EPS HEP 2025, Marseille 11 July 2025

Probing spin correlations, entanglement, and Bell nonlocality in bottom quark pairs at the LHC

Yevgeny Kats

Based on:

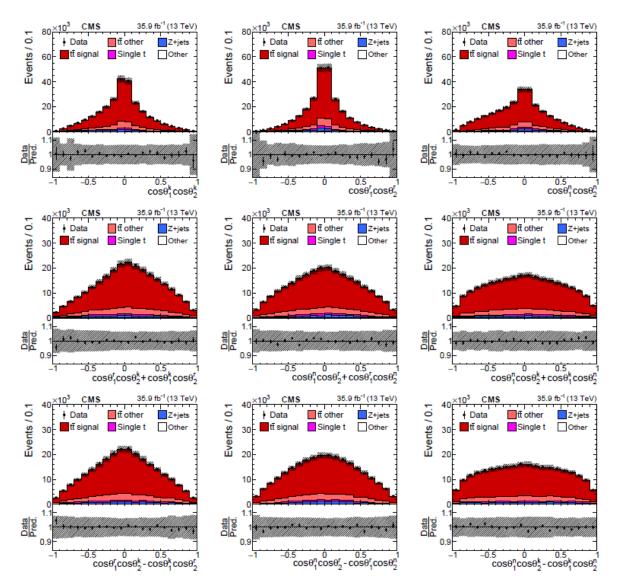
Kats, Uzan, JHEP 03 (2024) 063 [arXiv:2311.08226]

Afik, Kats, Muñoz de Nova, Soffer, Uzan, PRD 111 (2025) L111902 [arXiv:2406.04402]

ATLAS and CMS already measure spin correlations in $pp \to t\bar{t}$.

Density matrix for the t and \bar{t} spins:

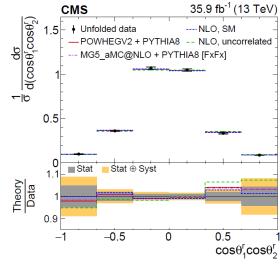
$$\rho = \frac{1}{4} \left(\mathbb{1} \otimes \mathbb{1} + \tilde{B}_i^+ \sigma^i \otimes \mathbb{1} + \tilde{B}_i^- \mathbb{1} \otimes \sigma^i + \tilde{C}_{ij} \sigma^i \otimes \sigma^j \right)$$

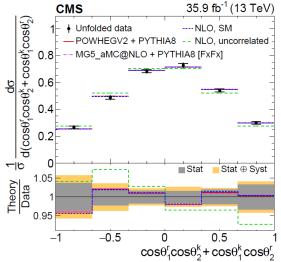

Angular distributions of leptons from top decays:

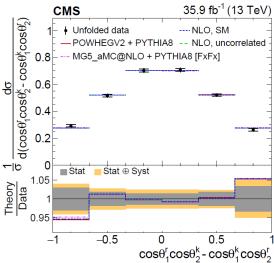
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1^i} = \frac{1}{2} \left(1 + B_1^i \cos\theta_1^i \right)$$

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1^i \cos\theta_2^j} = \frac{1}{2} \left(1 - C_{ij} \cos\theta_1^i \cos\theta_2^j \right) \ln \left(\frac{1}{|\cos\theta_1^i \cos\theta_2^j|} \right)$$

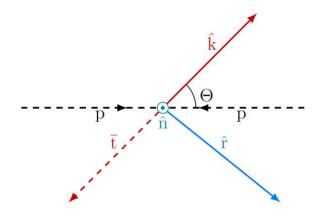

$$B=\alpha \tilde{B}$$
 , $C=\alpha^2 \tilde{C}$, $lpha\simeq 1$ (spin analyzing power)


ATLAS and CMS already measure spin correlations in $pp \to t\bar{t}$.


CMS Collaboration
PRD 100, 072002 (2019)
[arXiv:1907.03729]


ATLAS and CMS already measure spin correlations in $pp \to t\bar{t}$.

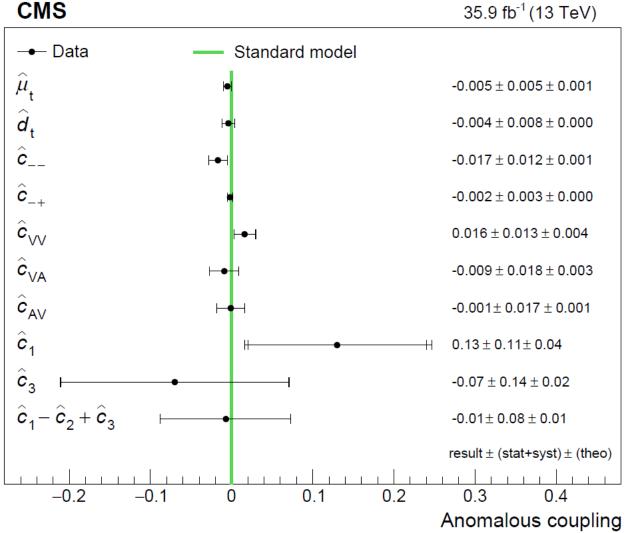
CMS Collaboration
PRD 100, 072002 (2019)
[arXiv:1907.03729]



Motivation: QCD

ATLAS and CMS already measure spin correlations in $pp \to t\bar{t}$.

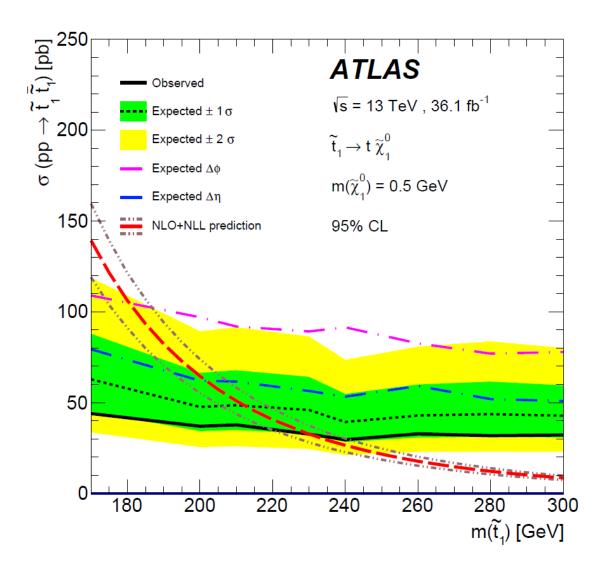
Coefficient	Measured	POWHEGv2	MG5_amc@nlo	NLO calculation
C_{kk}	0.300 ± 0.038	$0.314^{+0.005}_{-0.004}$	$0.325^{+0.011}_{-0.006}$	$0.331^{+0.002}_{-0.002}$
C_{rr}	0.081 ± 0.032	$0.048^{+0.007}_{-0.006}$	$0.052^{+0.007}_{-0.005}$	$0.071^{+0.008}_{-0.006}$
C_{nn}	0.329 ± 0.020	$0.317^{+0.001}_{-0.001}$	$0.324^{+0.002}_{-0.002}$	$0.326^{+0.002}_{-0.002}$
$C_{rk} + C_{kr}$	-0.193 ± 0.064	$-0.201{}^{+0.004}_{-0.003}$	$-0.198{}^{+0.004}_{-0.005}$	$-0.206^{+0.002}_{-0.002}$
$C_{rk}-C_{kr}$	0.057 ± 0.046	$-0.001^{+0.002}_{-0.002}$	$0.004^{+0.002}_{-0.002}$	0
$C_{nr} + C_{rn}$	-0.004 ± 0.037	$-0.003^{+0.002}_{-0.002}$	$0.001^{+0.002}_{-0.002}$	$1.06^{+0.01}_{-0.01} \times 10^{-3}$
$C_{nr}-C_{rn}$	-0.001 ± 0.038	$0.002^{+0.002}_{-0.002}$	$0.001^{+0.003}_{-0.002}$	0
$C_{nk} + C_{kn}$	-0.043 ± 0.041	$-0.002^{+0.002}_{-0.002}$	$0.003^{+0.002}_{-0.002}$	$2.15^{+0.04}_{-0.07} \times 10^{-3}$
$C_{nk}-C_{kn}$	0.040 ± 0.029	$-0.001^{+0.002}_{-0.002}$	$-0.001{}^{+0.002}_{-0.002}$	0



CMS Collaboration PRD 100, 072002 (2019)

[arXiv:1907.03729]

Motivation: BSM searches


ATLAS and CMS already measure spin correlations in $pp \to t\bar{t}$.

CMS Collaboration
PRD 100, 072002 (2019)
[arXiv:1907.03729]

Motivation: BSM searches

ATLAS and CMS already measure spin correlations in $pp \to t\bar{t}$.

ATLAS Collaboration EPJC 80 (2020) 754 [arXiv:1903.07570]

Motivation: quantum properties

ATLAS and CMS already measure entanglement in $pp \to t\bar{t}$.

ATLAS Collaboration, Nature 633 (2024) 542 [arXiv:2311.07288]

Article

Observation of quantum entanglement with top quarks at the ATLAS detector

https://doi.org/10.1038/s41586-024-07824-z

Received: 14 November 2023

Accepted: 12 July 2024

Published online: 18 September 2024

Open access

Check for updates

Entanglement is a key feature of quantum mechanics¹⁻³, with applications in fields such as metrology, cryptography, quantum information and quantum computation⁴⁻⁸. It has been observed in a wide variety of systems and length scales, ranging from the microscopic9-13 to the macroscopic14-16. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top-antitop quark events produced at the Large Hadron Collider, using a proton-proton collision dataset with a centre-ofmass energy of \sqrt{s} = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)⁻¹ recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top-antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be $D = -0.537 \pm 0.002$ (stat.) ± 0.019 (syst.) for 340 GeV < $m_{r\bar{t}}$ < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far.

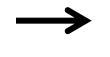
ATLAS and CMS already measure spin correlations in $pp \to t\bar{t}$.

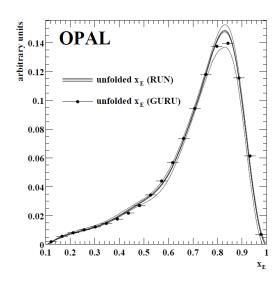
Do similar opportunities exist for

$$pp \to b\bar{b}$$

$$pp \rightarrow c\bar{c}$$

$$pp \rightarrow s\bar{s}$$

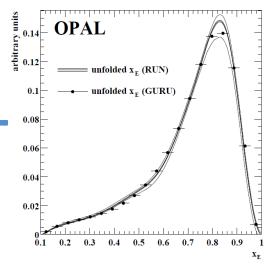

• • •



Nontrivial because the quarks hadronize and produce jets.

But nevertheless possible!

The *b* quark is carried by an **energetic** hadron with a **displaced** decay.

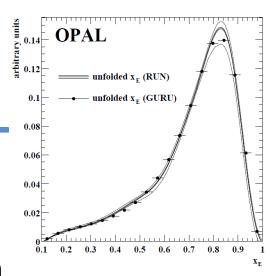

The *b* quark is carried by an **energetic** hadron with a **displaced** decay.

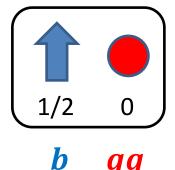
chromomagnetic moment $\mu_b \propto \frac{1}{m_b}$

$$m_b \gg \Lambda_{
m QCD}$$

 \boldsymbol{b} spin **preserved** during hadronization

The b quark is carried by an **energetic** hadron with a **displaced** decay.




chromomagnetic moment

$$\mu_b \propto \frac{1}{m_b}$$

$$m_b \gg \Lambda_{
m QCD}$$

b spin preservedduring hadronization

 Λ_h

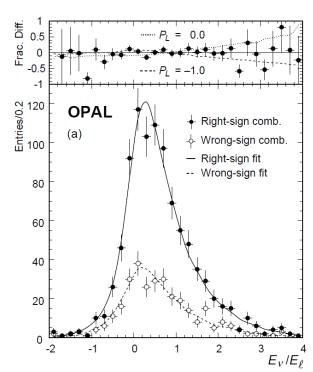
b spin also **preserved** during lifetime

Mannel and Schuler, PLB 279, 194 (1992)

Close, Körner, Phillips, Summers, J. Phys. G 18, 1703 (1992)

Falk and Peskin, PRD 49, 3320 (1994) [hep-ph/9308241]

Evidence of Λ_h polarization was observed at **LEP**


in $Z \to b\bar{b}$, where $\mathcal{P}(b) \simeq -0.94$:

$$\mathcal{P}(\Lambda_b) = -0.23^{+0.24}_{-0.20}{}^{+0.08}_{-0.07} \qquad (ALEPH)$$

$$\mathcal{P}(\Lambda_b) = -0.49^{+0.32}_{-0.30} \pm 0.17$$
 (DELPHI)

$$\mathcal{P}(\Lambda_b) = -0.56^{+0.20}_{-0.13} \pm 0.09$$
 (OPAL) stat. syst.

ALEPH Collaboration, PLB 365, 437 (1996) DELPHI Collaboration, PLB 474, 205 (2000) OPAL Collaboration, PLB 444, 539 (1998)

Some polarization loss due to contamination from $\Sigma_h^{(*)} \to \Lambda_h \pi$.

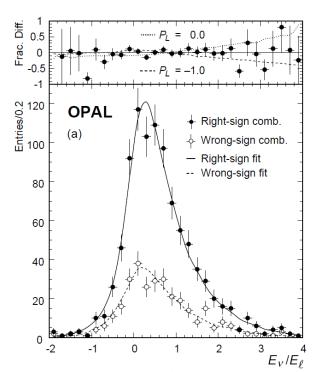
LEP \rightarrow longitudinal polarization retention factor | $r_L = 0.47 \pm 0.14$

$$r_L = 0.47 \pm 0.14$$

For transverse polarization, possibly different, r_T

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan, JHEP 11 (2015) 067 [1505.02771]

Evidence of Λ_h polarization was observed at **LEP**


in $Z \to b\bar{b}$, where $\mathcal{P}(b) \simeq -0.94$:

$$\mathcal{P}(\Lambda_b) = -0.23^{+0.24}_{-0.20} {}^{+0.08}_{-0.07} \qquad \text{(ALEPH)}$$

$$\mathcal{P}(\Lambda_b) = -0.49^{+0.32}_{-0.30} \pm 0.17$$
 (DELPHI)

$$\mathcal{P}(\Lambda_b) = -0.56^{+0.20}_{-0.13} \pm 0.09$$
 (OPAL) stat. syst.

ALEPH Collaboration, PLB 365, 437 (1996) DELPHI Collaboration, PLB 474, 205 (2000) OPAL Collaboration, PLB 444, 539 (1998)

Some polarization loss due to contamination from $\Sigma_h^{(*)} \to \Lambda_h \pi$.

LEP \rightarrow longitudinal polarization retention factor $| r_L = 0.47 \pm 0.14 |$

$$r_L = 0.47 \pm 0.14$$

Can also be measured using $t\bar{t}$ samples at the LHC (see backup slides)!

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan, JHEP 11 (2015) 067 [1505.02771]

Spin correlations in $b\overline{b}$ and $c\overline{c}$

$$\tilde{\mathbf{C}} = \begin{pmatrix} c_{kk} & c_{kn} + c_r & c_{rk} - c_n \\ c_{kn} - c_r & c_{nn} & c_{nr} + c_k \\ c_{rk} + c_n & c_{nr} - c_k & c_{rr} \end{pmatrix}$$

	$t\bar{t}$, no cuts
c_{kk}	0.324 ± 0.006
c_{rr}	0.009 ± 0.006
c_{nn}	0.333 ± 0.006
$2c_{rk}$	-0.211 ± 0.008

MadGraph + MadSpin, LO QCD, $\sqrt{s} = 13 \text{ TeV}$

Spin correlations in $b\overline{b}$ and $c\overline{c}$

$$\tilde{\mathbf{C}} = \begin{pmatrix} c_{kk} & c_{kn} + c_r & c_{rk} - c_n \\ c_{kn} - c_r & c_{nn} & c_{nr} + c_k \\ c_{rk} + c_n & c_{nr} - c_k & c_{rr} \end{pmatrix}$$

	$t\bar{t}$, no cuts	$b\bar{b}$, no cuts	$c\bar{c}$, no cuts
c_{kk}	0.324 ± 0.006	0.296 ± 0.004	0.284 ± 0.004
c_{rr}	0.009 ± 0.006	0.004 ± 0.004	-0.006 ± 0.004
c_{nn}	0.333 ± 0.006	0.299 ± 0.004	0.298 ± 0.004
$2c_{rk}$	-0.211 ± 0.008	-0.197 ± 0.006	-0.188 ± 0.006

MadGraph + MadSpin, LO QCD, $\sqrt{s} = 13 \text{ TeV}$

Spin correlations in bb and $c\overline{c}$

$$\tilde{\mathbf{C}} = \begin{pmatrix} c_{kk} & c_{kn} + c_r & c_{rk} - c_n \\ c_{kn} - c_r & c_{nn} & c_{nr} + c_k \\ c_{rk} + c_n & c_{nr} - c_k & c_{rr} \end{pmatrix}$$

	$t\bar{t}$, no cuts	$b\bar{b}$, no cuts	$c\bar{c}$, no cuts	$b\bar{b}$ with cuts	$c\bar{c}$ with cuts
c_{kk}	0.324 ± 0.006	0.296 ± 0.004	0.284 ± 0.004	-0.987 ± 0.004	-0.984 ± 0.006
c_{rr}	0.009 ± 0.006	0.004 ± 0.004	-0.006 ± 0.004	-0.603 ± 0.004	-0.609 ± 0.006
c_{nn}	0.333 ± 0.006	0.299 ± 0.004	0.298 ± 0.004	0.591 ± 0.004	0.603 ± 0.006
$2c_{rk}$	-0.211 ± 0.008	-0.197 ± 0.006	-0.188 ± 0.006	-0.038 ± 0.006	-0.008 ± 0.009

MadGraph + MadSpin, LO QCD, $\sqrt{s} = 13 \text{ TeV}$

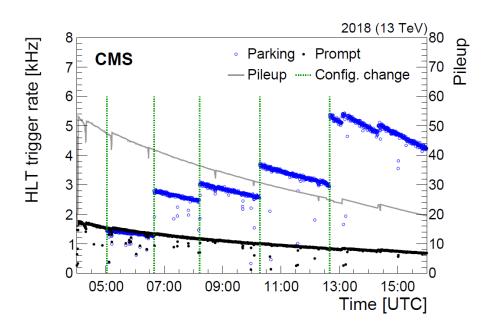
Baryon decay angular distributions

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_i^{\pm}} = \frac{1}{2} \left(1 + B_i^{\pm} \cos\theta_i^{\pm} \right)$$

$$B_i^\pm = \alpha_\pm \, r_i \, f \, \tilde{B}_i^\pm$$
 spin analyzing polarization
$$f = \frac{N_{\rm sig}}{N_{\rm bg} + N_{\rm sig}}$$
 power retention factor
$$(r_L \, {\rm or} \, r_T)$$
 sample purity

$$\frac{1}{\sigma} \frac{d\sigma}{d(\cos\theta_i^+ \cos\theta_j^-)} = \frac{1}{2} \left(1 - C_{ij} \cos\theta_i^+ \cos\theta_j^- \right) \ln \left(\frac{1}{|\cos\theta_i^+ \cos\theta_j^-|} \right)$$

$$C_{ij} = \alpha_{+}\alpha_{-} r_{i} r_{j} f \tilde{C}_{ij}$$


Standard datasets

	ATLAS		C	CMS
	Run 2	HL-LHC	Run 2	HL-LHC
Collider energy \sqrt{s} [TeV]	13	14	13	14
Integrated luminosity \mathcal{L} [fb ⁻¹]	140	3000	140	3000
Trigger-motivated cuts:				
Jet p_T cut [GeV]	460	400	500	520
Double muon p_T cut (without isolation) [GeV]	15	10	37, 27	37, 27
Single muon p_T cut (with isolation) [GeV]	27	20	24	24
Double electron p_T cut (without isolation) [GeV]	18	10	25	25
Single electron p_T cut (with isolation) [GeV]	27	22	28	32 or 26
Jet $ \eta $ cut	2.4	3.8	2.4	4.0
Muon $ \eta $ cut	2.4	2.5	2.4	2.4
Electron $ \eta $ cut	2.4	2.5	2.4	2.4

Special dataset: CMS parked data

CMS Collaboration, Phys. Rept. 1115 (2025) 678 [arXiv:2403.16134]

- > Data parking: record the data when bandwidth allows and process it later.
- ightharpoonup Trigger: muon with a low p_T threshold (varying between 7 and 12 GeV) and impact parameter significance.
- ightharpoonup Operated during part of Run 2 ($\sim 42 \text{ fb}^{-1}$)
- Original motivation: measurements of LFU violation (R_K etc.)
 "B parking" dataset

$b\overline{b}$ analysis selection for $\Lambda_b o X_c \mu^- \, \overline{ u}_\mu$

- \Box Pair of opposite-sign muons (inside jets) satisfying the offline trigger cuts and each carrying > 20% of the jet momentum.
- \square At least one of the jets is "b tagged" (with assumed efficiency of 80%), e.g. by muon impact parameter.

Dominant remaining background:

semileptonic *B*-meson decays

Possible approaches to dealing with it:

Inclusive keep it (to keep the signal efficiency high)

Semi-inclusive demand $\Lambda \to p\pi^-$ coming from the b decay vertex

(costly in efficiency because the Λ decays far)

Exclusive demand a fully reconstructed Λ_c decay

Mixed (one choice for one jet, another choice for the second)

$b\overline{b}$ analysis selection for $\Lambda_b o X_c \mu^- \, ar{ u}_\mu$

Selection	Decay Modes	Branching Ratio
Inclusive	$\Lambda_b \to X_c \mu^- \bar{\nu}_\mu$	11%
Semi-inclusive	$\Lambda_c^+ \to \Lambda X$	38%
Selff-filefusive	$\Lambda \to p\pi^-$	64%
	$\Lambda_c^+ \to p K^- \pi^+$	6.3%
	$\Lambda_c^+ \to \Lambda \pi^+ \to p \pi^- \pi^+$	0.8%
	$\Lambda_c^+ \to p K_S \to p \pi^- \pi^+$	1.1%
Exclusive	$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^- \to p \pi^+ \pi^+ \pi^- \pi^-$	2.3%
Exclusive	$\Lambda_c^+ \to p K_S \pi^+ \pi^- \to p \pi^+ \pi^+ \pi^- \pi^-$	1.1%
	$\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$	4.5%
	$\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+$	1.9%
	total	18%

Run 2 precision for $b\overline{b}$

	inclusive	inclusiv	ve/inclusive	inclusiv	ve/exclusive
trigger	$r_i \Delta b_i^{\pm}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$
standard	0.003	0.14	0.10	0.11	0.079
parked	0.0003	0.039	0.027	0.031	0.022

$channel \rightarrow$	semi-inclusive	semi-inc	lusive/semi-inclusive	semi-inc	lusive/inclusive
trigger	$r_i \Delta b_i^{\pm}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$
standard	0.005	0.36	0.25	0.16	0.11
parked	0.0004	0.050	0.035	0.031	0.022

$\mathrm{channel} \to$	exclusive	exclusive/exclusive		exclusive/semi-inclus	
trigger	$r_i \Delta b_i^{\pm}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$
standard	0.003	0.18	0.11	0.18	0.13
parked	0.0004	0.049	0.034	0.034	0.024

Note: Since the performance of the different channels is comparable, sensitivity can be improved by combining channels.

Run 2 precision for $b\overline{b}$

	inclusive	inclusiv	ve/inclusive	inclusiv	re/exclusive
trigger	$r_i \Delta b_i^{\pm}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$
standard	0.003	0.14	0.10	0.11	0.079
parked	0.0003	0.039	0.027	0.031	0.022

	semi-inclusive	semi-inc	lusive/semi-inclusive	semi-inc	lusive/inclusive
trigger	$r_i \Delta b_i^{\pm}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$
standard	0.005	0.36	0.25	0.16	0.11
parked	0.0004	0.050	0.035	0.031	0.022

$channel \rightarrow$	exclusive	exclusive/exclusive		sive exclusive/exclusive exclusive/semi-inc		e/semi-inclusive
trigger	$r_i \Delta b_i^{\pm}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	
standard	0.003	0.18	0.11	0.18	0.13	
parked	0.0004	0.049	0.034	0.034	0.024	

Note: Since the performance of the different channels is comparable, sensitivity can be improved by combining channels.

HL-LHC precision for $b\overline{b}$

	inclusive	inclusiv	ve/inclusive	inclusive/exclusive			
m_{jj} cut [GeV]	$r_i \Delta b_i^{\pm}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$		
no cut	0.0004	0.015	0.011	0.012	0.0086		
300	0.0022	0.13	0.091	0.10	0.071		

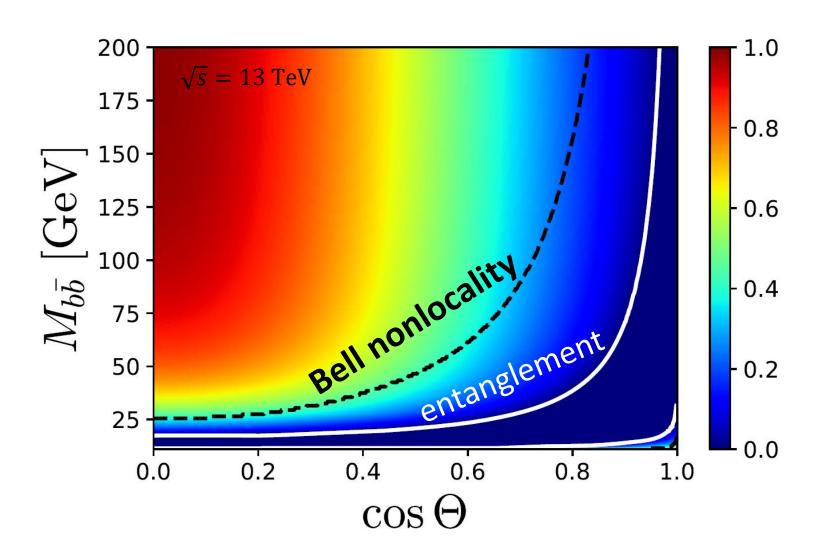
	semi-inclusive	semi-inc	semi-inclusive/inclusive			
m_{jj} cut [GeV]	$r_i \Delta b_i^{\pm}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	
no cut	0.0004	0.018	0.013	0.012	0.0084	
300	0.0027	0.21	0.15	0.12	0.082	

$\mathrm{channel} \to$	exclusive	exclusiv	ve/exclusive	exclusive/semi-inclusive			
m_{jj} cut [GeV]	$r_i \Delta b_i^{\pm}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$		
no cut	0.0004	0.019	0.013	0.013	0.0093		
300	0.0025	0.16	0.11	0.13	0.091		

Note: Since the performance of the different channels is comparable, sensitivity can be improved by combining channels.

Quantum properties in bb spins

Entanglement: density matrix cannot be written in a separable form $\rho = \sum p_n \rho_n^b \otimes \rho_n^{\bar{b}}$


Sufficient condition:

$$\Delta \equiv \frac{-C_{nn} + |C_{kk} + C_{rr}| - 1}{2} > 0$$

➤ Bell nonlocality: the state can violate Bell inequalities, i.e. QM cannot be replaced with local hidden variables.

Sufficient condition: $\mathcal{V} \equiv C_{kk}^2 + C_{rr}^2 - 1 > 0$

Quantum properties in bb spins

Quantum properties in $b\overline{b}$ spins

	$\sigma\epsilon_{\mu\mu}$	[pb]	\mathcal{L} [fb ⁻¹]	N	C_{kk} C_{rr}	C_{nn}	Δ	ν	r_L	$\sigma_{\Delta}^{ m stat}$	$\sigma_{\mathcal{V}}^{ ext{stat}}$	$\frac{\Delta}{\sigma_{\Delta}^{\rm stat}}$	$rac{\mathcal{V}}{\sigma^{ m stat}_{\mathcal{V}}}$
		Run 2, $\sqrt{s} = 13 \text{ TeV}$											
ATLAS	1.9 ×	10^{4}	140	2.7×10^4	0.94 0.57	-0.56	0.54	0.21		0.14 0.23	0.33 0.78	3.9 2.3	0.6 0.3
LHCb	3.9 ×	10 ⁶	5.7	1.8×10^4	0.55 0.67	-0.56	0.39	-0.24		0.17 0.29	0.34 0.62	2.2	-0.7 -0.4
$\overline{\mathrm{CMS}\;B}$ parking	7.9 ×	10^{5}	41.6	1.8×10^5	0.76 0.63	-0.59	0.49	-0.03			0.120 0.256		-0.3 -0.1
					HL-LH	\mathbf{C}, \sqrt{s}	= 14	TeV					
ATLAS	9.9 ×	10^4	3000	1.0×10^6	0.91 0.85	-0.83	0.79	0.55			0.06 0.13		8.7 4.3
LHCb	4.3 ×	10 ⁶	300	8.2×10^4	0.79 0.88	-0.81	0.74	0.43			0.215 0.406		2.0 1.0

 $r_T = 0.7$

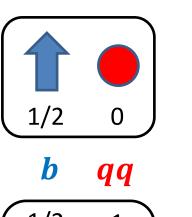
For LHCb: a trigger requiring a muon with $p_T>1.8$ GeV, displaced SV, at least one charged particle with $p_T>1.6$ GeV inconsistent with PV.

Conclusions and outlook

- $\blacktriangleright b \bar b$ spin correlation measurements may be possible even with Run 2 datasets, especially with the CMS parked data.
- $ightharpoonup c ar{c}$ spin correlation measurements may become possible at the HL-LHC.
- \triangleright Can measure the polarization retention factors r_L and r_T (more refined: the polarized fragmentation functions):

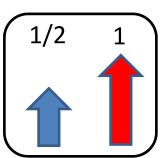
$$r_L^2 = \frac{C_{kk}}{c_{kk}\alpha_+\alpha_- f}$$
, $r_T^2 = \frac{C_{nn}}{c_{nn}\alpha_+\alpha_- f}$, $r_T^2 = \frac{C_{rr}}{c_{rr}\alpha_+\alpha_- f}$

- Measuring r_L via the polarized b and c quarks in $t\bar{t}$ samples could be a simpler first step. JHEP 11 (2015) 067 [arXiv:1505.02771]
- ightharpoonup Can $b\bar{b}$ and $c\bar{c}$ spin correlations be useful for discovering or characterizing new physics? Work in progress with David Uzan.
- \blacktriangleright Measurements of entanglement (Run 2) and Bell nonlocality (HL-LHC) are feasible in $b\bar{b}$, similar to $t\bar{t}$.


Supplemental Slides

chromomagnetic moment

$$\mu_b \propto \frac{1}{m_b}$$


$$m_b \gg \Lambda_{
m QCD}$$

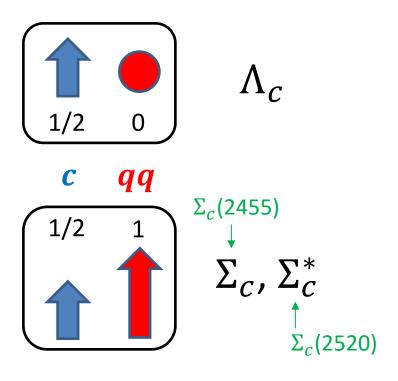
b spin preserved during hadronization

 Λ_b

b spin also **preserved** during lifetime

 Σ_b , Σ_b^*

b spin **oscillates** during lifetime


 Λ_b sample contaminated by $\Sigma_b^{(*)} o \Lambda_b \pi$

chromomagnetic moment

$$\mu_c \propto \frac{1}{m_c}$$

$$m_c \gg \Lambda_{
m QCD}$$
 as a rough approximation

c spin **preserved** during hadronization

c spin also **preserved** during lifetime

c spin **oscillates** during lifetime

 Λ_c sample contaminated by $\Sigma_c^{(*)} o \Lambda_c \pi$

Dominant polarization loss effect

$$\Sigma_b^{(*)} o \Lambda_b \pi$$
 decays

$$\begin{vmatrix} \left| \Lambda_{b,+1/2} \right\rangle = \left| b_{+1/2} \right\rangle |S_0\rangle \\ \left| \left| \Sigma_{b,+1/2} \right\rangle = -\sqrt{\frac{1}{3}} \left| b_{+1/2} \right\rangle |T_0\rangle + \sqrt{\frac{2}{3}} \left| b_{-1/2} \right\rangle |T_{+1}\rangle \\ \left| \left| \Sigma_{b,+1/2}^* \right\rangle = \sqrt{\frac{2}{3}} \left| b_{+1/2} \right\rangle |T_0\rangle + \sqrt{\frac{1}{3}} \left| b_{-1/2} \right\rangle |T_{+1}\rangle \\ \left| \left| \Sigma_{b,+3/2}^* \right\rangle = \left| b_{+1/2} \right\rangle |T_{+1}\rangle \end{aligned}$$

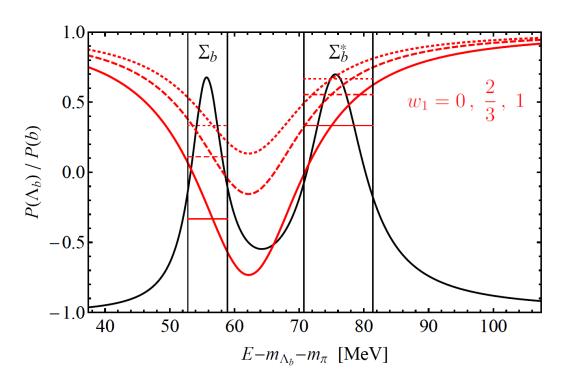
Production as a b spin eigenstate.

Decay as a Σ_b or Σ_b^* mass eigenstate.

e.g.
$$|b_{+1/2}\rangle|T_0\rangle = -\sqrt{\frac{1}{3}}|\Sigma_{b,+1/2}\rangle + \sqrt{\frac{2}{3}}|\Sigma_{b,+1/2}^*\rangle$$
 $r \approx \frac{1 + (1 + 4w_1)A/9}{1 + A}$

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$$

"diquarks"


$$\begin{array}{ccc} S & T \\ \text{spin-0} & \text{spin-1} \\ \text{isosinglet} & \text{isotriplet} \end{array}$$

$$A = \frac{\operatorname{prob}\left(\Sigma_b^{(*)}\right)}{\operatorname{prob}\left(\Lambda_b\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$

$$w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)} \quad \text{along axis of fragmentation}$$

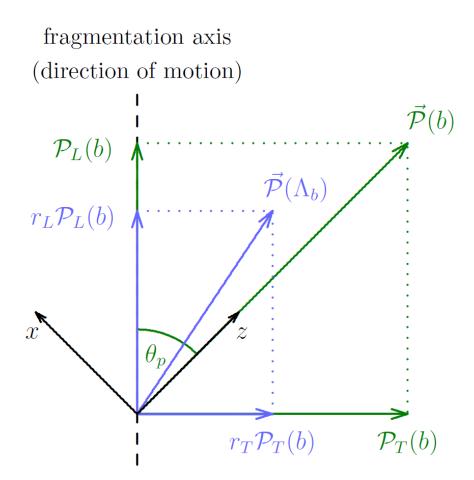
$$r\approx\frac{1+(1+4w_1)A/9}{1+A}$$

More precisely, need to account for $\Sigma_b^{(*)}$ widths (interference).

Parameter	(MeV)
Γ_{Σ_b}	7 ± 3
$\Gamma_{\Sigma_b^*}$	9 ± 2
$m_{\Sigma_b^*} - m_{\Sigma_b}$	21 ± 2

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A}$$

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan JHEP 11 (2015) 067 [arXiv:1505.02771]


$$r_L \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A}$$

$$r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A}$$

Directional dependence, since

$$w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

holds along the fragmentation axis.

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan JHEP 11 (2015) 067 [arXiv:1505.02771]

Heavy quark polarization retention

$$r_L \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A}$$

$$A = \frac{\operatorname{prob}\left(\Sigma_b^{(*)}\right)}{\operatorname{prob}\left(\Lambda_b\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$

$$r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A}$$

$$w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

What is known about A and w_1 (for both b and c quarks)?

Pythia tunes $0.24 \lesssim A \lesssim 0.45$ (but based on light hadron data)

$$1 \lesssim A \lesssim 10 \ (b)$$

DELPHI (LEP)
$$1 \le A \le 10 \ (b)$$
 $w_1 = -0.36 \pm 0.30 \pm 0.30 \ (b)$

DELPHI-95-107

E791

$$A \approx 1.1$$
 (c)

$$A \approx 1.1 (c)$$
 CLEO (CESR) $w_1 = 0.71 \pm 0.13 (c)$

PLB 379, 292 (1996)

PRL 78, 2304 (1997)

Statistical hadronization $A \approx 2.6$ (*b* and *c*)

review: PLB 678, 350 (2009)

$$A \approx 6 (b \text{ and } c)$$

Adamov & Goldstein
$$A \approx 6$$
 (b and c) $w_1 \approx 0.41$ (b), 0.39 (c)

PRD 64, 014021 (2001)

Heavy quark polarization retention

$$r_L \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A}$$

$$A = \frac{\operatorname{prob}\left(\Sigma_b^{(*)}\right)}{\operatorname{prob}\left(\Lambda_b\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$

$$r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A}$$

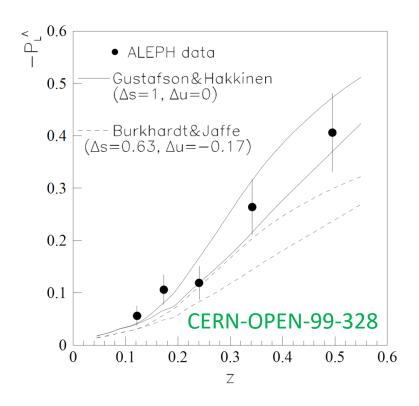
$$w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

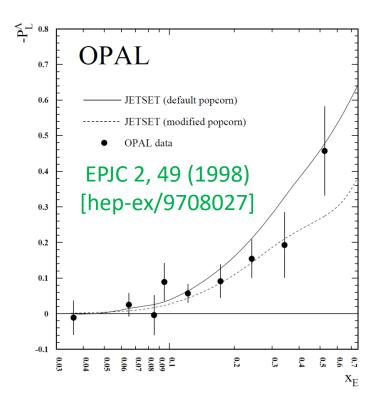
What is known about A and w_1 (for both b and c quarks)?

Overall: $A \sim \mathcal{O}(1)$, $0 \le w_1 \le 1$

$$r_L$$
, $r_T \sim \mathcal{O}(1)$

 r_L consistent with Λ_b results from LEP


s-quark polarization retention?


➤ Cannot argue for polarization retention using heavy-quark limit.

Cannot argue for polarization loss either!

s-quark polarization retention!

- Cannot argue for polarization retention using heavy-quark limit.
 Cannot argue for polarization loss either!
- $\blacktriangleright \Lambda$ polarization studies were done in Z decays at LEP.

s-quark polarization retention!

- Cannot argue for polarization retention using heavy-quark limit.
 Cannot argue for polarization loss either!
- $\blacktriangleright\Lambda$ polarization studies were done in Z decays at LEP.

For z > 0.3:

$${\cal P}(\Lambda) = -0.31 \pm 0.05$$
 ALEPH, CERN-OPEN-99-328 ${\cal P}(\Lambda) = -0.33 \pm 0.08$ OPAL, EPJC 2, 49 (1998) [hep-ex/9708027]

Contributions from all quark flavors are included.

For strange quarks only (non-negligible modeling uncertainty):

$$-0.65 \lesssim \mathcal{P}(\Lambda) \lesssim -0.49$$

Sizable polarization retention!

Baryon decays of interest

Fragmentation Fraction		Decay Scheme	BR	Spin analyzing power
$b o \Lambda_b$	7.0%	$\Lambda_b \to X_c \mu^- \bar{\nu}_{\mu}$	11%	$\alpha_{\mu^-} \approx -0.26, \alpha_{\bar{\nu}_{\mu}} \approx 1$
		$\Lambda_b \to X_c \mu^- \bar{\nu}_{\mu}$ with $\Lambda \to p\pi^-$ with Λ_c^+ reco.	2.7%	
		with Λ_c^+ reco.	2.0%	
$c \to \Lambda_c$	6.4%	$\Lambda_c^+ \to p K^- \pi^+$	6.3%	$\alpha_{\rm eff} \approx 0.662$
		$\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$	3.5%	$\alpha_{\mu^+} \approx 1$
		with $\Lambda \to p\pi^-$	2.2%	

Baryon decays of interest

Fragmentation Fraction		Decay Scheme	BR	Spin analyzing power
$b o \Lambda_b$	7.0%	$\Lambda_b \to X_c \mu^- \bar{\nu}_{\mu}$	11%	← inclusive
		with $\Lambda \to p\pi^-$	2.7%	← inclusive ← semi-inclusive
		with Λ_c^+ reco.	2.0%	← exclusive
$c \to \Lambda_c$	6.4%	$\Lambda_c^+ \to p K^- \pi^+$	6.3%	← hadronic
		$\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$	3.5%	← semileptonic
		$\begin{array}{c} \Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu} \\ \text{with } \Lambda \to p \pi^- \end{array}$	2.2%	← sermeptonic

+ mixed channels with one selection on one side and another on the other

Measuring r_L via ATLAS/CMS $tar{t}$ samples

Top pair production $pp \to t\bar{t}$

- > $t \rightarrow W^+b$ produces polarized b quarks. $\hookrightarrow c\bar{s}$ produces polarized c and s quarks.
- \triangleright Easy to select a clean $t\bar{t}$ sample (e.g., in lepton + jets).
- \blacktriangleright Kinematic reconstruction along with b and c tagging enable obtaining high-purity samples of b, c and s jets.
- \triangleright Statistics in Run 2 is as large as in Z decays at LEP.
- ightharpoonup Run 2 data allows measuring r_L with $\mathcal{O}(10\%)$ precision for b, c, s.

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan, JHEP 11 (2015) 067 [arXiv:1505.02771]

Kats, Phys. Rev. D 92 (2015) 071503 [arXiv:1505.06731]

Event counts for bb analysis

	[GeV]	bb	bb	bb	1 ^{1}bb	bb	bb
	no cut	8.0×10^{4}	200	640	8.1×10^{3}	1.4×10^{4}	730
Run 2	100	4.7×10^4		380	4.8×10^3	8.5×10^3	430
	300	2.7×10^{3}	5.0	21	230	490	20
	500	360		2.9	20	65	1.8
	parked data	1.1×10^{6}	1.1×10^{4}	8700	2.2×10^{5}	1.9×10^{5}	2.0×10^{4}

32

 $N_{b\bar{b}}^{ss}$

 $N_{b\bar{b}}^{ie}$

4.9

38

m_{ii} cut $N_{b\bar{b}}^{ii}$ $N_{b\bar{b}}^{ie}$ $N_{b\bar{b}}^{ss}$ $N_{b\bar{b}}^{ee}$ $N_{b\bar{b}}^{is}$ $N_{b\bar{b}}^{se}$ [GeV] 8.1×10^4 1.2×10^{6} 1.3×10^{5} 6.7×10^{6} 5.4×10^4 1.5×10^{6} no cut 2.6×10^{6} 5.7×10^{5} 5.1×10^4 3.1×10^4 2.1×10^4 4.7×10^{5} 100 1.5×10^4 1.7×10^4 1.4×10^{3} 9.6×10^{4} 780 300 610 1.2×10^4 1.3×10^{3} 2.2×10^{3} 500 98 120 35 2.0×10^{3} 750 3.0 16 150 360 13 1000 460 3.7 27 2.5 82 purity f [%] 32 38 0.554.24.9 44

44

4.2

HL-LHC

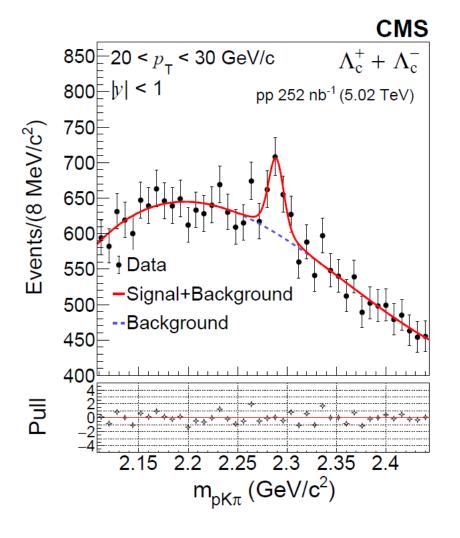
R

 m_{jj} cut

purity f [%]

 $N_{bar{b}}^{ii}$

0.55


Hadronic selection for $c\bar{c}$ analysis

$$\Lambda_c^+ \to p K^- \pi^+$$

- \blacktriangleright Three hadron tracks consistent with a common vertex and the Λ_c^+ mass hypothesis.
- ➤ Backgrounds:
 - Other charmed hadron decays, e.g., $D^+ \to \pi^+ K^- \pi^+ (\pi^0)$.
 - Charmed hadrons from b jets.
 - Combinatorial background due to random track combinations.

Hadronic selection for $c\overline{c}$ analysis

$$\Lambda_c^+ \to p K^- \pi^+$$

CMS Collaboration JHEP 01 (2024) 128 [arXiv:2307.11186]

Semileptonic selection for $c\overline{c}$ analysis

- ☐ Pair of opposite-sign muons (inside jets) satisfying the offline trigger cuts.
- \square $\Lambda \to p\pi^-$ decay in each jet (will help reconstruct the Λ_c^+ and eliminate the D-meson background).
- The inferred Λ trajectory should form a displaced vertex with the muon, or the Λ should carry a significant fraction of the jet momentum (to ensure that the Λ originates from the Λ_c^+ decay).
- \Box Charm tagging against b jets with 40% signal efficiency (which likely makes the background from b jets negligible; see paper for more details).

Event counts and precision for $c\bar{c}$ analysis

HL-LHC

channel	$N_{car{c}}$	f [%]	$r_i^2 \Delta c_{ii}$	$r_i r_j \Delta c_{ij(\ell)}$
hadronic	24			
semileptonic	2.4×10^{3}	100	0.060	0.042
mixed	3.9×10^3	100 - 14	0.072 - 0.19	0.050 - 0.13

Challenges for $s\bar{s}$ analyses

- ightharpoonup ATLAS/CMS jet triggers require $p_T \gtrsim 400$ GeV, limiting the statistics.
- \triangleright Only about 3% of the energetic Λ baryons decay sufficiently early inside the tracker, again limiting the statistics.

Large backgrounds from other dijet processes (no "s tagging" algorithms) lead to low sample purity ($\sim 1\%$).

Spin correlations opportunities summary

Quark	Channel	Run	HL-LHC	
	Chamici	standard	parked	TIL-LITO
c	hadronic			
	${\bf semileptonic}$			✓
	mixed			✓
b	inclusive/inclusive	(✓)	(✓)	(✓)
	semi-inclusive/semi-inclusive	~	✓	✓
	exclusive/exclusive	~	✓	✓
	inclusive/exclusive	(✓)	(\checkmark)	(✓)
	inclusive/semi-inclusive	(✓)	(\checkmark)	(✓)
	exclusive/semi-inclusive	*	✓	✓

Statistical uncertainties

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_i^{\pm}} = \frac{1}{2} \left(1 + B_i^{\pm} \cos\theta_i^{\pm} \right)$$

$$\frac{1}{\sigma} \frac{d\sigma}{d(\cos\theta_i^+ \cos\theta_j^-)} = \frac{1}{2} \left(1 - C_{ij} \cos\theta_i^+ \cos\theta_j^- \right) \ln \left(\frac{1}{|\cos\theta_i^+ \cos\theta_j^-|} \right)$$

$$\frac{1}{\sigma} \frac{d\sigma}{dX_{\pm}} = \frac{1}{2} \left(1 - \frac{C_{ij}^{\pm}}{2} X_{\pm} \right) \cos^{-1}(|X_{\pm}|)$$

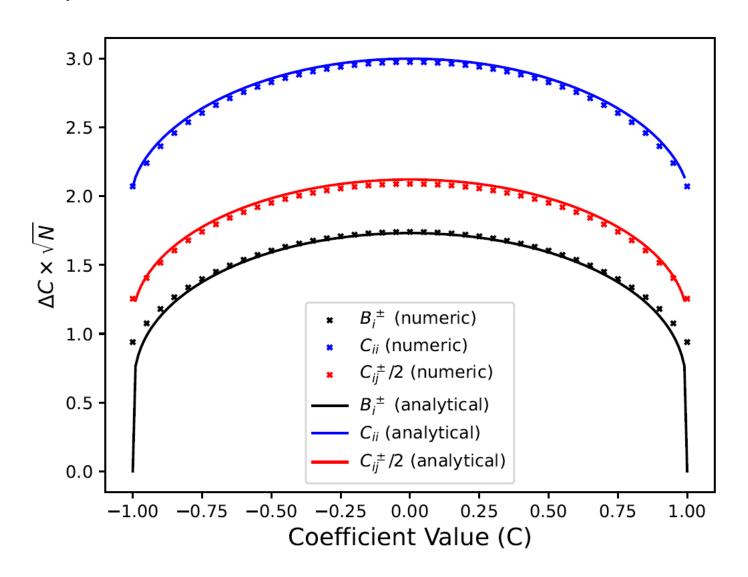
$$C_{ij}^{\pm} = C_{ij} \pm C_{ji}$$
 $X_{\pm} = \cos \theta_i^+ \cos \theta_j^- \pm \cos \theta_i^+ \cos \theta_i^-$

Uncertainties from fitting to statistically fluctuated data:

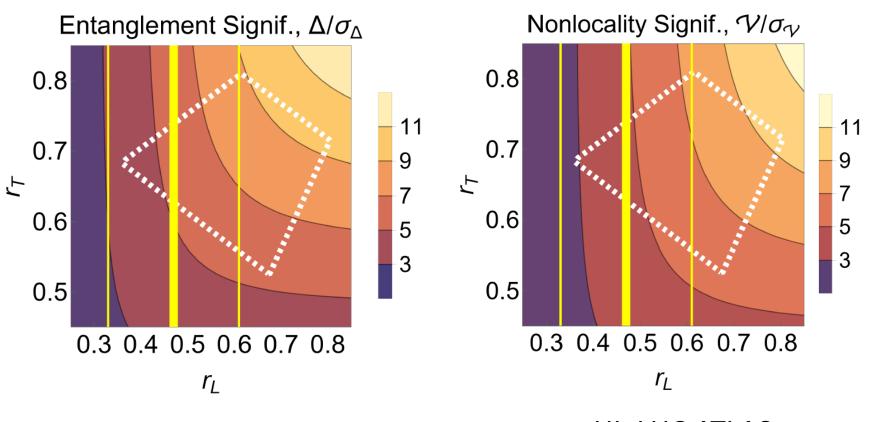
$$\Delta B_i^{\pm} \simeq \frac{\sqrt{3}}{\sqrt{N}} \; , \quad \Delta C_{ij} \simeq \frac{3}{\sqrt{N}} \; , \quad \Delta C_{ij}^{\pm} \simeq \frac{3\sqrt{2}}{\sqrt{N}}$$

Statistical uncertainties

$$B_i^{\pm} = \alpha_{\pm} r_i f b_i^{\pm} \qquad C_{ii} = \alpha_{+} \alpha_{-} r_i^2 f c_{ii}$$
$$C_{ij}^{+} = 2\alpha_{+} \alpha_{-} r_i r_j f c_{ij} \qquad C_{ij}^{-} = 2\alpha_{+} \alpha_{-} r_i r_j f c_{\ell}$$


$$\Delta b_i^{\pm} \simeq \frac{\sqrt{3}}{|r_i \alpha_{\pm}| \sqrt{f N_{\text{sig}}}},$$

$$\Delta c_{ii} \simeq \frac{3}{r_i^2 |\alpha_{+} \alpha_{-}| \sqrt{f N_{\text{sig}}}},$$


$$\Delta c_{ij(\ell)} \simeq \frac{3}{\sqrt{2} |r_i r_j \alpha_{+} \alpha_{-}| \sqrt{f N_{\text{sig}}}}$$

Statistical uncertainties

Dependence on the value of the coefficient:

Quantum properties in bb spins

CMS B parking $\mathcal{L} \approx 42 \text{ fb}^{-1}$

HL-LHC ATLAS $\mathcal{L} \approx 3000 \; \mathrm{fb^{-1}}$