The BDF/SHiP experiment at the ECN3 high-intensity beam facility at the CERN SPS

Maksym Ovchynnikov On behalf of the SHiP collaboration

July 9, 2025

Introduction

Positioning SHiP on a landscape of new physics searches I

Three Frontiers to explore new physics at accelerators

1. Energy
New physics is heavy
\mathbf{but}
may be produced by
increasing \sqrt{s}

2. Intensity (operators) New physics is too heavy to be produced but induces detectable effective interactions 3. Intensity (particles) New physics is light and feebly-coupled but may be detected

if increasing intensity

Introduction

Positioning SHiP on a landscape of new physics searches II

Frontier 3

- Particle X with mass m and coupling $g \ll 1$
- $c\tau_X\gamma_X \propto g^{-2}m^{-\alpha}$: light Particles are Long-Lived (LLPs)
- Probing LLPs maximize $N_{ev}/\sqrt{N_{bg}}$, with

$$N_{\rm ev} \simeq N_{\rm prod} \times \epsilon_{\rm geom} \times \\ \times \Delta z / (c \tau_X \gamma_X) \times \epsilon_{\rm det} \quad (1)$$

- Complicated to probe with LHC: large $N_{
 m bg}$ and/or small $\epsilon_{
 m geom} \cdot \epsilon_{
 m det}, \Delta z$
- Complicated to probe with FCC-ee: small N_{prod}

Introduction

Positioning SHiP on a landscape of new physics searches III

SHiP: beam dump experiment to explore GeV-mass LLPs

Ingredients. 1. Facility, beam, and target I

- Location: CERN SPS. Proton beam $E_p = 400 \text{ GeV}$
 - North Area \rightarrow
 - TCC8 target hall \rightarrow
 - ECN3 cavern

Ingredients. 1. Facility, beam, and target II

HI-ECN3:

- Beam intensity T4 wobbling-magnet upgrade, dilution sweep magnets, P42 temporary dump, and three in-vacuum stoppers are all engineered and reviewed, with drawings/ECRs issued or imminent
- No show-stoppers identified for delivering the $4 \times 10^{13} PoT/spill$ beam to TCC8 after LS3
- $N_{
 m PoT,year} = 4 \cdot 10^{19} \Rightarrow 15$ -year running time: $N_{
 m PoT,year} = 6 \cdot 10^{20}$

Ingredients. 1. Facility, beam, and target III

– Thick target

- 12**
- **Ti-Zr-Mo** alloy followed by pure ${\bf W}$
- $\mathcal{O}(2)$ cascade enhancement of the heavy flavor production

Enormous yields of heavy flavor production

- $N_{c\bar{c}} \sim 10^{18}$: ~ 2 orders of magnitude larger than at HL-LHC
- $N_{b\bar{b}} \sim 10^{14}$: comparable to LHCb@HL-LHC

Ingredients. 2. Muon shield

- System of magnets to reduce muon flux with $E > 10~{\rm GeV}$ from $2\cdot 10^{10}/{\rm spill}$ by more than 6 orders of magnitude
- Subject of re-optimization because of moving to ECN3
- A few setups are considered: minimal iron yoke; + diluted with non-magnetic shielding; hybrid warm+SC; decide on option by Fall

Ingredients. 2. Detectors I

- **SND@SHiP**: neutrinos and scattering detectors
- HSDS: hidden sector decay spectrometer

Ingredients. 2. Detectors II

- SND@SHiP: Hybrid target with emulsion (experience from SND@LHC) and silicon layers, in the central yoke of the muon shield (*re-optimization in progress*)
 Previously: emulsion outside muon shield
- ν scattering events: $\sim 10^6 (\nu_e + \bar{\nu}_e), 10^7 (\nu_\mu + \bar{\nu}_\mu), 10^5 (\nu_\tau + \bar{\nu}_\tau)$. Rich ν physics!

Ingredients. 2. Detectors III

HSDS: decay vessel

- Pyramidal frustum with dimensions: $\Delta x \times \Delta y \times \Delta z =$ (1.4-4.6) m×(3.1-6.6) m×50 m
- Placed 32 m downstream of the target, 1 atm He filled, with Al frame *Previously: vacuum, steel*

- Geometry and placement: maximize signal yield while not overproducing background [2304.02511]
- Diffusion rates measurements: Hardware installed; sample holders in fabrication; awaiting material coupons

Build and commission a scaled prototype during 2026

Ingredients. 2. Detectors IV

HSDS: magnet

– Power of $\mathbf{0.65}~\mathbf{T}\boldsymbol{\cdot}\mathbf{m}$ over tracking stations

HSDS: straw tracker

- Ultra-light horizontal gas-filled straws with 2 cm diameter
- 4 straw-stations, separated by a magnetized region

50 prototype straws successfully leak-tested at 3 bar; tubes awaiting shipment to CERN

Ingredients. 2. Detectors V

- HSDS: PID. $20X_0$ hybrid-strip ECAL+ 5λ HCAL (SplitCal)
- Pointing and full-depth PID performance match simulation

Closing the conceptual-prototype phase

- HSDS: TOF. 546 scintillator bars with SiPM-array read-out, providing timing $\delta t < 100 \mathrm{ps}$
- Power, cabling, and CAEN supply scheme are defined

Frozen mechanical design

Maksym Ovchynnikov

Ingredients. 3. Background taggers

- **HSDS: SBT.** liquid scintillator surrounding cells surrounding decay vessel
 - May: performance analysis of two single-cell prototypes
 - Currently: minimizing the level of deformation with the Al-vessel equipped with SBT; optimizing the structure to reduce self-induced backgrounds
- HSDS. UBT: background tagger in front of the decay vessel

Timeline and costs

- 2024: SHiP is approved and goes onto the TDR phase
- CERN as host covers HI-ECN3 and civil engineering
- The detector construction amount is $\simeq 50$ MCHF A significant part has been already secured
- Construction should start in ~ 2029 and collecting data in 2033

Exploring new physics with SHiP I

From exclusion potential...

– Probing orders of magnitude in the parameter space of various models: ALPs, dark photons, HNLs, Higgs-like scalars, inelastic DM, B - L, dark QCD, neutralinos, ...

Comparison with currently running and proposed experiments: ESPP talk

Maksym Ovchynnikov

Exploring new physics with SHiP II

To revealing LLP properties in case of discovery

Searching for events with 1 decay/scattering:

- Reconstructing invariant mass, spin, decay properties
- "Hidden properties" (LNV, quasi-particle mass splitting) \Rightarrow Relation to BSM problems

[1912.05520], [2312.05163]

Exploring new physics with SHiP III

To revealing LLP properties in case of discovery

Searching for events with two or more decays/scatterings:

- Revealing production mode
- Discriminating between LLPs with identical decay phenomenology

[2312.14868], [2503.01760], to appear

- SHiP: unique combination of large intensity, optimal geometry, background rejection
- Ultimate new physics exclusion and discovery potential
- Current status: transitioned from design to early hardware realization, with key prototypes (muon-shield magnets, straw tracker, calorimeter modules, tungsten target) already in fabrication or test
- A lot of underexplored directions:
 - New physics models
 - Non-trivial signatures
 - Exploring QCD
- Neutrino physics performance

You are very welcome to join!

Collaboration

36 institutes from 18 countries + CERN

Backup slides

- Background studies: full GEANT4 simulation, with the muon flux generation generated on test beam flux
- Background reduction:
 - Pre-selection (DOCA < 10 cm+IP < 2.5 m+goodquality tracks)
 - SBT+UBT

Background rates per 15-year time:

Muon comb	$< 10^{-4}$
μ DIS	< 0.2
ν DIS	< 0.3

- ν_{τ} cross-section measurements
- Measurement of F_4, F_5 parametrizing ν DIS reactions
- Measurements of PDFs
- Checking lepton flavor universality
- Measurements of V_{cd}

``Portals'' - lowest-dimensional gauge-invariant operators with LLPs:

Model	(Effective) Lagrangian	What it looks like
HNL N	$Yar{L} ilde{H}N+ ext{h.c.}$	Heavy neutrino with
	I L I I N + n.c.	interaction suppressed by $U \sim \frac{Y v_h}{m_N} \ll 1$
Higgs like gealan S	$c_1 H^\dagger H S^2 + c_2 H^\dagger H S$	A light Higgs boson with
Higgs-like scalar S	$c_1 \pi \cdot \pi s + c_2 \pi \cdot \pi s$	interaction suppressed by $ heta \sim rac{c_2 v_h}{m_h} \ll 1$
Vector mediator V	$-rac{\epsilon}{2}B_{\mu u}V^{\mu u}+gV^{\mu}J_{\mu,B}$	A massive photon/vector meson with
vector mediator v	$-\frac{1}{2}D_{\mu\nu}v + gv \cdot J_{\mu,B}$	interaction suppressed by $\epsilon,g\ll 1$
		A $\pi^0/\eta/\eta'$ -like particle with
$ALP a \qquad \qquad c_G \frac{\alpha_i}{4\tau}$	$c_G rac{lpha_s}{4\pi} a G^{\mu u} ilde{G}_{\mu u} + \dots$	interaction suppressed by $\frac{f_{\pi}}{f_a} \ll 1$

Model	(Effective) Lagrangian	What it looks like
$\rm MCPs \; \chi$	$\kappa e ar{\psi} \gamma^\mu \psi A_\mu$	Millicharged particle
Quasi-elastic DM χ	$a \overline{x} a \overline{y} \overline{y} \overline{y} \overline{y} W^{\mu}$	Stable particles
	$g_d ar{\chi} \gamma_\mu \chi V^\mu$	coupled via dark photons \boldsymbol{V}
Inelastic dark matter χ', χ	$g_d ar{\chi'} \gamma_\mu \chi V^\mu + { m h.c.}$	An unstable particle χ'
	$gd\chi^{\gamma}\mu\chi^{\gamma}$ + i.e.	decaying into $\chi + SM$
${\rm Dark}~{\rm QCD}~\rho_d/\pi_d$	$ar{q}_d \gamma^\mu q_d Z_\mu^{\prime} + \dots$	A dark photon/ALP
		with additional production
		in showerings

Simulation tools:

- SensCalc
- EventCalc@SHiP

Exclusion potential: examples I

- Heavy flavor machine: efficient production of HNLs, Higgs-like scalars, ALPs coupled to fermions,...

Exclusion potential: examples II

- **On-axis placement**: excellent sensitivity to
 - Photonic ALPs
 - Dark photons
 - Inelastic DM,...

Maksym Ovchynnikov

- SHiP may probe orders of magnitude of unexplored parameter space
- $\mathcal{O}(1000)$ events may be observed in case of **discovery**

What is discovery potential?

Simple signatures – "mono"-events

- Reconstructing decay modes and kinematics \Rightarrow identifying particle's spin and decay operators ECAL+PID+magnetic field
- HNL case as an example:
 - Extracting mixing pattern
 - Checking consistency with neutrino oscillations
 - Resolving HNL-anti-HNL oscillations and measuring mass splitting

Discovery potential III

– Less trivial signatures: **n-bangs** (scattering+decay, 2/3/n decays per events)

– Essential for differentiating between the models

[2312.05163], [2503.01760], in preparation

Maksym Ovchynnikov

Different models may have the same "mono"-events

- Inelastic DM:
 - Add $\mathbf{A'} \boldsymbol{\chi}' \boldsymbol{\chi}'$ vertex (vs models with $\mathbf{A'} \boldsymbol{\chi}' \boldsymbol{\chi}$ only)
 - Make *h_d* visible
 (vs Higgs-like scalars)
- Portals:
 - Dark QCD vs portals
 - Dark pions vs ALPs, dark ρ s vs dark photons
 - Mediators with/without quadratic coupling to SM

LLPs X with vs without hXX coupling

May be distinguished by production, but accelerator-based experiments (typically) do not see it!

n-decays:

- DM: decays $\chi^*\chi^*, \chi^*h_d, h_dh_d$
- Portals: $SS, NN, n\rho_d/n\pi_d$

Scatterings + decays:

- DM: scatterings $\chi + p/e \rightarrow \chi' + X$ followed by $\chi' \rightarrow \chi + X'$
- Portals: neutrino upscattering + decay

 $[1707.08573], [2012.08595], [2312.14868], [2503.01760] [2505.05663], \ldots$

 ${\bf n-decays}$ as an example:

- Access to correlated distributions of the decaying particles: $c au, m_{
 m inv}$
- $m_{inv,di}$: may allow identifying the production without seeing it

n-decays may be observed at experiments with large intensity

[2503.01760]+backup