Probing for light new particle with the LUXE experiment

This research is supported by:

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Plan de Recuperación, Transformación y Resiliencia

Shan Huang (IFIC, CSIC/U. València) on behalf of the LUXE Collaboration shan.huang (at) ific.uv.es

Financiado por Ia Unión Europea NextGenerationEU

Laser und XFEL Experiment

LUXE is initially motivated by the strong-field QED

- Uncharted non-perturbativity in the presence of a strong electromagnetic field
- A high power laser (up to 350 TW)
- 16.5 GeV electron/photon beam (extracted) from beamline at the European XFEL)
- Detection systems for e⁻/e⁺/gamma

Two operation modes:

- electron-laser: Compton scattering; nonlinear BW pair production
- gamma-laser: light-by-light scattering; direct BW pair production

LUXE LoI: arXiv 1909.00860 LUXE CDR: EPJ ST 230 2445 (2021) LUXE TDR: EPJ ST 233 1709 (2024) LUXE Input ESPPU: <u>arXiv 2504.00873</u>

Other LUXE contributions at EPS HEP: LUXE parallel talk (Tue) by Yan Benhammou LUXE ECAL-P poster (Stand 18A-69) by Shan Huang

LUXE NPOD: Probing light new particle

$$\mathcal{L}_{a,\phi} = \frac{a}{4\Lambda_a} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\phi}{4\Lambda_\phi} F_{\mu\nu} \tilde{F$$

LUXE NPOD status

- We established the feasibility of LUXE NPOD in Phys Rev D 106 <u>115034</u> (2022) For LUXE,
- A pilot 10-TW laser from Jena (phase-0.10) is being tested at DESY
- Part of the funds for beamline infrastructure secured
- Detector prototypes are being tested in simulations and in testbeam facilities For NPOD,
- More detailed simulative studies are carried out for sensitivity update and design optimization

	2025	2026	2027	2028	2029	2030	203
Extraction beamline (ELBEX)	Design		Procurem	ent	Installation*	(*pending EuXFEL council	approval)
LUXE Laser	JeTi 40 operated at DESY				Procurement + Installation LUXE @10TW		
LUXE Detectors	Design, Procureme	nt	Const	ruction, Testing	Installation N	/linimal Detectors	Installation Full

Sensitivity simulation

- Compton scattering: <u>Ptarmigan</u>
 - Laser properties for LUXE phases of <u>10 TW, 40 TW, and **350 TW**</u> phase-1 phase-0
- ALP-photon interaction: <u>MadGraph5</u> with a UFO model

Consider the effects on the sensitivity from

- Dump length
- Decay length
- Detector radius
- Detector resolution

Background simulation

- We select above 0.5 GeV photons as signal candidate
- Detector radius is assumed to 1 m for benchmarking
 - Smaller detectors will reduce the background "acceptance"
- Neutrons are a concern because they easily mix with photon signals
- Geant4 v11 with QGSP_BERT_HP
 - Phase-0: no bkg above 0.5 GeV in 2 BXs • Phase-0 dump: W, $L_D = 25$ cm, $R_D = 10$ cm Phase-1: photon flux is stronger and creates more background

 - Dump optimization:
 - Several options are tested, including a magnetised one • Eventually concluded with a bimetallic W+Pb design, which can suppress background leakage from the side, while being economic

Dump optimization

We study the bimetallic dump with 10 BX background simulations

A detector with 0.5 to 1 ns timing resolution can reject most of the background

- Assuming zero background
- For one-year (10⁷ BX) data taking
- Easier background suppression in phase-0 allows a shorter dump, and benefits its sensitivities
- Dump length:
 - phase-0: 0.25 m
 - phase-1: 1.0 m
- Decay volume:
 - phase-0: 2.5 m
 - phase-1: 1.0 m
- Comparable to FASER2, NA62, and the SHiP experiment (who has a much longer data taking period)

LUXE NPOD: Probing light new particle

Sensitivity

SH (IFIC) @ EPS-HEP 2025 Marseille 2025-07-09

- DRD6/CALICE SiW ECAL prototype
- Granularity of 5.5 mm
- Compactness: effec. Moliére radius ~10 mm
- Transverse size of 36 x 18 cm²
- Longitudinal 22.5 cm with 18X₀ tungsten
- Readout time resolution: 1 ns

Dump (from its side) LUXE NPOD: Probing light new particle

LUXE ECAL-E

A natural candidate for NPOD detector in LUXE

- NPOD will run in LUXE e-laser mode
- ECAL-E will only be used in LUXE g-laser mode

 $rac{\sigma_E}{E} = rac{(19.8 \pm 0.4)\%}{\sqrt{E_0/\text{ GeV}}} \oplus (4.9 \pm 0.3)\%$

- Performance simulations with Geant4 v11 using DD4hep toolkit
- Analysis using Marlin framework

Repository: <u>https://github.com/airqui/ECALe-lcio</u>

ECAL-E

To simplify the simulation and have a baseline understanding of the detector performance, we assume

- zero background,
- the NP particle decays symmetrically, and
- the NP particle decays on the beam axis

LUXE NPOD: Probing new physics

Signal reconstruction

- A simple nearest-neighbour clustering separates over 95% events when $\Delta > 40$ mm
- A proof-of-concept tracking of the clusters gives
 - entry point position resolution < 5 mm
 - angular resolution better than 1 degree for > 1 GeV photons

PID: further bkg rejection

- (BDT), a widely-used machine learning tool

Summary

- LUXE NPOD is a beam-dump experiment probing ALPs with mass in 10 to 350 MeV, and coupling coefficient in 10^{-6} to 10^{-3} GeV⁻¹
- We validate our previous work with a more realistic experimental setup with a detector
- We further optimize the NPOD performance with much detailed dump design
- We test the updated scenarios with full-layout simulations
- LUXE secures a part of its funding and we are working towards the construction
- A paper is under preparation. Stay tuned for more updates!

LUXE NPOD: Probing new physics

SH (IFIC) @ EPS-HEP 2025 Marseille 2025-07-09

Backup

LUXE NPOD: Probing new physics

SH (IFIC) @ EPS-HEP 2025 Marseille 2025-07-09

LUXE detectors

Photon spectrum

Dump optimization

- Phase-1 photon flux is stronger and creates more background
- Some background leaks out from the side of the dump
 - Bimetallic dump to suppress the leak while being "economic"

	Material	L _D [cm]	<i>R</i> _D [cm]	N. photon (>0.5 GeV)	N. neutron (>0.5 GeV)
Phase 1	W	30	10	0	2.48×10^{4}
		100	10	0	1.6 × 10 ³
		100	30	0	2×10^{2}
	Pb	100	40	0	1.9 × 10 ³

Charged-particle background

Previous sensitivity

LUXE NPOD: A beam-dump experiment Mass: 10 to 350 MeV

Coupling to photon: 10⁻⁶ to 10⁻³ GeV⁻¹

Phys Rev D 106 115034 (2022)

Sensitivity

- Dump length: Shorter dump allows us to probe heavier NP particles at the cost of larger background
- Decay length: Longer decay length enables the probing of NP particles with weaker coupling

Sensitivity

- Dump length: Shorter dump allows us to probe heavier NP particles at the cost of larger background
- Decay length: Longer decay length enables the probing of NP particles with weaker coupling
- Detector size/acceptance: Limited influence: the signal pairs are close to the beam axis
- Detector separation power/resolution: Sensitivity influenced by the close-by photon pairs. NP particles created on the dump are boosted.

SH (IFIC) @ EPS-HEP 2025 Marseille 2025-07-09

Proof-of-concept test

- Clustering: simple nearest-neighbour algorithm with optimized distance cut
 - Gives the pair separation efficiency
- First tracking: line fitting of the hit distribution, gives a preliminary tracks
- Reclustering: to collect the hits within a "Molière radius" of the cluster
 - The cylinder axis is the preliminary track
- Second tracking: line fitting with the updated cluster, gives the final tracks
- Vertex reconstruction using the tracks

Power of separation

- We expect two major clusters for an event
- Separation efficiency is defined as
 N. successful events / N. all events
 - Success: obtaining at least two clusters
 - The two largest clusters has similar hit deposits $(1/2 < E_1/E_2 < 2)$
- When showers start to overlap with each other, NNClustering fails
- S. Effeciency >95% when $\Delta>40$ mm

Opening angle

- to infer the vertex position

LUXE NPOD: Probing light new particle

- to infer the vertex position
- methods

LUXE NPOD: Probing light new particle

Position

