

Fundamental Physics with HIBEAM at the ESS

Alexander Burgman (Stockholm Univ.) for the HIBEAM/NNBAR Collaboration

Outstanding questions

Standard Model (SM) of particle physics does not describe nature completely:

- Matter/antimatter asymmetry
- Dark matter
- Dark energy
- Grand unification (strong+electroweak)
- Gravity

Matter/antimatter asymmetry

Standard Model (SM) of particle physics does not describe nature completely:

- Matter/antimatter asymmetry <= Sakharov conditions
 - Baryon number *B* violation
 - C- and CP-symmetry violation
 - Interactions out of thermal equilibrium

Baryon number violation

Standard Model (SM) of particle physics does not describe nature completely:

- Matter/antimatter asymmetry <= Sakharov conditions
 - Baryon number *B* violation (and lepton *L*)

Sphaleron processes,

Unification models

Supersymmetry

Hidden sector

[...]

Baryon number violation

Standard Model (SM) of particle physics does not describe nature completely:

- Matter/antimatter asymmetry <= Sakharov conditions
 - Baryon number *B* violation (and lepton *L*)

Baryon number violation

Standard Model (SM) of particle physics does not describe nature completely:

- Matter/antimatter asymmetry <= Sakharov conditions
 - Baryon number *B* violation (and lepton *L*)

The European Spallation Source (ESS)

World's highest intensity neutron source

- Lund, Sweden
- Operations from 2027/2028
- Neutron imaging material, lifescience

- Nominally 2 GeV protons, 3 ms pulse, 14 Hz, (2;5) MW
- Rotating tungsten target
- Neutrons cold after moderators
- 15 beamlines/instruments (+ 22?)

The HIBEAM Beamline

arXiv:2311.08326

Magnetically shielded 50 m beamline

WASA (Csl) crystal calorimeter + TPC

 $n \rightarrow \overline{n}$ $n \rightarrow n'$ q_n axions nEDM

Antineutrons $n \rightarrow \bar{n}$

Sterile neutrons $n \rightarrow n'$

Magnetic field scan ± 2 G (200 μ T) to find degeneracy with sterile sector

Possible beam stop to allow regeneration search

disappearance $n \rightarrow n'$ regeneration $n \rightarrow n' \rightarrow n$ anti-regen. $n \rightarrow n' \rightarrow \bar{n}$

Sterile neutrons $n \rightarrow n'$

Axions

Axions

Neutron electric charge q_n

NNBAR

×4 larger beamport, 4 m diameter, 200 m beampipe improved neutron optics, magnetic beampipe shielding TPC, plastic scintillator, lead-glass calorimeter

NNBAR

×4 larger beamport, 4 m diameter, 200 m beampipe improved neutron optics, magnetic shielding of beampipe, TPC, plastic scintillator, lead-glass calorimeter

 $(n \rightarrow \bar{n}) \tau_{n \rightarrow \bar{n}}$ sensitivity improvement × 10³ over ILL results

Conclusions

Thank you

Abstract

One of the great open questions in modern physics is the origin of the matter-antimatter asymmetry. This requires baryon-number violation, which has never been experimentally observed. Baryon-number violation may arise in the neutron sector as the direct conversion between neutrons and antineutrons, or with a sterile/mirror neutron.

This process will be probed with the proposed HIBEAM/NNBAR program, a two-stage experiment at the European Spallation Source. The initial stage of the program, HIBEAM, will present opportunities to search for baryon-number violation in neutron conversion to antineutrons, or to sterile neutrons (as a disappearance search) or to sterile neutrons and into neutrons/antineutrons, with discovery potential reaching a factor of ten higher than previous experiments. HIBEAM also presents unprecedented sensitivity for direct searches for low mass axions as a dark matter candidate, surpassing previous results by two-to-three orders of magnitude for axion masses between 10⁻²² eV to 10⁻¹⁶ eV. Additionally, HIBEAM presents opportunities to search for a nonzero neutron electric charge as well as an electric dipole moment of the neutron with world-leading sensitivity.

In this talk we present the fundamental physics opportunities of HIBEAM at the European Spallation Source.

HIBEAM prototype

Swedish Research Council infrastructure grant to Stockholm U, Lund U, Chalmers TU, ESS

- Prototype development
 - Time projection chamber
 - WASA crystal calorimeter
 - Scintillator/lead-glass calorimeter
- Annihilation detector
- Neutron detector
- Beamline design

Electric dipole moment *nEDM*

Priority for neutron community

nEDM@SNS cancelled \rightarrow possible at the ESS?

Investigations ongoing to reach the 10^{-29} e cm sensitivity!

NNBAR

Outer and inner octagon-shaped passive shield of 1-2 mm thick sheets of mumetal.

Reflector Optics collect large solid angle of emitted neutrons and re-focus to detector area

Eg double planar reflector

NNBAR

×4 larger beamport, 4 m diameter, 200 m beampipe improved neutron optics, magnetic beampipe shielding TPC, plastic scintillator, lead-glass calorimeter

Neutron exotic decays $n \rightarrow X + e/v \rightarrow [SM]$ NNBAR sensitive, discovery potential in 3 yr Studies underway! arXiv:2506.08701

23

Conclusions

Enormous neutron flux at ESS
⇒ fundamental physics

HIBEAM

- $n \rightarrow \overline{n}$ sens. × 10
- $n \rightarrow n' \quad \tau \sim 230 \text{ s}$
- axions sens. $\times 10^2 10^3$
- q_n sens. × 700
- **nEDM** underway!

NNBAR

- $n \rightarrow \bar{n}$ sens. × 10³
- exotic decays underway!

