
The X17 Search at the MEG II Experiment

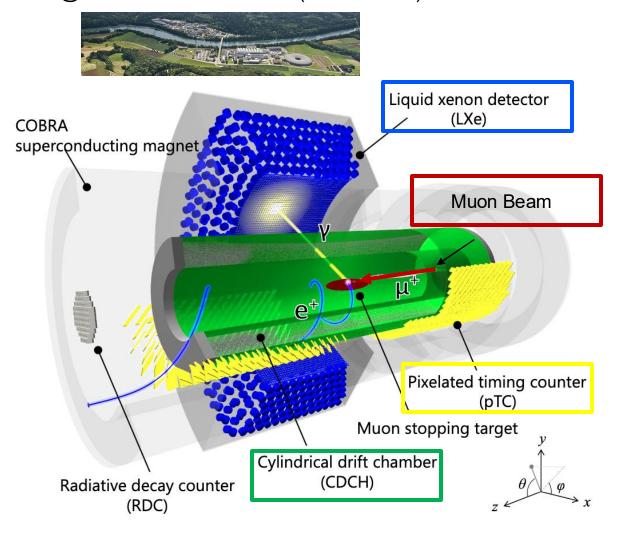
Cecilia Voena

Sapienza University, Physics Department & INFN Roma on behalf of the MEG II collaboration

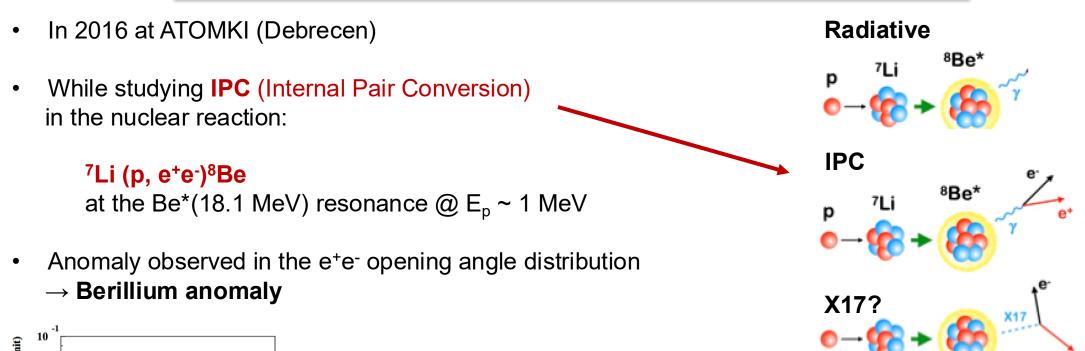
EPS-HEP 2025, 7-11 July Marseille France

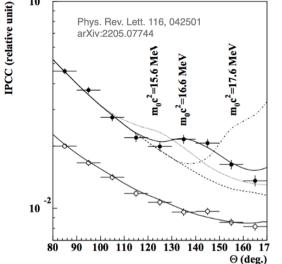
Istituto Nazionale di Fisica Nucleare

The MEG II Experiment


- Search for the charged lepton flavor violating decay μ→eγ (New Physics!)
- Most recent result:

BR(μ →e γ) < 1.5 x 10⁻¹³ @90% C.L. arXiv 2


arXiv 2504.15711 (accepted by EPJC)


- → talk from A. Oya yesterday (T07)
- Although designed for μ→eγ, MEG II can also perform other searches, like X17 (but non only)

now taking data @Paul Scherrer Institute (Switzerland)

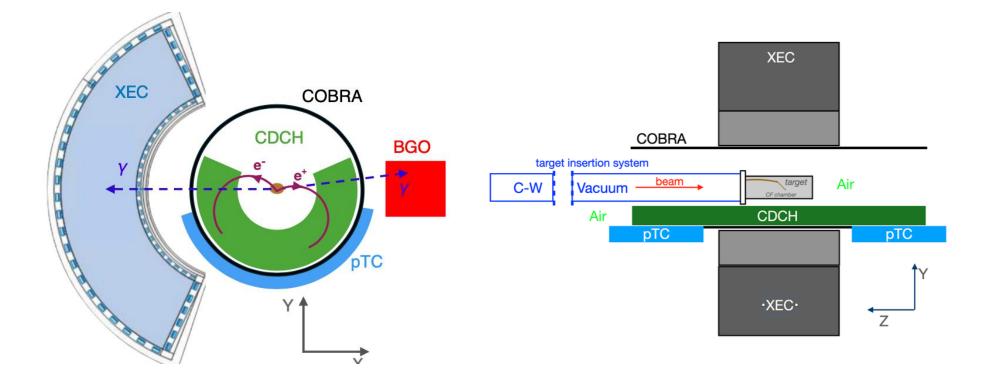
The X17 History

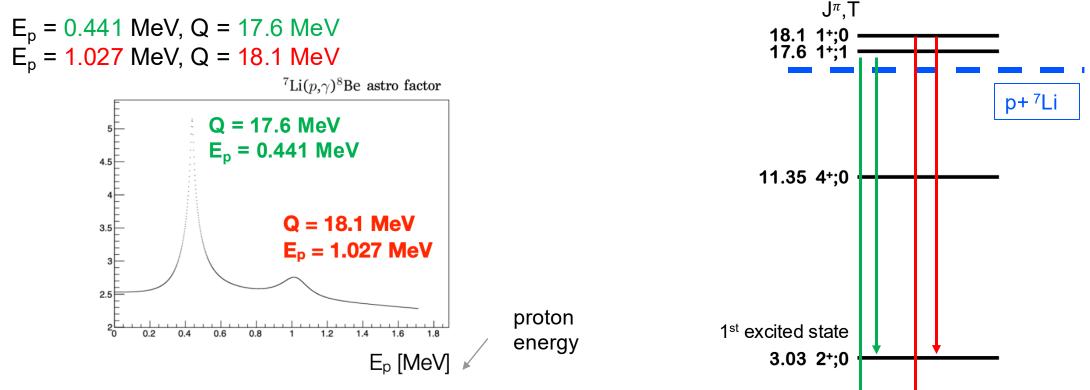
- Invariant mass **m ~ 17 MeV**
- Rate (vs γ) ~ 6 x 10⁻⁶
- Confirmed in subsequent measurements with other nuclei

```
A new particle?
X17?
```

The X17 Search @ MEG II

- Proton source: CW accelerator that we use for Liquid Xenon Calorimeter calibration with ⁷Li (p,γ)⁸Be
 - We use normally $E_p \sim 441 \text{ keV}$
 - Can arrive up to $E_p \sim 1.1 \text{ MeV}$
- **Dedicated target**: LiPON^(*) target
 - 7μ m average thickness
- e⁺e⁻ spectrometer: drift chamber in the (reduced) COBRA magnetic field
- **Timing detector** used for trigger and analysis
- Liquid Xenon calorimeter + BGO detector: auxiliary detectors for photon spectrum studies


(*) Lithium phosphorus oxynitride (Li3-XPO4-YNX+Y)



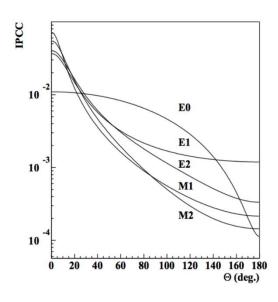
Experimental Setup

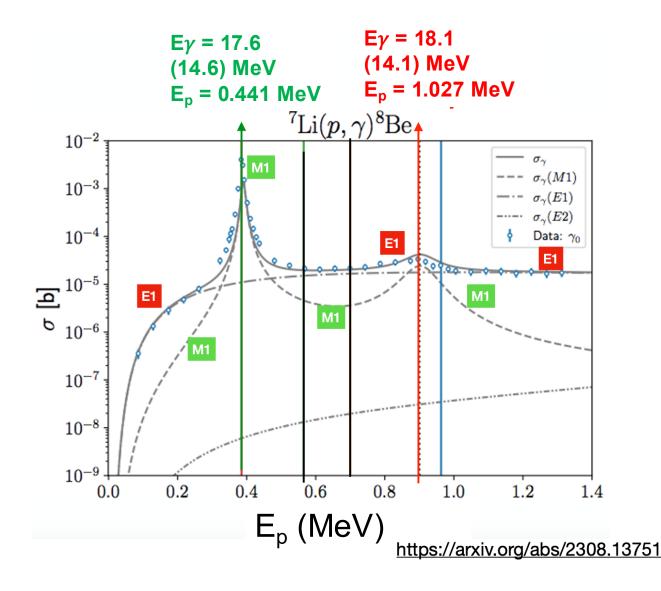
⁸Be Levels

• **Two resonances** can be easily excited in the p+⁷Li reaction:

ground state

(g.s)


0+;0


Two (M1) transitions for each resonance

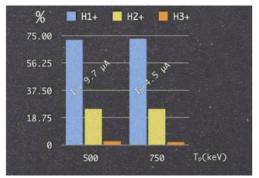
$$1+ \rightarrow 0+ (E_{\gamma} = Q)$$

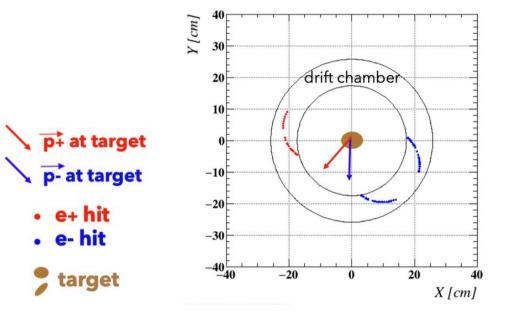
$$1+ \rightarrow 2+ (E_{\gamma} = Q-3 \text{ MeV})$$

Multipole Decomposition

- Besides resonant transitions (M1), radiative direct capture (mostly E1) is present and interfering
 - → Different $\Theta_{e^+e^-}$ distribution → possible to separate IPC from different transitions

J.Gulyas et al. NIMA 808 (2016)21-28

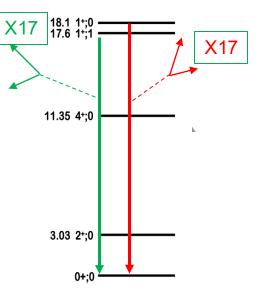

February 2023 MEG II X17 Run


- CW setup: $E_{beam} = 1.080 \text{ MeV}$ at 10 μ A
- The CW beam is a 75%/25% H⁺/H₂⁺
 - Protons inside H_2^+ interact with energy $\sim E_{beam}/2$

We excite both 18.1 MeV and 17.6 MeV Be resonances

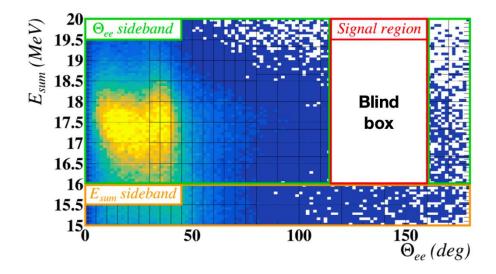
- Anomaly seen only in the 18.1 MeV transition to the g.s.
 - But kinematically possible also in the 17.6 MeV transition to the g.s.
- We have the opportunity to search for X17 in both transitions
- 75M events collected (4 weeks), about **300k pairs reconstructed**

Ion composition



Signal and Backgrounds

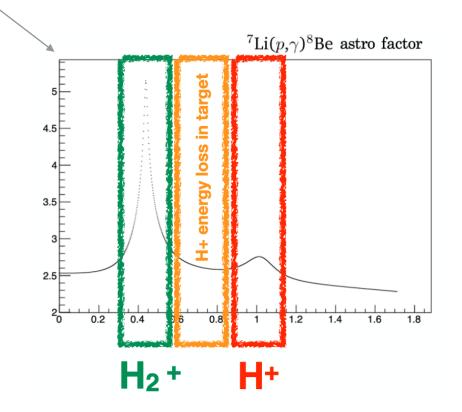
- Signal: e⁺e⁻ coming from Be^{*} → X17 → e⁺e⁻ possibly from both 18.1 and 17.6 MeV transitions to g.s
- Backgrounds:
 - IPC of gammas from: transitions to g.s. or 1st excited state of 18.1 MeV, 17.6 MeV excited states or of intermediate energies
 - **EPC** (External Pair Creation) of gamma conversion in materials from either transitions

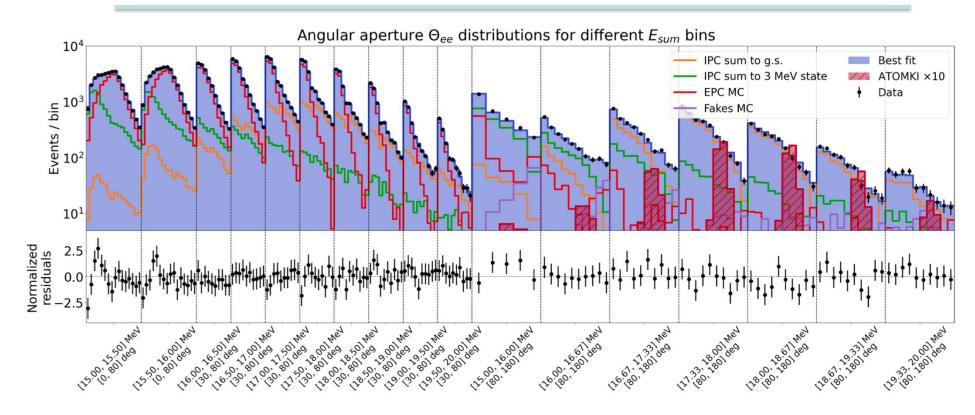


Analysis Strategy

- We use two observables:
 - E_{sum} = total e⁺e⁻ energy
 Θ_{e+e} = opening e⁺e⁻ angle
- The two variables are used in a 2-dimensional Maximum Likelihood fit including all possible signal and background components
- Blind analysis:
 - We looked into the signal region only once we could demonstrate that:

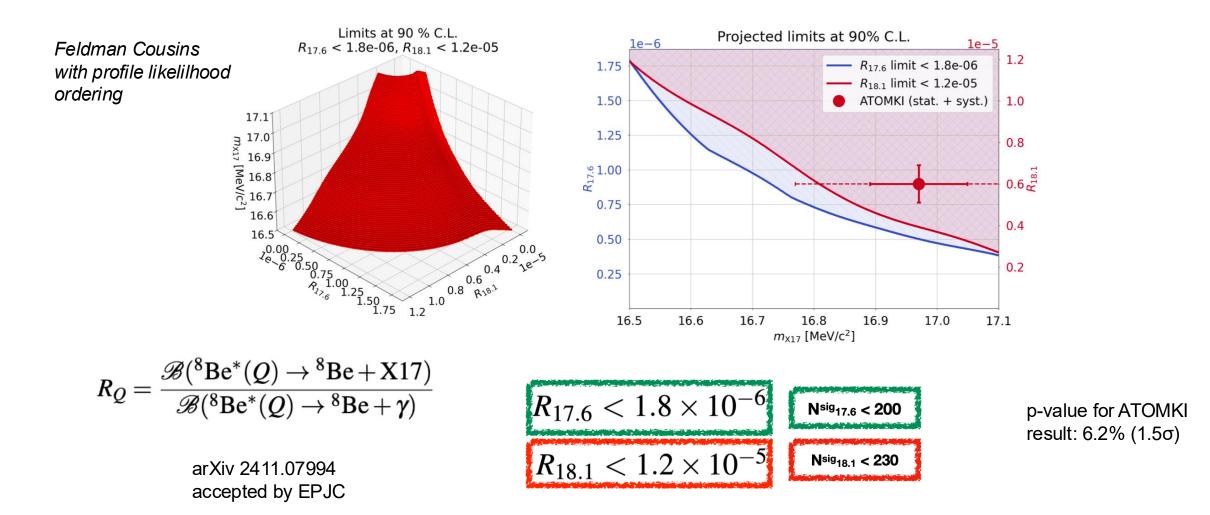
our method correctly described the data in the sidebands


our method was capable of discriminating the different background components


Maximum Likelihood (ML) Fit

- **Binned** ML fit using **template** histograms as PDF from MC simulation
- Two signal PDFs
 - One per resonance, Q = 17.6 MeV and Q = 18.1 MeV
- Two signal PDF's
 One per resonance
 (Q = 17.6 and Q = 18.1 MeV)
- Six IPC PDF's
 - Three Ep bins
 - Two transitions (g.s and 1st excited s.) each
- Two EPC PDF's
 - No Ep dependence
 - Two transitions
- **One** fake pairs PDF

to take into account the presence of H_2^+ ions in our beam and energy loss of H^+ Systematic effects (energy scale, mass dependence, relative acceptance) are all included as nuisance parameters

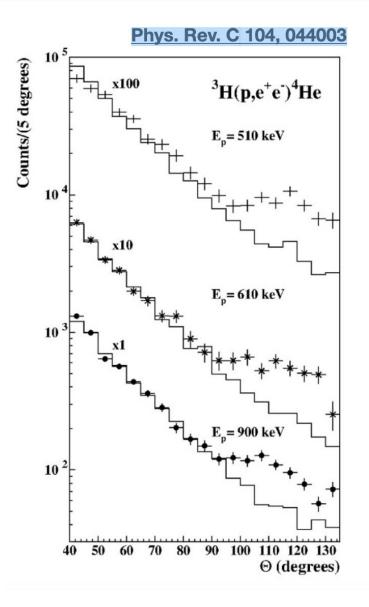

Unblinding: Results from ML Fit

Best fit (goodness-of-fit: p-value = 10.5 %): _____ no significant signal

	18.1 MeV -> g.s.	17.6 MeV -> g.s.	intermediate	any -> 1 st exc.
SIGNAL EVENTS	10 ± 92 @ m _X = 1.65 MeV	0	n.a.	n.a.
IPC COMPOSITION	(12.6 ± 0.9) %	(45.8 ± 1.3) %	0	rest

Upper Limits at 90% C.L.

Conclusions and Perspectives

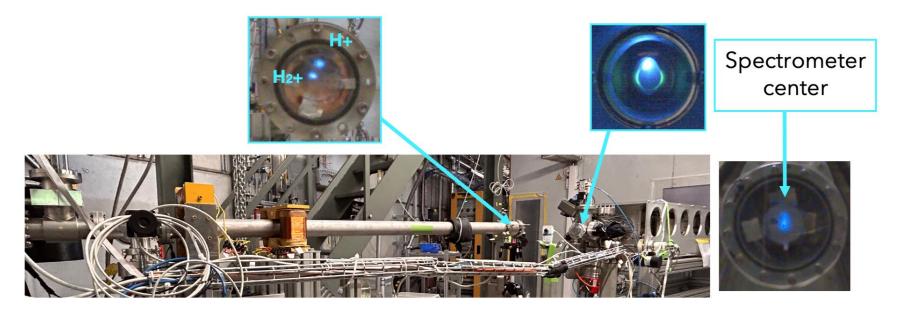

- MEG II detector successfully studied the ⁷Li (p, e⁺e⁻)⁸Be process
 - Four weeks dedicated data taking with a special LiPON target and the C-W proton accelerator
- Looking for a new particle as suggested by ATOMKI experiment: $X17 \rightarrow e^+e^-$ with mass~17 MeV
- Measurement affected by presence of H₂⁺ ions
 more background, but possibility to study 17.6 resonance
- No significant signal was found in our data
 ATOMKI observation was tested and excluded at ~94%
- A **new data-taking** period is being considered with:
 - removal of H_2^+ for a run at 1.030 MeV only (already tested)
 - thinner LiPON target

Backup

Other Evidences

- At ATOMKI with tritium target same anomaly in ⁴He transitions at different E_p
 - Kinematically consistent with ⁸Be (same ~17 MeV inv. mass)
- Same anomaly in ¹¹B(p, e⁺e⁻)¹²C

Phys. Rev. C 106, L061601



The CW Proton Beam

- Data taking in Feb 2023 with E_{beam} = 1.080 MeV
- The beam is a 75% / 25% H^+/H_2^+
 - Protons inside H_2^+ interact with energy ${\sim}E_{\text{beam}}/2$

=> We excite both 18.1 MeV and 17.6 MeV resonances

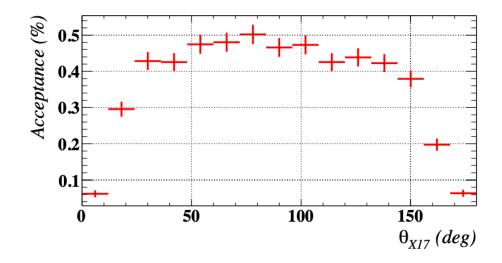
H₂⁺ removal can be implemented with dipoles + collimators
 not available during February run

Stability During Run

Gamma rate in BGO per current unit [Hz/µA]

Trigger and Pair Reconstrution

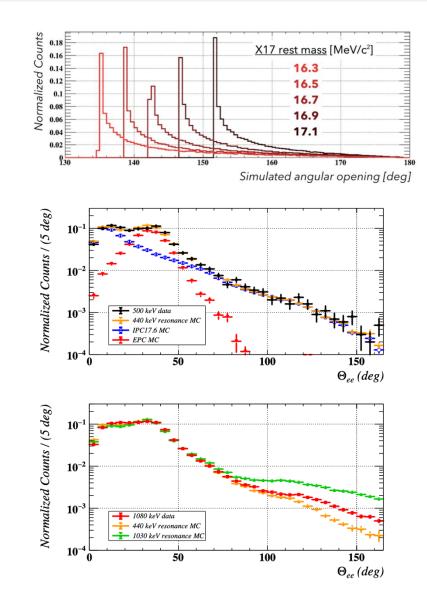
• Trigger logic


- pTC trigger fired when at least one tile is hit
- CDCH trigger fired when a number of hits are simultaneously reconstructed on both wires' readout sides.

Event reconstruction

 the MEG II track reconstruction algorithms were modified to reconstruct both e⁺ and e⁻ and optimized for the kinematics

Selection				
$n_{hits} \ge 10$				
$ z_{vtx}-z_b \le 2.5 ext{ cm}$				
$ \qquad T_{0l} - T_{0f} \ge 0 \qquad $				
$ (z_l - z_f) \times sgn(z_f) \ge 0 $				
propagation length \geq 35 cm				
$\begin{array}{l} \text{if } 10 \leq n_{hits} \leq 16, \\ \mu_{hit} \geq 1.1 \text{ hits/cm} \end{array}$				
if $\mu_{hit} > n_{hits}/12 - 2/3$: $\mu_{hit} \ge 0.8$ hits/cm track score ≥ 20				
Consecutive hits distance std < 0.9 cm				
$ z_f \ge 2.5 ext{ cm}$				
$z_{mean} imes (\theta - 90^\circ) < 0$				
No hits in common between e^+ and e^- tracks				
e^+e^- vertices distance < 3 cm				


Performances

	X17	IPC	EPC
	$16.9\mathrm{MeV/c^2}$	18 MeV	18 MeV
trigger selection eff.	16%	4.7%	0.026%
e ⁺ selection eff. (wrt trg)	24%	26%	13%
e^+e^- selection eff. (wrt trg)	2.5%	2.3%	0.6%
Θ_{ee} resolution [deg]	5.6 ± 0.2	$ 5.5\pm0.1$	//
<i>E_{sum}</i> resolution [MeV]	0.58 ± 0.02	0.69 ± 0.01	//

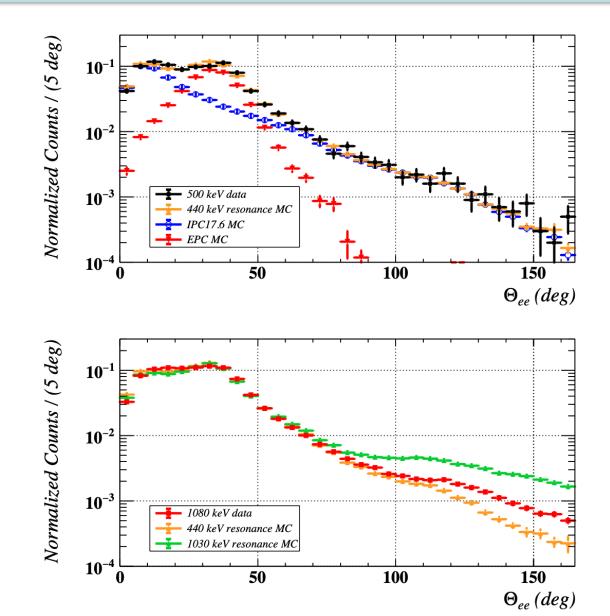
Technical Details of ML Fit

- X17 mass in the range allowed by kinematics and ATOMKI results
- Mass dependence of signal PDFs from histogram morphing [Nucl. Instr. Meth. A 771, 39659 (2015)]
- Systematics from limited MC statistics treated with the lite Beston-Barlow approach [EPJ C 82(11), 1043 (2022)]
- Systematic effects (energy scale, mass dependence, relative acceptance) are all included as nuisance parameters

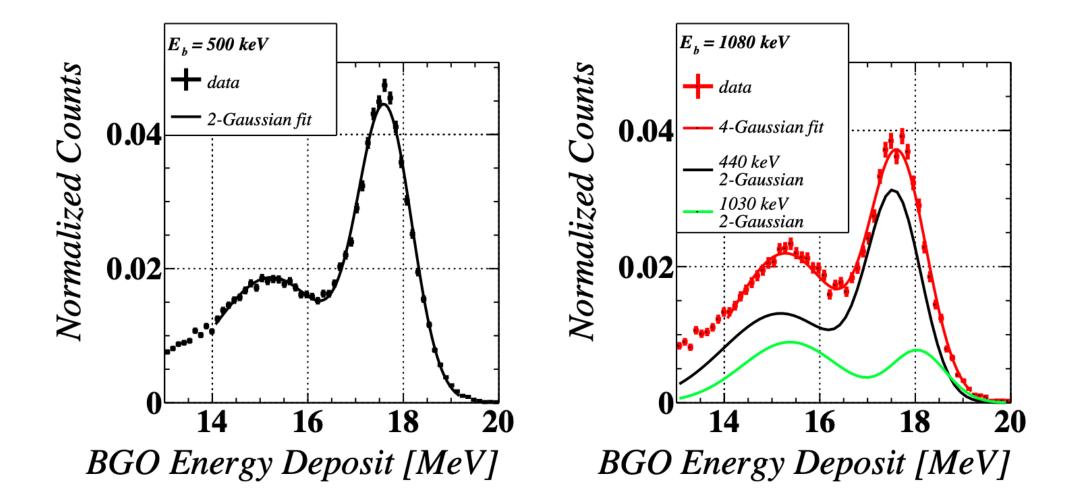
Likelihood Function

 $\mathscr{L} = \mathscr{L}_{\mathrm{D}} \times \mathscr{L}_{\mathrm{S}} \times \mathscr{L}_{\mathrm{C}}$

$$\Omega = (R_{17.6}, R_{18.1}, m_{X17}, \mathcal{N}_{IPC} \mathcal{N}_{EPC}, \mathcal{N}_{Fake})$$


$$\begin{split} \mathscr{L}_{\mathrm{D}}(\Omega, \alpha_{m}, \beta_{i}) &= \prod_{i} \frac{f_{i}(\Omega, \alpha_{m}, \beta_{i})^{D_{i}} e^{-f_{i}(\Omega, \alpha_{m}, \beta_{i})}}{D_{i}!} \\ \mathscr{L}_{\mathrm{S}}(\Omega, \alpha_{m}, \beta_{i}) &= \prod_{i} \frac{(\beta_{i} \mu_{eff, i}(\Omega, \alpha_{m}))^{\mu_{eff, i}} e^{-\beta_{i} \mu_{eff, i}(\Omega, \alpha_{m})}}{\mu_{eff, i}(\Omega, \alpha_{m})!} \\ \mathscr{L}_{\mathrm{C}}(\alpha_{m}) &= \prod_{m} \frac{1}{\sqrt{2\pi} \sigma_{\alpha_{m}}} e^{-\frac{(\alpha_{m} - \alpha_{m, 0})^{2}}{2\sigma_{\alpha_{m}}^{2}}} \\ f_{i} &= \beta_{i} \sum_{j} \mathscr{N}_{j} a_{ij} \\ \sigma_{\beta_{i}} &= \sqrt{\sum_{j} \mathscr{N}_{j}^{2} \sigma_{a_{ij}}^{2}} \end{split}$$

~ / ~


$$\alpha_m = (p_{\text{IPC17.6}}, p_{\text{IPC17.9}}, p_{\text{IPC18.1}}, \alpha_{field}, k(m_{\text{X17}}))$$

 β_i
nuisance parameters

22

Data/MC Validation

BGO Fits

