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A bit of history: the ψ(2S) anomaly

1
pQCD + hadronisation w/o soft gluon emission

3 / 15

▶ In the early 90’s, CDF reports preliminary
measurements of prompt ψ(2S), a unique
sample without any feed down

▶ At the time, the Colour Singlet Model1 (CSM)
accounts well for quarkonium production

▶ However, the LO cross section (blue dash)
not only is much below the CDF data but its
pT shape is completely wrong

▶ Fragmentation-function- based CSM
computations (red solid) show an agreement
with the pT shape but off by a factor 30

▶ Confirmed by the final measurements and
subsequent RUN 2 data and then similar
observation made with J/ψ after χc removal

▶ This triggered the introduction of the Colour
Octet Mechanism (long-dash, dot-dash) from
NRQCD (EFT valid at small v )

G. Bodwin, E. Braaten, G. Lepage, PRD 51 (1995) 1125; P. Cho, A. Leibovich PRD 53 (1996) 6203

▶ Reminder : CSM ≡ 3S[1]
1 for ψ; LO in v2

COM: 3S[8]
1 ,1S[8]

0 , 3P [8]
J : v4, i.e. NNLO in v2

but enhanced in pT at LO in αs
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Recap on quarkonium production in NRQCD
See e.g. JPL Phys. Rept. 889 (2020) 1

▶ Approach valid for pT ≫/ mQ (FFNS) [Usual approach]

dσ
dpT ,Q

=
∑
i,j,n

fi/A(µFi )⊗ fj/B(µFi )⊗
d σ̂ij→QQ̄[n]X

dpT ,QQ̄[n]
(µFi , µR ,mQ)⟨OQ

QQ̄[n]
⟩

▶ σ̂ij→QQ̄[n]X computed with NRQCD with mQ ̸= 0 at fixed order (FO) in αs

▶ QCD corrections growing with pT for 3S[1]
1 , 1S[8]

0 , 3P [8]
J [see next slide]

▶ Non-perturbative physics factorised out in Long Distance Matrix Elements (LDMEs)
▶ ⟨OQ

3S[1]
1

⟩ from potential models, other LDMEs unknown and fit to the data
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QCD corrections to the CSM for ψ(2S) at colliders
J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007

JPL, EPJC 61:693,2009.
CDF, PRD 80 (2009) 031103
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▶ NNLO⋆ is only an approximate NNLO valid at large pT

▶ It probably makes sense to focus first on the pT scaling
and then on αs
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Recap on quarkonium production in NRQCD
See e.g. JPL Phys. Rept. 889 (2020) 1

▶ Approach valid for pT ≫/ mQ (FFNS) [Usual approach]

dσ
dpT ,Q
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▶ QCD corrections growing with pT for 3S[1]
1 , 1S[8]

0 , 3P [8]
J

▶ Non-perturbative physics factorised out in LDMEs
▶ ⟨OQ

3S[1]
1

⟩ from potential models, other LDMEs unknown and fit to the data

▶ Approach valid for pT ≫ mQ (ZM-VFNS) [with fragmention functions (FFs)]

dσ
dpT ,Q

≃
∑
i,j,k

fi/A(µFi )⊗ fj/B(µFi )⊗
d σ̂ij→kX

dpT ,k
(µFi , µFf , µR)⊗ DQ

k (µFf , {µ0})
▶ Correspond to the leading-power (LP) contribution of an expansion in pT
▶ mQ (≪ pT ) neglected in σ̂, kept in the FFs
▶ FFs DGLAP evolved to account for the resummation of αs ln(pT /mQ)
▶ Unlike other mesons, under NRQCD, FF z dependence is computable

DQ
i (z, {µ0}) =

∑
n

DQQ̄[n]
i (z, {µ0})⟨OQ

QQ̄[n]
⟩

▶ Note: fragmentation is not a new mechanism, just a subset of the usual approach !
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What about higher-order contribution in m2
Q/p

2
T ?

Y.Q. Ma et. al., PRL 113, 142002 (2014)

▶ The first term is valid up to corrections O(m2
Q/p

2
T )

dσAB→QX =
∑

i

d σ̃AB→iX ⊗ Di→Q

+
∑
κ

d σ̃AB→QQ̄[κ]X ⊗ DQQ̄[κ]→Q

+O(m4
Q/p

4
T )

▶ Leading power (single parton fragmentation): a single parton i decays into
the observed Q

▶ Next-to-leading power (double parton fragmentation): two partons in a
spin and colour state κ decay into the observed Q
▶ can in principle be any partons, however, expect that DQQ̄ ≫ Dij for

i , j ∈ {u, d , s, g, ū, d̄ , s̄}

▶ For 3S[1]
1 : LP first appears at O(α3

s) vs. NLP first appears at O(α1
s)

▶ This is expected to compensate the pT suppression of the NLP
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FF vs FO for the CSM
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[green: known; orange: partly known; red: unknown]

▶ p−4
T : LP FF ↔ NNLO (only NNLO⋆ approximation known)

▶ p−6
T : NLP FF (evolution not performed) ↔ NLO: they agree !

▶ p−8
T : NNLP FF ↔ LO



FF vs FO for the CSM

8 / 15

[green: known; orange: partly known; red: unknown]

▶ p−4
T : LP FF ↔ NNLO (only NNLO⋆ approximation known)

▶ p−6
T : NLP FF (evolution not performed) ↔ NLO: they agree !

▶ p−8
T : NNLP FF ↔ LO



FF vs FO for the CSM

8 / 15

[green: known; orange: partly known; red: unknown]

▶ p−4
T : LP FF ↔ NNLO (only NNLO⋆ approximation known)

▶ p−6
T : NLP FF (evolution not performed) ↔ NLO: they agree !

▶ p−8
T : NNLP FF ↔ LO

Adapted from Z.B. Kang, Y.Q. Ma, J.W. Qiu, G. Sterman, PRD 91, 014030 (2015)



FF vs FO for the CSM

8 / 15

[green: known; orange: partly known; red: unknown]

▶ p−4
T : LP FF ↔ NNLO (only NNLO⋆ approximation known)

▶ p−6
T : NLP FF (evolution not performed) ↔ NLO: they agree !

▶ p−8
T : NNLP FF ↔ LO

Adapted from Z.B. Kang, Y.Q. Ma, J.W. Qiu, G. Sterman, PRD 91, 014030 (2015)



Relevance of NLP corrections at large pT for 3S[1]
1 ?

▶ We found that NNLO⋆ is larger than NLO
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008)

▶ Kang et al. found that NLP reproduces NLO
▶ NNLO expected to be well reproduced by LP at very large pT

[even improved since some large logs are resummed]
▶ But from which pT is LP a good approximation, i.e. LP ≫ NLP ?
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▶ Above 50 GeV, LP FF should be accurate even for 3S[1]
1 (FF at α3

s)
▶ For pT < 20 GeV (Tevatron), LP might receive significant NLP corrections
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100 20% 10% 0% 0%
Ma et. al., PRL 113 (2014) 14, 142002

▶ Above 50 GeV, LP FF should be accurate even for 3S[1]
1 (FF at α3

s)
▶ For pT < 20 GeV (Tevatron), LP might receive significant NLP corrections

Caveat:
▶ No evolution of FF here
▶ NLO αs and v2 corrections might affect the comparison 9 / 15
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Summary:

▶ i) Charm frag. dominates, ii) large µR uncertainty from gluon frag. (LO at α3
s)

[i) known; ii) so far completely overlooked !]
▶ FF CSM x-section close to the data where LP approx. gets more accurate !
▶ Clearly, the gap is smaller than O(30), close to 3.
▶ Is that all ?
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▶ i) Charm frag. dominates, ii) large µR uncertainty from gluon frag. (LO at α3
s)
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▶ FF CSM x-section close to the data where LP approx. gets more accurate !
▶ Clearly, the gap is smaller than O(30), close to 3.
▶ Is that all ? Well, not quite because of something else completely overlooked



Digression : importance of the higher moments
Fragmentation function enters cross section as a convolution with d σ̃k

dσ
dpT ,Q

≃
∑

k

∑
i,j

fi(µFi )⊗ fj(µFi )⊗
d σ̂ij→kX

dpT ,k
(µFi , µFf , µR)︸ ︷︷ ︸

∝p−4
T ,k at LO︸ ︷︷ ︸

dσ̃k∝p−n
T ,k

⊗DQ
k (µFf )

where pT ,k =
pT ,Q

z

dσ
dpT ,Q

≃
∑

k

d σ̃k ⊗ DQ
k

∝
∑

k

(
pT ,k =

pT ,Q

z

)−n
⊗ DQ

k

∝
∑

k

∫
dz zn−1DQ

k (z)︸ ︷︷ ︸
nth Mellin Moment!

▶ pp cross sections sensitive to the O(5)th Mellin Moment of the
fragmentation function See e.g. J. Baines, hep-ph/0601164
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Relativistic corrections to the CSM FF
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▶ NRQCD is based on a v2 expansion
[beside that of αs and mQ/pT ]

▶ CO channels (3S[8]
1 , 1S[1]

8 , ...) are v4 corrections
▶ CS channel also receives v2 corrections

▶ Exact v2 FF expressions can be used with
NLL evolution.
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▶ The v2 corrections boost the gluon frag. contribution by O(5) for v2
ψ(2S) = 0.5

▶ Charm-contribution essentially unchanged [end-point behaviour less crucial]
▶ CMS data agree with ATLAS one, thus also with our calculation
▶ Main uncertainty from v2

ψ(2S) and µR0 [urgent to compute gluon FF at NLO]
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▶ Accounting for the LDME change, with modern PDFs, NLO σ̂, NLL FF evolution, ...,
our results (w/o v2 corrections) slightly higher than the old results

[we have checked that with similar setup, they match]
▶ With NLO v2 corrections, near agreement with CDF data within large uncertainties
▶ Below pT = 30 GeV, NLP corrections might be significant for the gluon channel
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our results (w/o v2 corrections) slightly higher than the old results

[we have checked that with similar setup, they match]
▶ With NLO v2 corrections, near agreement with CDF data within large uncertainties
▶ Below pT = 30 GeV, NLP corrections might be significant for the gluon channel
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▶ LO v0 (CSM)

▶ historically supposed to be dominant
▶ evaluated to be much smaller than the data at large pT
▶ uncertainties vastly underestimated

▶ NNLO v4 (COM)

▶ tuned to be dominant at large pT
▶ problematic at low pT

▶ NLO v2 (relativistic corrections to CSM)

▶ found to be very large but
impact on pheno overlooked

▶ when properly accounted for, CSM agrees
with very high pT LHC data

▶ CSM close to the high pT Tevatron data

▶ NLO corrections to gluon FF awaited for
▶ Thank you for your attention !



Conclusions

15 / 15

▶ LO v0 (CSM)

▶ historically supposed to be dominant
▶ evaluated to be much smaller than the data at large pT
▶ uncertainties vastly underestimated

▶ NNLO v4 (COM)

▶ tuned to be dominant at large pT
▶ problematic at low pT

▶ NLO v2 (relativistic corrections to CSM)

▶ found to be very large but
impact on pheno overlooked

▶ when properly accounted for, CSM agrees
with very high pT LHC data

▶ CSM close to the high pT Tevatron data

▶ NLO corrections to gluon FF awaited for
▶ Thank you for your attention !



Conclusions

15 / 15

▶ LO v0 (CSM)

▶ historically supposed to be dominant
▶ evaluated to be much smaller than the data at large pT
▶ uncertainties vastly underestimated

▶ NNLO v4 (COM)

▶ tuned to be dominant at large pT
▶ problematic at low pT

▶ NLO v2 (relativistic corrections to CSM)

▶ found to be very large but
impact on pheno overlooked

▶ when properly accounted for, CSM agrees
with very high pT LHC data

▶ CSM close to the high pT Tevatron data

▶ NLO corrections to gluon FF awaited for
▶ Thank you for your attention !



Conclusions

15 / 15

▶ LO v0 (CSM)

▶ historically supposed to be dominant
▶ evaluated to be much smaller than the data at large pT
▶ uncertainties vastly underestimated

▶ NNLO v4 (COM)

▶ tuned to be dominant at large pT
▶ problematic at low pT

▶ NLO v2 (relativistic corrections to CSM)

▶ found to be very large but
impact on pheno overlooked

▶ when properly accounted for, CSM agrees
with very high pT LHC data

▶ CSM close to the high pT Tevatron data

▶ NLO corrections to gluon FF awaited for
▶ Thank you for your attention !



Conclusions

15 / 15

▶ LO v0 (CSM)

▶ historically supposed to be dominant
▶ evaluated to be much smaller than the data at large pT
▶ uncertainties vastly underestimated

▶ NNLO v4 (COM)

▶ tuned to be dominant at large pT
▶ problematic at low pT

▶ NLO v2 (relativistic corrections to CSM)

▶ found to be very large but
impact on pheno overlooked

▶ when properly accounted for, CSM agrees
with very high pT LHC data

▶ CSM close to the high pT Tevatron data

▶ NLO corrections to gluon FF awaited for

▶ Thank you for your attention !



Conclusions

15 / 15

▶ LO v0 (CSM)

▶ historically supposed to be dominant
▶ evaluated to be much smaller than the data at large pT
▶ uncertainties vastly underestimated

▶ NNLO v4 (COM)

▶ tuned to be dominant at large pT
▶ problematic at low pT

▶ NLO v2 (relativistic corrections to CSM)

▶ found to be very large but
impact on pheno overlooked

▶ when properly accounted for, CSM agrees
with very high pT LHC data

▶ CSM close to the high pT Tevatron data

▶ NLO corrections to gluon FF awaited for
▶ Thank you for your attention !



Backup

16 / 15



Computation of fragmentation functions

▶ From the decay of a virtual particle:
▶ computed as the ratio of the cross

sections
▶ Example g → ηc

Int.J.Mod.Phys.A 21 (2006) 3857-3916

▶ Using the Collins-Soper definition Nucl. Phys. B 194 (1982) 445

▶ Gauge-invariant definition that includes an eikonal coupling in
Feynman rules
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Fragmentation functions at lowest order in αs

⊗ g → cc̄(3S8
1): Phys. Rev. Lett. 74 (1995) 3327

D
J/ψ[3S[8]

1 ]

g (z, µ0) = δ(1 − z)
παs(µ0)

24m3
Q

⟨OJ/ψ
8 (3S1)⟩ (1)

⊗ g → cc̄(1S8
0): Phys. Rev. D 89 (2014) 094029, Phys. Rev. D 55 (1997) 2693, JHEP 11 (2012) 020

D
J/ψ[1S[8]

0 ]

g (z, µ0) = =
(N2

c − 4)α2
s (µ0)

4Ncm3
Q

[2(1 − z) log(1 − z) + 3z − 2z2]⟨OJ/ψ
8 (1S0)⟩ (2)

⊗ g → cc̄(3S1
1): Phys. Rev. Lett. 71 (1993) 1673, Phys. Rev. D 96, 094016 (2017)

D
J/ψ[3S[1]

1 ]

g (z, µ0) =
128(N2

c − 4)π3α3
s (µ0)

3N2
c (2mQ)3

CI13 +
11∑

i=0

Ci Li

 ⟨OJ/ψ
1 (3S1)⟩

2Nc

L0 = 1 , L1 = ln z , L2 = ln(1 − z) , L3 = ln(2 − z) , L4 = ln2 z , L5 = ln2(1 − z) , L6 = ln2(2 − z) ,

L7 = ln z ln(1 − z) , L8 = ln z ln(2 − z) , L9 = Li2(1 − z) , L10 = Li2

( z − 1

z − 2

)
, L11 = Li2

( 2(z − 1)

z − 2

)
...

(3)

▶ All LO expressions for g,q, c,Q to 3S[1]
1 , 3S[8]

1 , 3P [8]
J , and 1S[8]

0
collected in Phys. Rev. D 89, 094029 (2014)
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Checks

6 8 10 12 14 16 18 20
PT [GeV]

10 4

10 3

10 2

10 1

100

(
(n

S)
)×

d
/d

P T
 [n

b/
Ge

V]

| | < 0.6, pp, s = 1.8 TeV
s(2mc) = 0.26, 1-loop running

CTEQ5L 
LO+LL, D

3
s

g 3S[1]
1

+ D
2
s

c 3S[1]
1

|R(0)J/ |2 = 0.81 GeV3

|R(0) (2S)|2 = 0.29 GeV3

(J/ ) = 0.059
( (2S) ) = 0.009

J/ : Krämer, PPNP, 47 (2001), Fig. 2
J/ : This work

(2S): Krämer, PPNP, 47 (2001), Fig. 3
(2S): This work
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Evolution of fragmentation function I
▶ The fragmentation function is computed at µ0 ∼ mQ and is

convoluted with the hard partonic cross section at µF ∼ pT where
pT ≫ mQ

d σ̂ij→kX

dpT ,k
(µF )⊗ DQ

k (µF )

▶ Must evolve from µ0 to µF

0.2 0.4 0.6 0.8 1.0
z

0

1

2

3

4

5

zD
(z

,
)

1e 5

= 0 = 3.0 GeV

g J/ [3S[1]
1 ]; LDME = 1 GeV3; 0 = 2.0 × mc GeV

g J/
(u J/ ) + (u J/ )

▶ Initial condition for DQ
g (µ0) via

3S[1]
1 chanel Phys. Rev. Lett. 71 (1993) 1673,

Phys. Rev. D 89 (2014) 094029

▶ DQ
k (µ0) = 0 for k ∈ {q, q̄,Q, Q̄}
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Evolution of fragmentation function II

0.2 0.4 0.6 0.8 1.0
z

0

1

2

3

4

5

zD
(z

,
)

1e 5

LO DGLAP
= 5.0 GeV

g J/ [3S[1]
1 ]; LDME = 1 GeV3; 0 = 2.0 × mc GeV

g J/
(u J/ ) + (u J/ )

▶ Effect of evolution:
▶ Large-z gluon shrinks
▶ Low-z gluon grows
▶ Low-z quark grows
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Evolution of fragmentation function III

0.2 0.4 0.6 0.8 1.0
z

0

1

2

3

4

5

zD
(z

,
)

1e 5

LO DGLAP
= 10.0 GeV

g J/ [3S[1]
1 ]; LDME = 1 GeV3; 0 = 2.0 × mc GeV

g J/
(u J/ ) + (u J/ )

▶ Effect of evolution:
▶ Large-z gluon shrinks
▶ Low-z gluon grows
▶ Low-z quark grows
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Evolution of fragmentation function IV

0.2 0.4 0.6 0.8 1.0
z

0

1

2

3

4

5

zD
(z

,
)

1e 5

LO DGLAP
= 100.0 GeV

g J/ [3S[1]
1 ]; LDME = 1 GeV3; 0 = 2.0 × mc GeV

g J/
(u J/ ) + (u J/ )

▶ Effect of evolution:
▶ Large-z gluon shrinks
▶ Low-z gluon grows
▶ Low-z quark grows
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FFNS vs. ZM-VFNS: pT hierarchy
Fixed Flavour Number Scheme:

3S[1]
1

1S[8]
0

3S[8]
1

α3
sp−8

T α3
sp−6

T α3
sp−4

T

▶ v2-supressed terms (1S[8]
0 ,

3S[8]
1 ) are leading and

subleading in pT

Zero Mass Variable Flavour Number Scheme:

...
▶ All contributions enter with

same scaling in pT

▶ Number of couplings modifies
FF at µ0

3S[1]
1

1S[8]
0

3S[8]
1

α3
s(µ0) α2

s(µ0) αs(µ0)
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Matching Scheme Bodwin et. al.; Phys.Rev.D 93 (2016) 3, 034041, Phys.Rev.D 92 (2015) 7, 074042

▶ In order to describe the whole pT region one should combine the
FFNS and ZM-VFNS contributions

▶ However, there is a double counting between the FFNS and
ZM-VFNS

▶ This double counting is removed by introducting a matching term

▶ Let us sketch out what this matching term looks like taking the
example of the g → Q(3S[8]

1 ) at Leading order

dσLP+NLO = dσZM-VFNS︸ ︷︷ ︸
α2

s⊗α2
s

+dσFFNS︸ ︷︷ ︸
α3

s

−dσmatching

▶ Double counting is O(α3
s)

▶ Matching term is the O(α3
s) component of the ZM-VFNS contribution

without evolution
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Q polarisation at large PT
Phys.Rept. 889 (2020) 1-106, Phys. Rev. D 96, 094016 (2017)

▶ dN
d cos θ ∝ 1 + λθ cos

2 θ where λθ =
1/2σT−σL
1/2σT+σL

▶ λθ = +1 transverse; λθ = −1 longitudinal; λθ = 0 unpolarised
▶ Fixed Flavour Number Scheme results:

▶ transversely polarised at LO
▶ longitudinaly polarised at NLO, NNLO∗

▶ What about FF? 3S[1]
1 FF at µ0

▶ z = 0.1: λθ ≈ −0.1 and z = 0.9: λθ ≈ 0.4
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Q in jet and fragmentation functions

See talk of Paul Caucal on Monday
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Available computing tools for the study of
fragmentation functions

▶ Fragmentation function evolution (LHAPDF grid format):
▶ APFEL++ (https://github.com/vbertone/apfelxx)

▶ Input: zDQ
i (z, µ0)

▶ Must be a continuous function
▶ MELA (https://github.com/vbertone/MELA)

▶ Input: D̃Q
i (N, µ0)

▶ Can be discontinuous (e.g. contain δ functions/plus distributions)
▶ Tools for phenomenological studies:

▶ INCNLO (https://lapth.cnrs.fr/PHOX_FAMILY/readme_inc.html)

▶ FMNLO (https://fmnlo.sjtu.edu.cn/)
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Heavy hadron (HQ) production: pT ≫/ mQ

Nucl.Phys.B 421 (1994) 530-544; slides from Ingo Schienbein

HQ production via Fixed Flavour Number Scheme (FFNS):

dσ
dpT ,HQ

=
∑
i,j,Q

fi/A(µF )⊗ fj/B(µF )⊗
d σ̂ij→QX

dpT ,Q
(µF , µR,mQ)⊗ DHQ

Q

▶ ⊗ denotes a Mellin Convolution: f ⊗ g(x) =
∫ 1

0 dy
∫ 1

0 dz f (y)g(z)δ(x − yz)
▶ PDF:

▶ Only light flavours in initial state: i , j ∈ {q, q̄,g}, where q = u,d , s
▶ perturbative µF evolution which absorbs initial-state collinear

singularities
▶ non-perturbative boundary condition: fi/H(x , µ0) at µ0 = O(1 GeV)

▶ Owing to mQ, no final-state collinear singularities in σ̂ or DHQ
Q !

▶ However, logs of the kind αs ln(pT/mQ) appear in σ̂
▶ For pT ≫ mQ, these logs are large and should be resummed
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Heavy hadron (HQ) production: pT ≫ mQ
HQ production via Zero Mass Variable Flavour Number Scheme
(ZM-VFNS):
▶ For large scale (pT ≫ mQ) we can treat the quarks as massless in σ̂

up to corrections O((mQ/pT )
2):

dσ
dpT ,HQ

≃
∑
i,j,k

fi/A(µFi )⊗ fj/B(µFi )⊗
d σ̂ij→kX

dpT ,k
(µFi , µFf , µR)⊗ DHQ

k (µFf )

▶ In σ̂ take i , j , k ∈ {q, q̄,g,Q, Q̄} but consider them to be massless
▶ We introduce an additional scale, µFf , and the large logs from the

prevoious partonic cross section are effectively split into 2 terms
ln(pT/mQ) = ln(pT/µFf ) + ln(µFf /mQ):
▶ ln(pT/µFf ) : contained within σ̂, this is small provided µF ∼ pT
▶ ln(µFf /mQ) : resummed to all orders by evolution equations in

DHQ
k (µFf )

▶ The mass dependence is absorbed into the FF
▶ This results in a better control of the theortical uncertainty at large pT
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FFs: final-state counterpart to PDFs

e−H → e−X e+e− → HX

▶ Parton Distribution Function: fi/H(x , µ2)

parton i is emitted from hadron H carrying longitudinal momentum fraction x of H
▶ DGLAP evolution amounts to resumming initial-state collinear divergences:

▶ Fragmentation Function: DH
i (z, µ

2)

hadron H is emitted from parton i carrying longitudinal momentum fraction z of i
▶ DGLAP evolution amounts to resumming final-state collinear divergences:
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FFs: final-state counterpart to PDFs

e−H → e−X e+e− → HX

▶ Parton Distribution Function: fi/H(x , µ2)

parton i is emitted from hadron H carrying longitudial momentum fraction x of H
▶ Scale: µ2 = −q2 [space-like]
▶ DGLAP evolution with space-like (S) splitting kernels:

∂

∂ lnµ2 fi/H(x , µ
2) =

∑
j

∫ 1

x

dx ′

x ′ PS
ij

( x
x ′ , αs(µ

2)
)

fj/H

(
x ′, µ2

)
▶ Fragmentation Function: DH

i (z, µ
2)

hadron H is emitted from parton i carrying longitudial momentum fraction z of i
▶ Scale: µ2 = q2 [time-like]
▶ DGLAP evolution with time-like (T) splitting kernels:

∂

∂ lnµ2 DH
i (z, µ

2) =
∑

j

∫ 1

z

dz′

z′ PT
ji

(
z′, αs(µ

2)
)

DH
j

( z
z′ , µ

2
)
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Splitting kernels

▶ The kernels Pi j(x) describes the splitting of parton j into parton i carrying
momentum fraction x of j

▶ At LO accuracy in αs PS
i j = PT

i j = Pi j :

Pqq(x) = 2CF

(
1+x2

(1−x)+
+ 3

2δ(1 − x)
)

Pqg(x) = 2TR
(
x2 + (1 − x)2)

Pgq(x) = 2CF

(
1+(1−x)2

x

)

Pgg(x) = 4CA

(
x

(1−x)+
+ 1−x

x + x(1 − x)
)
+ δ(1 − x) 11CA+4Nf TR

3

where CF = 4
3 , TR = 1

2 , and CA = 3
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Example: computation of g → J/ψ(3S[8]
1 ) FF using

Collins-Soper definition I

1. Compute Amplitude on LHS of cut line: [eikonal coupling]

Aνα = −iδab [gνα(n · k)− pνnα]
(

igµϵγαT b
)
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Example: computation of g → J/ψ(3S[8]
1 ) FF using

Collins-Soper definition II

2. Contract with colour and spin projector:

Tr
[
AναΠ

c
8Π

δ
1

]
,

Πc
8 =

√
2T c , Πδ1 =

1
4m2

Q

(
��pQ
2

− mQ

)
γδ

(��pQ + 2mQ)

4mQ

(
��pQ
2

+ mQ

)
3. Compute amplitude square:

|A|2 = Tr
[
AναΠ

c
8Π

δ
1

] (
Tr

[
Aν′α′Πc′

8 Πδ
′

1

])†
Πδδ′δ

cc′
(−gνν′)δaa′

▶ Πδδ′δ
cc′

: colour and spin polarisation of QQ̄
[

3S[8]
1

]
▶ (−gνν′)δaa′

: contract eikonal indicies
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Example: computation of g → J/ψ(3S[8]
1 ) FF using

Collins-Soper definition III

4. Integrate over phase space and multiply by normalisation factors:

DJ/ψ[3S[8]
1 ]

g (z, µ0) =
NCS

k4 |A|2dϕ0
⟨OJ/ψ

8 (3S1)⟩
(D − 1)(N2

c − 1)
▶ dϕ0 = 8πmQ

k·n δ(1 − z): normalisation of 0-body phase space
▶ NCS = zD−3

(N2
c −1)(k·n)2π(D−2) : Collins-Soper normalisation

▶ k4 = (2mQ)
4: off-shellness of fragmenting gluon

▶ ⟨OJ/ψ
8 (3S1)⟩: LDME

▶ (D − 1)(N2
c − 1): spin and colour averaging

to obtain final expression at µ0 ∼ 2mc :

DJ/ψ[3S[8]
1 ]

g (z, µ0) = δ(1 − z)
παs(µ0)

24m3
Q

⟨OJ/ψ
8 (3S1)⟩
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