VBF), matched to fixed order 
accuracy 

• Uncertainty from QCD scale variation


• HEJ predictions provide better modelling of  than 
MC generators tested


→  Insights into VBS/VBF modelling

R3/2 mjj

mjj

αS log( ̂s/p2
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Eur. Phys. J. C 84 (2024) 984
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Z + heavy flavour jets

• Differential cross-section measurement of Z+b, Z+2b and Z+c processes, at √𝒔= 13 TeV 
with the full Run-2 ATLAS dataset ( )


• Sensitive to various effects:

• Flavour number schemes:

• 4FS: u, d, s, c in the PDF, massive b-quark

• 5FS: u, d, s, c, b in the PDF


• PDF model and intrinsic charm (IC) in PDF 

→ Input for improvement of theoretical predictions and MC generators tuning

140 fb−1

First measurement in ATLAS!

4FS 5FS

https://arxiv.org/abs/2403.15093
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Z + heavy flavour jets
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• Cross section as a function of  the angle  
between Z and leading b-jet, in Z+b events


• Sensitive to presence of additional radiation,  
distinctive feature of 4FS versus 5FS 

• Systematics dominated by flavour tagging and JES/JER


• Compared with various MC generators, fixed-order  
NLO and NNLO predictions

• MC generators describe data well, except around 

• 5FS provides good description, 4FS underestimates  

data across the full spectra  
→ lack of bg-initiated processes


• NLO discrepancies improved with NNLO

ΔR̃(Z, b)

π



• Cross section as a function of the Feynman-x variable 
 , high values sensitive to IC


• Test of NNLO predictions with various amount of IC 

• Similar trend with respect to data by all IC model 
from NNPDF, CT14, and CT18 families 

• BHPS2 ( ) improves agreement, but large 
measurement and modelling unc  
→ non conclusive yet


• Marginal improvement for more realistic scenarii 
(BHPS1, NNPDF and CT18 families)

xF(c) = 2 |pZ(c) | / s

⟨xC⟩ ∼ 2 %

Z + heavy flavour jets
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Summary
• Recent results from ATLAS measuring a variety observables, enabling precise study of 

QCD in various regimes (and more), including:


• Measurement of collinear W boson emission from high energy jets, sensitive to EW 
and pQCD


• First measurement of the LJP for jets initiated by W bosons, sensitive to modelling of 
 events 

• Measurement of cross section ratios of inclusive jet multiplicity bins, sensitive to , 
fixed-order effects, PDF and VBF/VBS modelling 

• Measurement of differential cross-section measurement of Z+b and Z+c processes, 
sensitive to flavour schemes and intrinsic charm

tt̄

αS
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Thank you for your attention!


