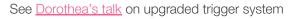
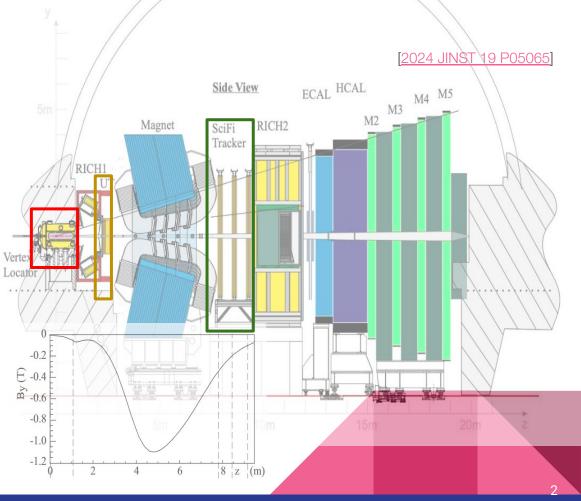
Searches for displaced Scalar decays to di-muons: LHCb's extended reach in Run 3

EPS-HEP 2025 - Marseille

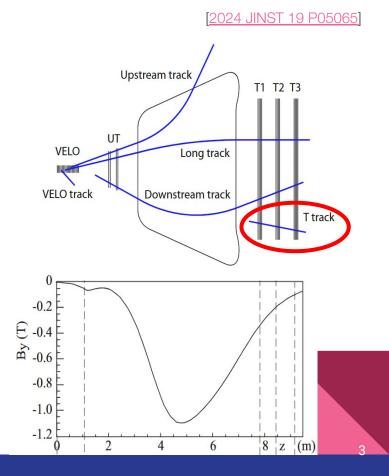



Simone Libralon on behalf of the LHCb Collaboration | Marseille | 9/07/2025

Overview of LHCb

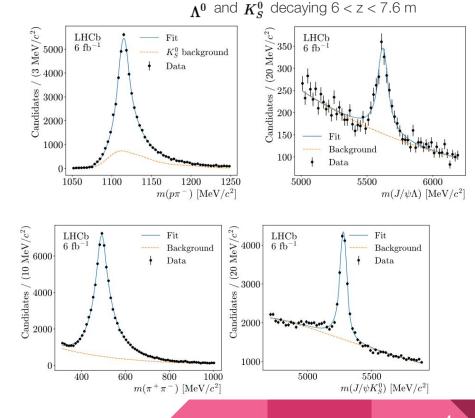
Tracking detectors

- Discrete Tracking System
 - LHCb tracking is made with different detectors along the beam line
- Unique coverage in the forward region, 2 < η < 5, optimised for heavy flavour physics
- Key Components
 - VELO (Vertex Locator) close to the interaction point
 - UT (Upstream Tracker) upstream of magnet
 - SciFi stations downstream of the magnet
 - Magnet region in between
- Fully software-based trigger in Run 3
 - HLT1 (30 MHz in, 1 MHz out)
 - HLT2 (1 MHz in, 10 GB/s out)



Overview of LHCb

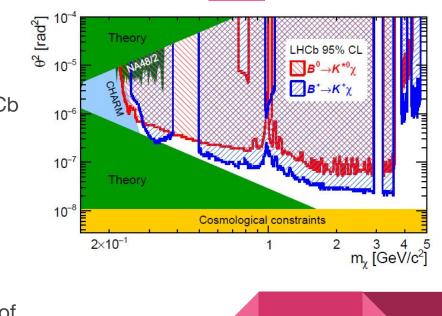
Main Track types


- Tracks classified according to where they have hits
 - **Long tracks** ($z \le 0.4$ m): hits in all tracking sub-detectors
 - Best precision, but can only be used to study decays close to interaction point
 - **Downstream tracks** (0.5 m \le z \le 2.0 m): hits in UT and SciFi, ideal for searches of displaced vertices
 - **T tracks** (2.0 m \le z \le 7.6 m) are reconstructed only with SciFi, not relying on VELO or UT hits
 - Weak magnetic field impacts momentum resolution
- Idea: exploit T tracks for reconstructing LLP decays in magnet region, far from the interaction point
 - Implemented dedicated track and vertex reconstruction for T tracks

Decays in the magnet region

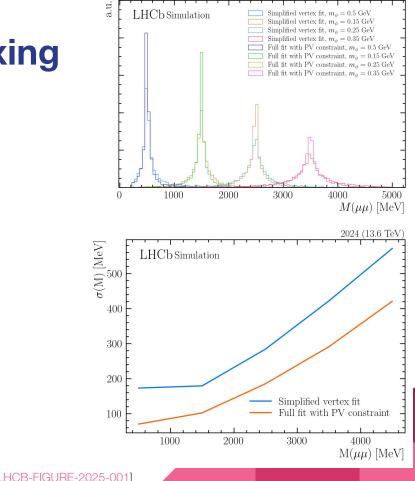
Feasibility

- Strategy initially developed for EDM/MDM measurements with hyperons decaying up to 7.6 m from interaction point [Eur. Phys. J. C 77, 181 (2017)]
- Reconstruct Λ^0 and K^0_S decaying in the magnet region using **only T tracks**
 - Demonstrated in $\Lambda^0_b \to J/\psi \Lambda^0$, $B^0 \to J/\psi K^0_S$ decays in Run 2 data [<u>Eur. Phys. J. C 85, 7 (2025</u>]]
 - Implemented in HLT2 for Run 3
- If Λ^0 and K^0_S with very-displaced vertices can be studied, BSM LLPs with large lifetimes become plausible targets



Application to BSM searches

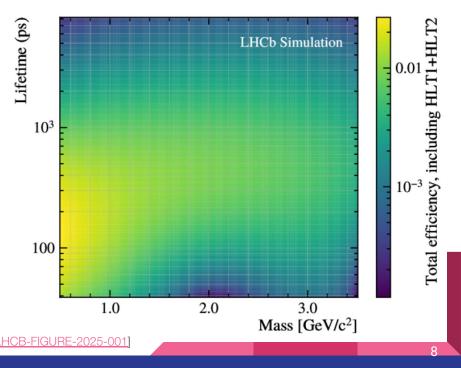
LLPs BSM searches at LHCb


- Long-lived dark scalars already studied in LHCb with Run 1 data, using Long tracks [PhysRevD.95.071101]
 - Fully exclusive approach
 - Small decay volume probed
- New approach for Run 3, exploiting the LHCb tracking system
 - Exploring other track types to increase decay volume, with inclusive approach, probing longer lifetimes
 - See <u>Jiahui's talk</u> on Downstream and BuSca
 - Use T tracks to search for BSM LLPs decaying in the magnet region, between 2.5 and 7.6 metres
 - Expect little-to-no physics background: mis-ID, combinatorial, material interactions
- This opens new, **largely unexplored**, region of LLP parameter space, making LHCb competitive with dedicated experiments

See more details in Lisa's talk

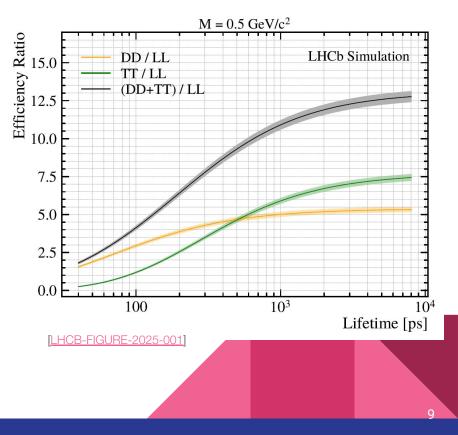
Mass resolution and vertexing

- Mass resolution for decays in the magnet region degrades as the LLP mass increases
 - As mass increases, so does the Q-value of the decay → higher momenta of daughter particles
 - Weak magnetic field over SciFi stations
 → smaller momentum resolution at higher momenta
 - Simplified track vertexing for T tracks at HLT2 to manage throughput
- Offline Improvements
 - Offline refitting with a PV constraint improves mass resolution significantly



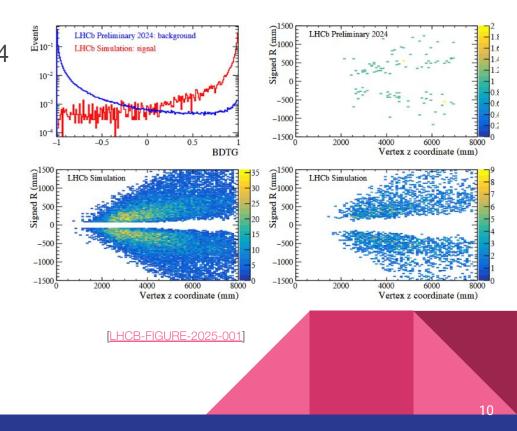
2024 (13.6 TeV

Trigger and Online selection


- Preliminary estimate on MC of acceptance and trigger (HLT1+HLT2) efficiency for $B^0 \rightarrow K^*H'(\rightarrow \mu^+\mu^-)$
- HLT1 efficiency depends on specific B decay
 - Estimated ~40% wrt total events
- **HLT2** selection is **inclusive**: look to all di-muon candidates in magnet region,
 - Optimised selection on kinematics, PID, and track combination, no cuts on LLP mass
 - Estimated 15-35% efficiency wrt HLT1 using $B^0 \rightarrow K^* H' (\rightarrow \mu^+ \mu^-)$

Total (online) efficiency = Acceptance \times (HLT1 efficiency) \times (HLT2 efficiency)

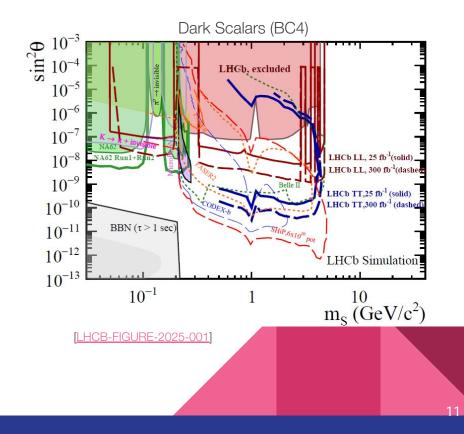
Advantages of using T tracks


- As lifetime increases, the ratio of decays reconstructed with T tracks (TT) increases, with respect to Long (LL) and Downstream (DD)
- Including Downstream and T tracks, can increase the decay volume, accessing higher lifetimes, with larger yields wrt only Long tracks

Offline selection

 Unblinded a small portion of 2024 data (150 pb⁻¹) to study background contributions

- Preliminary **BDT selection**
 - Expect 1-2 event per pb⁻¹ keeping
 60% of signal

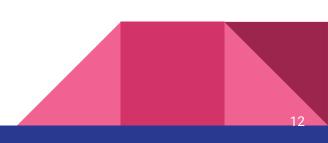

Preliminary Sensitivity Estimate

• Caveats

- HLT1 depends on the rest of the B decay (e.g. K^* in $B^0 \to K^*(\to K^-\pi^+)H'(\to \mu^+\mu^-)$)
 - Efficiency on this channel, could vary up to factor 2 in other channels → under investigation
- Offline selection efficiency not included
- Zero background regime assumed

Key takeaway

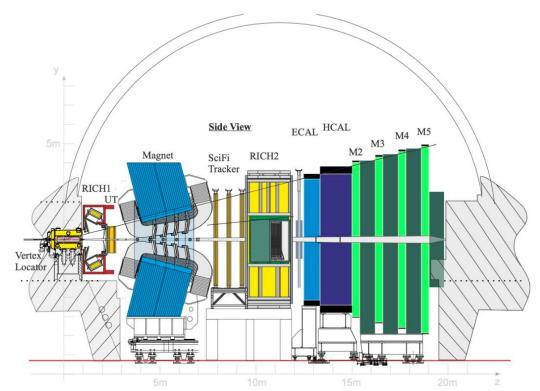
 Studying decays in the magnet region with the current detector and trigger makes
 LHCb competitive with dedicated LLP experiments at smaller couplings in this mass range



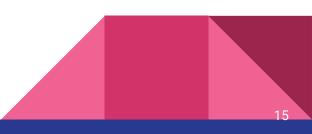
Summary and Conclusions

- Strong motivation to search for Dark Scalars and other LLPs in LHCb's forward geometry
 - T tracks enable reconstruction of decays in the magnet region
 - Unique opportunities with LHCb's PID system
- Feasibility
 - Run 2 studies with and decays show that very displaced particles (2.5 < z < 7.6 m) are achievable targets
 - Data collected in Run 3 using dedicated BSM dimuon LLP triggers
 - Analysis of 2024 data in progress

• Next Steps


• Improve triggers, continue developing analysis

Thanks for the attention!

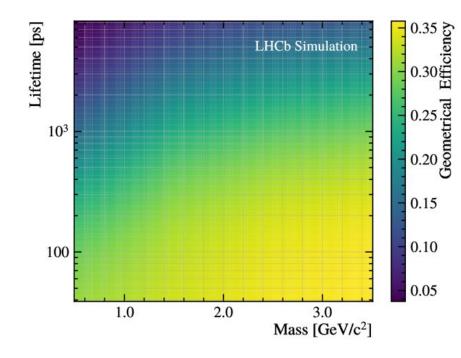

Overview of LHCb

- Single forward-arm spectrometer with focus on c- and b-physics
 - High precision tracking and vertex reconstruction
 - Excellent PID performances
- Phase space region 2 < η < 5 forward of the interaction
 - Complementary to ATLAS and CMS
- Fully software-based two-level trigger:
 - HLT1 (30 MHz in, 1 MHz out)
 - HLT2 (1 MHz in, 10 GB/s out)

Challenges in reconstructing T tracks

- T tracks are very special & challenging objects
 - Low momentum resolution dominated by the low curvature (low intensity magnetic field) and short lever arm in the SciFi region
 - Large extrapolation distances, vertexing and kinematic fitting in a volume with high and non-uniform magnetic field
- Implemented **dedicated particle vertex fitter** for T tracks **in HLT2**, with single **RK extrapolator**, using track states
 - Dedicated reconstruction for T tracks under development in HLT1
- Several bottlenecks using standard tools, for Long tracks
 - Low efficiencies when applying kinematic constraints to LLP
 - Low mass and vertex resolutions

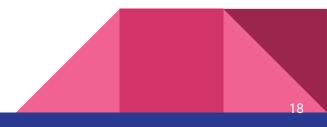
Efficiency maps with simulated events


- Generated MC for $B^0 \to K^*(\to K^-\pi^+)H'(\to \mu^+\mu^-)$ with lifetime = 3 ns
- Reweight MC from generated to alternate lifetimes with the following per-event weights: $\tau_{\text{gen}} e^{-t_i/\tau_{\text{target}}}$

$$w_i = \frac{\text{gen}}{\tau_{\text{target}}} \frac{1}{e^{-t_i/\tau_{\text{gen}}}}$$

- \circ τ_{gen} : generated dark scalar lifetime
- \circ τ_{target} : target lifetime
- τ_i : proper time in the event

Acceptance efficiency



Next steps

• Expect efficiency gains from HLT2 selection optimisation

- Improved topological selection and optimisation of selection algorithms to go in later this year
- Improved vertex reconstruction for T tracks
- Inclusion of **calorimeter information for T tracks** for 2025
 - Improved PID, especially for muons from pions/kaons, hadron identification
- Exploring expansion to other modes
 - Hadron signatures
 - RICH2 detector will benefit, e.g. kaon identification, less performant compared to Long tracks

