

$\psi(2S)$ production at very high p_T by J.P. Lansberg with **K. Lynch** and V. Bertone

Introduction

¹ pQCD + hadronisation w/o soft gluon emission

In the early 90's, CDF reports preliminary measurements of prompt ψ(2S), a unique sample without any feed down

¹pQCD + hadronisation w/o soft gluon emission

- In the early 90's, CDF reports preliminary measurements of prompt $\psi(2S)$, a unique sample without any feed down
- At the time, the Colour Singlet Model¹ (CSM) accounts well for quarkonium production

pQCD + hadronisation w/o soft gluon emission

- In the early 90's, CDF reports preliminary measurements of prompt $\psi(2S)$, a unique sample without any feed down
- At the time, the Colour Singlet Model¹ (CSM) accounts well for quarkonium production
- However, the LO cross section (blue dash) not only is much below the CDF data but its p_T shape is completely wrong

pQCD + hadronisation w/o soft gluon emission

- In the early 90's, CDF reports preliminary measurements of prompt $\psi(2S)$, a unique sample without any feed down
- At the time, the Colour Singlet Model¹ (CSM) accounts well for quarkonium production
- However, the LO cross section (blue dash) not only is much below the CDF data but its p_T shape is completely wrong
- Fragmentation-function- based CSM computations (red solid) show an agreement with the p_T shape but off by a factor 30

pQCD + hadronisation w/o soft gluon emission

- In the early 90's, CDF reports preliminary measurements of prompt $\psi(2S)$, a unique sample without any feed down
- At the time, the Colour Singlet Model¹ (CSM) accounts well for quarkonium production
- However, the LO cross section (blue dash) not only is much below the CDF data but its p_T shape is completely wrong
- Fragmentation-function- based CSM computations (red solid) show an agreement with the p_T shape but off by a factor 30
- Confirmed by the final measurements and subsequent RUN 2 data and then similar observation made with J/ψ after χ_c removal

- In the early 90's, CDF reports preliminary measurements of prompt $\psi(2S)$, a unique sample without any feed down
- At the time, the Colour Singlet Model¹ (CSM) accounts well for quarkonium production
- However, the LO cross section (blue dash) not only is much below the CDF data but its p_T shape is completely wrong
- Fragmentation-function- based CSM computations (red solid) show an agreement with the p_T shape but off by a factor 30
- Confirmed by the final measurements and subsequent RUN 2 data and then similar observation made with J/ψ after χ_c removal
- This triggered the introduction of the Colour Octet Mechanism (long-dash, dot-dash) from NRQCD (EFT valid at small v)

G. Bodwin, E. Braaten, G. Lepage, PRD 51 (1995) 1125; P. Cho, A. Leibovich PRD 53 (1996) 6203

► Reminder : **CSM** $\equiv {}^{3}S_{1}^{[1]}$ for ψ ; LO in v^{2} **COM**: ${}^{3}S_{1}^{[8]}$, ${}^{1}S_{0}^{[8]}$, ${}^{3}P_{J}^{[8]}$: v^{4} , i.e. NNLO in v^{2} but enhanced in p_{T} at LO in α_{s}

pQCD + hadronisation w/o soft gluon emission

Recap on quarkonium production in NRQCD

See e.g. JPL Phys. Rept. 889 (2020) 1

• Approach valid for $p_T \gg m_Q$ (FFNS)

[Usual approach]

$$\frac{d\sigma}{dp_{T,Q}} = \sum_{i,j,n} f_{i/A}(\mu_{F_i}) \otimes f_{j/B}(\mu_{F_i}) \otimes \frac{d\hat{\sigma}_{ij \to Q\bar{Q}[n]X}}{dp_{T,Q\bar{Q}[n]}}(\mu_{F_i},\mu_R,m_Q) \langle \mathcal{O}_{Q\bar{Q}[n]}^{\mathcal{Q}} \rangle$$

• $\hat{\sigma}_{ij \to Q\bar{Q}[n]X}$ computed with NRQCD with $m_Q \neq 0$ at fixed order (FO) in α_s

- QCD corrections growing with p_T for ${}^3S_1^{[1]}$, ${}^1S_0^{[8]}$, ${}^3P_J^{[8]}$ [see next slide]
- Non-perturbative physics factorised out in Long Distance Matrix Elements (LDMEs)
- $\blacktriangleright \langle \mathcal{O}^{\mathcal{Q}}_{3S_{1}^{[1]}} \rangle$ from potential models, other LDMEs unknown and fit to the data

QCD corrections to the CSM for ψ (2S) at colliders J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 JPL, EPJC 61:693,2009. CDF, PRD 80 (2009) 031103

QCD corrections to the CSM for $\psi(2S)$ at colliders

QCD corrections to the CSM for $\psi(2S)$ at colliders

NNLO^{*} is only an approximate NNLO valid at large p_T

QCD corrections to the CSM for $\psi(2S)$ at colliders

- NNLO* is only an approximate NNLO valid at large p_T
- It probably makes sense to focus first on the p_T scaling and then on α_s

Recap on quarkonium production in NRQCD

See e.g. JPL Phys. Rept. 889 (2020) 1

• Approach valid for $p_T \gg m_Q$ (FFNS)

[Usual approach]

$$\frac{d\sigma}{dp_{T,Q}} = \sum_{i,j,n} \mathbf{f}_{i/A}(\mu_{F_i}) \otimes \mathbf{f}_{j/B}(\mu_{F_i}) \otimes \frac{d\hat{\sigma}_{ij \to Q\bar{Q}[n]X}}{dp_{T,Q\bar{Q}[n]}} (\mu_{F_i}, \mu_R, m_Q) \langle \mathcal{O}_{Q\bar{Q}[n]}^{\mathcal{Q}} \rangle$$

• $\hat{\sigma}_{ij \to Q\bar{Q}[n]X}$ computed with NRQCD with $m_Q \neq 0$ at fixed order (FO) in α_s

- QCD corrections growing with p_T for ${}^3S_1^{[1]}$, ${}^1S_0^{[8]}$, ${}^3P_J^{[8]}$
- Non-perturbative physics factorised out in LDMEs
- $\blacktriangleright \langle \mathcal{O}^{\mathcal{Q}}_{3S_{1}^{[1]}} \rangle$ from potential models, other LDMEs unknown and fit to the data

Recap on quarkonium production in NRQCD

See e.g. JPL Phys. Rept. 889 (2020) 1

• Approach valid for $p_T \gg m_Q$ (FFNS)

[Usual approach]

$$\frac{d\sigma}{dp_{T,Q}} = \sum_{i,j,n} f_{i/A}(\mu_{F_i}) \otimes f_{j/B}(\mu_{F_i}) \otimes \frac{d\hat{\sigma}_{ij \to Q\bar{Q}[n]X}}{dp_{T,Q\bar{Q}[n]}}(\mu_{F_i}, \mu_R, m_Q) \langle \mathcal{O}_{Q\bar{Q}[n]}^{\mathcal{Q}} \rangle$$

• $\hat{\sigma}_{ij \to Q\bar{Q}[n]X}$ computed with NRQCD with $m_Q \neq 0$ at fixed order (FO) in α_s

- QCD corrections growing with p_T for ${}^3S_1^{[1]}$, ${}^1S_0^{[8]}$, ${}^3P_J^{[8]}$
- Non-perturbative physics factorised out in LDMEs
- $\blacktriangleright \langle \mathcal{O}^{\mathcal{Q}}_{3S_{1}^{[1]}} \rangle$ from potential models, other LDMEs unknown and fit to the data
- Approach valid for $p_T \gg m_Q$ (ZM-VFNS)

[with fragmention functions (FFs)]

$$\frac{d\sigma}{dp_{T,Q}} \simeq \sum_{i,j,k} f_{i/A}(\mu_{F_i}) \otimes f_{j/B}(\mu_{F_i}) \otimes \frac{d\hat{\sigma}_{ij \to kX}}{dp_{T,k}}(\mu_{F_i}, \mu_{F_f}, \mu_R) \otimes D_k^Q(\mu_{F_f}, \{\mu_0\})$$

- Correspond to the leading-power (LP) contribution of an expansion in p_T
- $m_Q \ (\ll p_T)$ neglected in $\hat{\sigma}$, kept in the FFs
- FFs DGLAP evolved to account for the resummation of $\alpha_s \ln(p_T/m_Q)$
- Unlike other mesons, under NRQCD, FF z dependence is computable

$$D_i^{\mathcal{Q}}(z, \{\mu_0\}) = \sum_n D_i^{QQ[n]}(z, \{\mu_0\}) \langle \mathcal{O}_{Q\bar{Q}[n]}^{\mathcal{Q}} \rangle$$

Note: fragmentation is not a new mechanism, just a subset of the usual approach !

Y.Q. Ma et. al., PRL 113, 142002 (2014)

• The first term is valid up to corrections $\mathcal{O}(m_{\mathcal{O}}^2/p_T^2)$

$$d\sigma_{AB \to QX} = \sum_{i} d\tilde{\sigma}_{AB \to iX} \otimes \underline{D_{i \to Q}} \\ + \sum_{\kappa} d\tilde{\sigma}_{AB \to Q\bar{Q}[\kappa]X} \otimes \underline{D_{Q\bar{Q}[\kappa] \to Q}} \\ + \mathcal{O}(m_{Q}^{4}/p_{T}^{4})$$

Y.Q. Ma et. al., PRL 113, 142002 (2014)

• The first term is valid up to corrections $\mathcal{O}(m_{\mathcal{O}}^2/p_T^2)$

$$d\sigma_{AB \to QX} = \sum_{i} d\tilde{\sigma}_{AB \to iX} \otimes \underline{D_{i \to Q}} \\ + \sum_{\kappa} d\tilde{\sigma}_{AB \to Q\bar{Q}[\kappa]X} \otimes \underline{D}_{Q\bar{Q}[\kappa] \to Q} \\ + \mathcal{O}(m_{Q}^{4}/p_{T}^{4})$$

Leading power (single parton fragmentation): a single parton *i* decays into the observed Q

Y.Q. Ma et. al., PRL 113, 142002 (2014)

• The first term is valid up to corrections $\mathcal{O}(m_{\mathcal{Q}}^2/p_T^2)$

$$d\sigma_{AB \to QX} = \sum_{i} d\tilde{\sigma}_{AB \to iX} \otimes \underline{\underline{D}_{i \to Q}} \\ + \sum_{\kappa} d\tilde{\sigma}_{AB \to Q\bar{Q}[\kappa]X} \otimes \underline{\underline{D}_{Q\bar{Q}[\kappa] \to Q}} \\ + \mathcal{O}(m_{Q}^{4}/p_{T}^{4})$$

- Leading power (single parton fragmentation): a single parton *i* decays into the observed Q
- Next-to-leading power (double parton fragmentation): two partons in a spin and colour state κ decay into the observed Q
 - can in principle be any partons, however, expect that D_{QQ̄} ≫ D_{ij} for i, j ∈ {u, d, s, g, ū, d̄, š}

Y.Q. Ma et. al., PRL 113, 142002 (2014)

• The first term is valid up to corrections $\mathcal{O}(m_{\mathcal{Q}}^2/p_T^2)$

$$d\sigma_{AB \to QX} = \sum_{i} d\tilde{\sigma}_{AB \to iX} \otimes \underline{\underline{D}_{i \to Q}} \\ + \sum_{\kappa} d\tilde{\sigma}_{AB \to Q\bar{Q}[\kappa]X} \otimes \underline{\underline{D}_{Q\bar{Q}[\kappa] \to Q}} \\ + \mathcal{O}(m_{Q}^{4}/p_{T}^{4})$$

- Leading power (single parton fragmentation): a single parton *i* decays into the observed Q
- Next-to-leading power (double parton fragmentation): two partons in a spin and colour state κ decay into the observed Q
 - can in principle be any partons, however, expect that D_{QQ̄} ≫ D_{ij} for i, j ∈ {u, d, s, g, ū, d̄, ŝ}
- For ${}^{3}S_{1}^{[1]}$: LP first appears at $\mathcal{O}(\alpha_{s}^{3})$ vs. NLP first appears at $\mathcal{O}(\alpha_{s}^{1})$
- This is expected to compensate the p_T suppression of the NLP

[green: known; orange: partly known; red: unknown]

[green: known; orange: partly known; red: unknown]

▶ p_T^{-4} : LP FF \leftrightarrow NNLO (only NNLO* approximation known)

[green: known; orange: partly known; red: unknown]

- ▶ p_T^{-4} : LP FF \leftrightarrow NNLO (only NNLO^{*} approximation known)
- ▶ p_T^{-6} : NLP FF (evolution not performed) \leftrightarrow NLO: they agree !

Adapted from Z.B. Kang, Y.Q. Ma, J.W. Qiu, G. Sterman, PRD 91, 014030 (2015)

[green: known; orange: partly known; red: unknown]

- ▶ p_T^{-4} : LP FF \leftrightarrow NNLO (only NNLO^{*} approximation known)
- ▶ p_T^{-6} : NLP FF (evolution not performed) \leftrightarrow NLO: they agree !
- ▶ p_T^{-8} : NNLP FF \leftrightarrow LO

Adapted from Z.B. Kang, Y.Q. Ma, J.W. Qiu, G. Sterman, PRD 91, 014030 (2015)

Relevance of NLP corrections at large p_T for ${}^3S_1^{[1]}$?

We found that NNLO* is larger than NLO

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008)

- Kang et al. found that NLP reproduces NLO
- NNLO expected to be well reproduced by LP at very large p_T

[even improved since some large logs are resummed]

▶ But from which p_T is LP a good approximation, i.e. LP \gg NLP ?

Relevance of NLP corrections at large p_T for ${}^3S_1^{[1]}$?

We found that NNLO* is larger than NLO

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008)

- Kang et al. found that NLP reproduces NLO
- NNLO expected to be well reproduced by LP at very large p_T

[even improved since some large logs are resummed]

▶ But from which p_T is LP a good approximation, i.e. LP \gg NLP ?

	NLP/(LP + NLP)			
<i>p</i> ₇ [GeV]	${}^{3}S_{1}^{[1]}$	${}^{1}S_{0}^{[8]}$	³ S ₁ ^[8]	${}^{3}P_{J}^{[8]}$
10	90%	90%	3%	-60%
50	45%	35%	0%	0%
100	20%	10%	0%	0%

Ma et. al., PRL 113 (2014) 14, 142002

Relevance of NLP corrections at large p_T for ${}^{3}S_{1}^{[1]}$?

We found that NNLO* is larger than NLO

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008)

- Kang et al. found that NLP reproduces NLO
- NNLO expected to be well reproduced by LP at very large p_T

[even improved since some large logs are resummed]

▶ But from which p_T is LP a good approximation, i.e. LP \gg NLP ?

	NLP/(LP + NLP)				
<i>p</i> ₇ [GeV]	${}^{3}S_{1}^{[1]}$	${}^{1}S_{0}^{[8]}$	³ S ₁ ^[8]	${}^{3}P_{J}^{[8]}$	
10	90%	90%	3%	-60%	
50	45%	35%	0%	0%	
100	20%	10%	0%	0%	
Ma et. al., PRL 113 (2014) 14, 142002					

- Above 50 GeV, LP FF should be accurate even for ${}^{3}S_{1}^{[1]}$ (FF at α_{s}^{3})
- For $p_T < 20$ GeV (Tevatron), LP might receive significant NLP corrections

Relevance of NLP corrections at large p_T for ${}^3S_1^{[1]}$?

We found that NNLO* is larger than NLO

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008)

- Kang et al. found that NLP reproduces NLO
- NNLO expected to be well reproduced by LP at very large p_T

[even improved since some large logs are resummed]

▶ But from which p_T is LP a good approximation, i.e. LP \gg NLP ?

	NLP/(LP + NLP)				
<i>p</i> ₇ [GeV]	${}^{3}S_{1}^{[1]}$	${}^{1}S_{0}^{[8]}$	³ S ₁ ^[8]	${}^{3}P_{J}^{[8]}$	
10	90%	90%	3%	-60%	
50	45%	35%	0%	0%	
100	20%	10%	0%	0%	
Ma et. al., PRL 113 (2014) 14, 142002					

• Above 50 GeV, LP FF should be accurate even for ${}^{3}S_{1}^{[1]}$ (FF at α_{s}^{3})

- For $p_T < 20$ GeV (Tevatron), LP might receive significant NLP corrections Caveat:
 - No evolution of FF here
 - NLO α_s and v² corrections might affect the comparison

 ATLAS(CMS) measured prompt ψ(2S) up to p_T = 140(110) GeV

ATLAS: EPJC 84 (2024) 169; CMS PLB 780 (2018) 251

- Perfect sample with minimal NLP corrections and no feed down
- Advance the FF CSM computation with state-of-the art theory, i.e.

 ATLAS(CMS) measured prompt ψ(2S) up to p_T = 140(110) GeV

ATLAS: EPJC 84 (2024) 169; CMS PLB 780 (2018) 251

- Perfect sample with minimal NLP corrections and no feed down
- Advance the FF CSM computation with state-of-the art theory, i.e.
 - NLO hard scattering (INCNLO)
 - NLL FF evolution APFEL++/MELA
 - Up-to-date PDFs & LDMEs
 - Full theory uncertainties
 - NLO α_s corrections when available

- ATLAS(CMS) measured prompt ψ(2S) up to p_T = 140(110) GeV ATLAS: EPJC 84 (2024) 169; CMS PLB 780 (2018) 251
- Perfect sample with minimal NLP corrections and no feed down
- Advance the FF CSM computation with state-of-the art theory, i.e.
 - NLO hard scattering (INCNLO)
 - NLL FF evolution APFEL++/MELA
 - Up-to-date PDFs & LDMEs
 - Full theory uncertainties
 - NLO α_s corrections when available

Blue band above

Green band above

▶ i) Charm frag. dominates, ii) large μ_R uncertainty from gluon frag. (LO at α_s^3)

[i) known; ii) so far completely overlooked !]

- ► FF CSM x-section close to the data where LP approx. gets more accurate !
- Clearly, the gap is smaller than $\mathcal{O}(30)$, close to 3.
- Is that all ?

▶ i) Charm frag. dominates, ii) large μ_R uncertainty from gluon frag. (LO at α_s^3)

[i) known; ii) so far completely overlooked !]

- FF CSM x-section close to the data where LP approx. gets more accurate !
- Clearly, the gap is smaller than $\mathcal{O}(30)$, close to 3.
- Is that all ? Well, not quite because of something else completely overlooked.

Digression : importance of the higher moments

Fragmentation function enters cross section as a convolution with $d\tilde{\sigma}_k$

$$\frac{d\sigma}{dp_{T,Q}} \simeq \sum_{k} \sum_{i,j} f_i(\mu_{F_i}) \otimes f_j(\mu_{F_i}) \otimes \underbrace{\frac{d\hat{\sigma}_{ij \to kX}}{dp_{T,k}}(\mu_{F_i}, \mu_{F_i}, \mu_R)}_{\propto \rho_{T,k}^{-4} \text{ at LO}} \otimes D_k^{\mathcal{Q}}(\mu_{F_i})$$

where $p_{T,k} = \frac{p_{T,Q}}{z}$

Digression : importance of the higher moments Fragmentation function enters cross section as a convolution with $d\tilde{\sigma}_k$

$$\frac{d\sigma}{dp_{T,Q}} \simeq \sum_{k} \sum_{i,j} f_{i}(\mu_{F_{i}}) \otimes f_{j}(\mu_{F_{i}}) \otimes \underbrace{\frac{d\hat{\sigma}_{ij \to kX}}{dp_{T,k}}(\mu_{F_{i}}, \mu_{F_{i}}, \mu_{R})}_{\propto p_{T,k}^{-4} \text{ at LO}} \otimes D_{k}^{Q}(\mu_{F_{i}})$$
where $p_{T,k} = \frac{p_{T,Q}}{z}$

$$\frac{d\sigma}{dp_{T,Q}} \simeq \sum_{k} d\tilde{\sigma_{k}} \otimes D_{k}^{Q}$$

$$\propto \sum_{k} \left(p_{T,k} = \frac{p_{T,Q}}{z}\right)^{-n} \otimes D_{k}^{Q}$$

$$\propto \sum_{k} \underbrace{\int dz \ z^{n-1} D_{k}^{Q}(z)}_{n^{\text{th}} \text{ Mellin Moment!}}$$

▶ pp cross sections sensitive to the $\mathcal{O}(5)^{\text{th}}$ Mellin Moment of the fragmentation function see e.g. J. Baines, hep-ph/0601164
• NRQCD is based on a v^2 expansion

[beside that of α_s and m_Q/p_T]

- CO channels $({}^{3}S_{1}^{[8]}, {}^{1}S_{8}^{[1]}, ...)$ are v^{4} corrections
- CS channel also receives v² corrections

- NRQCD is based on a v^2 expansion
 - [beside that of α_s and m_Q/p_T]
- CO channels $({}^{3}S_{1}^{[8]}, {}^{1}S_{8}^{[1]}, ...)$ are v^{4} corrections
- CS channel also receives v² corrections
- v² corrections usually moderate
- Found to be 50 % for the frag. probability $(\propto I_0(d))$ to $g \rightarrow Q\bar{Q}({}^3S_1^{[1]})$

Considered irrelevant assuming FF CSM to be

 $\frac{I_{\kappa}(d_n) \setminus d_n}{I_0(d_n) \times R_2} \qquad \begin{array}{c} d_0 & d_2 \\ 8.3 & 4.0 \end{array}$

 $R_2 \equiv \langle 0 | \mathcal{O}_2({}^3S_1^{[1]}) | 0 \rangle / \langle 0 | \mathcal{O}_0({}^3S_1^{[1]}) | 0 \rangle$

[Compare d₀ & d₂ in the table] Table from G. Bodwin, U.R. Kim, J. Lee,

JHEP11(2012)020

 $1/30 \times data$

G. Bodwin, J. Lee, PRD 69 054003 (2004)

- NRQCD is based on a v² expansion
 - [beside that of α_s and m_Q/p_T]
- CO channels $({}^{3}S_{1}^{[8]}, {}^{1}S_{8}^{[1]}, ...)$ are v^{4} corrections
- CS channel also receives v² corrections
- v² corrections usually moderate
- ▶ Found to be 50 % for the frag. probability $(\propto I_0(d))$ to $g \rightarrow Q\bar{Q}({}^3S_1^{[1]})$

[Compare $d_0 \& d_2$ in the table] Table from G. Bodwin, U.R. Kim, J. Lee, JHEP11(2012)020

- Considered irrelevant assuming FF CSM to be 1/30 × data
 G. Bodwin, J. Lee, PRD 69 054003 (2004)
- ► However, the higher moments are much more sensitive to rel. corrections: 50% → 300% !

[Compare d₀ & d₂ for I_{5.2}]

- NRQCD is based on a v² expansion
 - [beside that of α_s and m_Q/p_T]
- CO channels $({}^{3}S_{1}^{[8]}, {}^{1}S_{8}^{[1]}, ...)$ are v^{4} corrections
- CS channel also receives v² corrections
- v² corrections usually moderate
- ▶ Found to be 50 % for the frag. probability $(\propto I_0(d))$ to $g \rightarrow Q\bar{Q}({}^3S_1^{[1]})$

[Compare $d_0 \& d_2$ in the table] Table from G. Bodwin, U.R. Kim, J. Lee, JHEP11(2012)020

- Considered irrelevant assuming FF CSM to be 1/30 × data
 G. Bodwin, J. Lee, PRD 69 054003 (2004)
- ► However, the higher moments are much more sensitive to rel. corrections: 50% → 300% !

[Compare $d_0 \& d_2$ for $I_{5.2}$]

- Note that $v_{\psi(2S)}^2$ is expected to be larger than
 - $v_{J/\psi}^2$: R_n can easily be twice larger !
- Moderate relativistic corrections to Q → QQ̄(³S₁^[1]) + Q

12/15

- NRQCD is based on a v² expansion
 - [beside that of α_s and m_Q/p_T]
- CO channels $({}^{3}S_{1}^{[8]}, {}^{1}S_{8}^{[1]}, ...)$ are v^{4} corrections
- CS channel also receives v² corrections
- v² corrections usually moderate
- Found to be 50 % for the frag. probability $(\propto l_0(d))$ to $g \rightarrow Q\bar{Q}({}^3S_1^{[1]})$

[Compare $d_0 \& d_2$ in the table] Table from G. Bodwin, U.R. Kim, J. Lee, JHEP11(2012)020

- Considered irrelevant assuming FF CSM to be 1/30 × data G. Bodwin, J. Lee, PRD 69 054003 (2004)
- ► However, the higher moments are much more sensitive to rel. corrections: 50% → 300% !

[Compare $d_0 \& d_2$ for $I_{5.2}$]

Note that $v_{\psi(2S)}^2$ is expected to be larger than

 $v_{J/\psi}^2$: R_n can easily be twice larger !

- Exact v² FF expressions can be used with NLL evolution.

The v^2 corrections boost the gluon frag. contribution by $\mathcal{O}(5)$ for $v_{\psi(2S)}^2 = 0.5$

- Charm-contribution essentially unchanged [end-point behaviour less crucial]
- CMS data agree with ATLAS one, thus also with our calculation
- Main uncertainty from $v^2_{\psi(2S)}$ and μ_{R_0} [urgent to compute gluon FF at NLO]

- Accounting for the LDME change, with modern PDFs, NLO ô, NLL FF evolution, ..., our results (w/o v² corrections) slightly higher than the old results [we have checked that with similar setup, they match]
- ▶ With NLO v² corrections, near agreement with CDF data within large uncertainties

- ▶ With NLO v² corrections, near agreement with CDF data within large uncertainties
- Below $p_T = 30$ GeV, NLP corrections might be significant for the gluon channel

► LO v⁰ (CSM)

- historically supposed to be dominant
- evaluated to be much smaller than the data at large p_T
- uncertainties vastly underestimated

► LO v⁰ (CSM)

- historically supposed to be dominant
- evaluated to be much smaller than the data at large p_T
- uncertainties vastly underestimated

► NNLO v⁴ (COM)

- tuned to be dominant at large p_T
- problematic at low p_T

► LO v⁰ (CSM)

- historically supposed to be dominant
- evaluated to be much smaller than the data at large p_T
- uncertainties vastly underestimated

► NNLO v⁴ (COM)

- tuned to be dominant at large p_T
- problematic at low p_T
- NLO v² (relativistic corrections to CSM)
 - found to be very large but impact on pheno overlooked
 - when properly accounted for, CSM agrees with very high p_T LHC data
 - CSM close to the high p_T Tevatron data

► LO v⁰ (CSM)

- historically supposed to be dominant
- evaluated to be much smaller than the data at large p_T
- uncertainties vastly underestimated

► NNLO v⁴ (COM)

- tuned to be dominant at large p_T
- problematic at low p_T
- NLO v² (relativistic corrections to CSM)
 - found to be very large but impact on pheno overlooked
 - when properly accounted for, CSM agrees with very high p_T LHC data
 - CSM close to the high p_T Tevatron data
- NLO corrections to gluon FF awaited for

► LO v⁰ (CSM)

- historically supposed to be dominant
- evaluated to be much smaller than the data at large p_T
- uncertainties vastly underestimated

► NNLO v⁴ (COM)

- tuned to be dominant at large p_T
- problematic at low p_T

NLO v² (relativistic corrections to CSM)

- found to be very large but impact on pheno overlooked
- when properly accounted for, CSM agrees with very high p_T LHC data
- CSM close to the high p_T Tevatron data
- NLO corrections to gluon FF awaited for
- Thank you for your attention !

Computation of fragmentation functions

From the decay of a virtual particle:

 computed as the ratio of the cross sections

- Using the Collins-Soper definition Nucl. Phys. В 194 (1982) 445
 - Gauge-invariant definition that includes an eikonal coupling in Feynman rules

Fragmentation functions at lowest order in α_s

 $\otimes~g
ightarrow car{c}(^3S_1^8)$: Phys. Rev. Lett. 74 (1995) 3327

$$D_{g}^{J/\psi[^{3}S_{1}^{[8]}]}(z,\mu_{0}) = \delta(1-z)\frac{\pi\alpha_{s}(\mu_{0})}{24m_{O}^{3}}\langle \mathcal{O}_{8}^{J/\psi}(^{3}S_{1})\rangle$$
(1)

 $\otimes~g o car{c}(^1S_0^8)$: Phys. Rev. D 89 (2014) 094029, Phys. Rev. D 55 (1997) 2693, JHEP 11 (2012) 020

$$\mathcal{D}_{g}^{J/\psi[1\,S_{0}^{[k]}]}(z,\mu_{0}) = = \frac{(N_{c}^{2}-4)\alpha_{s}^{2}(\mu_{0})}{4N_{c}m_{Q}^{3}}\left[2(1-z)\log(1-z)+3z-2z^{2}\right]\langle\mathcal{O}_{8}^{J/\psi}(^{1}S_{0})\rangle$$
(2)

 $\otimes~g
ightarrow car{c}(^3S_1^1)$: Phys. Rev. Lett. 71 (1993) 1673, Phys. Rev. D 96, 094016 (2017)

$$D_{g}^{J/\psi[^{3}S_{1}^{[1]}]}(z,\mu_{0}) = \frac{128(N_{c}^{2}-4)\pi^{3}\alpha_{s}^{2}(\mu_{0})}{3N_{c}^{2}(2m_{0})^{3}} \left(Cl_{13} + \sum_{i=0}^{11}C_{i}L_{i}\right) \frac{\langle \mathcal{O}_{1}^{J/\psi}(^{3}S_{1})\rangle}{2N_{c}}$$

$$L_0 = 1$$
, $L_1 = \ln z$, $L_2 = \ln(1 - z)$, $L_3 = \ln(2 - z)$, $L_4 = \ln^2 z$, $L_5 = \ln^2(1 - z)$, $L_6 = \ln^2(2 - z)$,

$$L_7 = \ln z \, \ln(1-z) \,, \ L_8 = \ln z \, \ln(2-z) \,, \ L_9 = Li_2(1-z) \,, \ L_{10} = Li_2\left(\frac{z-1}{z-2}\right) \,, \ L_{11} = Li_2\left(\frac{2(z-1)}{z-2}\right) \,...$$

All LO expressions for g, q, c, Q to ³S₁^[1], ³S₁^[8], ³P_J^[8], and ¹S₀^[8] collected in Phys. Rev. D 89, 094029 (2014)

Checks

Evolution of fragmentation function I

The fragmentation function is computed at µ₀ ∼ m_Q and is convoluted with the hard partonic cross section at µ_F ∼ p_T where p_T ≫ m_Q

$$rac{d\hat{\sigma}_{ij
ightarrow kX}}{d
ho_{T,k}}(\mu_F)\otimes \mathcal{D}_k^\mathcal{Q}(\mu_F)$$

• Must evolve from μ_0 to μ_F

Evolution of fragmentation function I

The fragmentation function is computed at µ₀ ∼ m_Q and is convoluted with the hard partonic cross section at µ_F ∼ p_T where p_T ≫ m_Q

$$rac{d \hat{\sigma}_{ij
ightarrow kX}}{d p_{T,k}}(\mu_F) \otimes \mathcal{D}_k^{\mathcal{Q}}(\mu_F)$$

• Must evolve from μ_0 to μ_F

► Initial condition for $D_g^Q(\mu_0)$ via ${}^3S_1^{[1]}$ chanel Phys. Rev. Lett. 71 (1993) 1673, Phys. Rev. D 89 (2014) 094029

•
$$D_k^{\mathcal{Q}}(\mu_0) = 0$$
 for $k \in \{q, \bar{q}, Q, \bar{Q}\}$

Evolution of fragmentation function II

Effect of evolution:

- Large-z gluon shrinks
- Low-z gluon grows
- Low-z quark grows

Evolution of fragmentation function III

Effect of evolution:

- Large-z gluon shrinks
- Low-z gluon grows
- Low-z quark grows

Evolution of fragmentation function IV

Effect of evolution:

- Large-z gluon shrinks
- Low-z gluon grows
- Low-z quark grows

FFNS vs. ZM-VFNS: *p*_T hierarchy

Fixed Flavour Number Scheme:

v²-supressed terms (¹S₀^[8], ³S₁^[8]) are leading and subleading in p_T FFNS vs. ZM-VFNS: *p*_T hierarchy

Fixed Flavour Number Scheme:

V²-supressed terms (¹S₀^[8], ³S₁^[8]) are leading and subleading in p_T

Zero Mass Variable Flavour Number Scheme:

- All contributions enter with same scaling in p_T
- Number of couplings modifies FF at µ0

Matching Scheme Bodwin et. al.; Phys.Rev.D 93 (2016) 3, 034041, Phys.Rev.D 92 (2015) 7, 074042

- In order to describe the whole p_T region one should combine the FFNS and ZM-VFNS contributions
- However, there is a double counting between the FFNS and ZM-VFNS
- This double counting is removed by introducting a matching term

Matching Scheme Bodwin et. al.; Phys.Rev.D 93 (2016) 3, 034041, Phys.Rev.D 92 (2015) 7, 074042

- In order to describe the whole p_T region one should combine the FFNS and ZM-VFNS contributions
- However, there is a double counting between the FFNS and ZM-VFNS
- This double counting is removed by introducting a matching term
- ▶ Let us sketch out what this matching term looks like taking the example of the $g \rightarrow Q({}^{3}S_{1}^{[8]})$ at Leading order

$$d\sigma^{\text{LP+NLO}} = \underbrace{d\sigma^{\text{ZM-VFNS}}}_{\alpha_s^2 \otimes \alpha_s^2} + \underbrace{d\sigma^{\text{FFNS}}}_{\alpha_s^3} - \frac{d\sigma_{\text{matching}}}{\sigma_s^3}$$

Matching Scheme Bodwin et. al.; Phys.Rev.D 93 (2016) 3, 034041, Phys.Rev.D 92 (2015) 7, 074042

- In order to describe the whole p_T region one should combine the FFNS and ZM-VFNS contributions
- However, there is a double counting between the FFNS and ZM-VFNS
- This double counting is removed by introducting a matching term
- ▶ Let us sketch out what this matching term looks like taking the example of the $g \rightarrow Q({}^{3}S_{1}^{[8]})$ at Leading order

$$d\sigma^{\text{LP+NLO}} = \underbrace{d\sigma^{\text{ZM-VFNS}}}_{\alpha_s^2 \otimes \alpha_s^2} + \underbrace{d\sigma^{\text{FFNS}}}_{\alpha_s^3} - \frac{d\sigma_{\text{matching}}}{\sigma_s^3}$$

- Double counting is $\mathcal{O}(\alpha_s^3)$
- Matching term is the O(a³_s) component of the ZM-VFNS contribution without evolution

Q polarisation at large P_T

Phys.Rept. 889 (2020) 1-106, Phys. Rev. D 96, 094016 (2017)

•
$$\frac{dN}{d\cos\theta} \propto 1 + \lambda_{\theta}\cos^2\theta$$
 where $\lambda_{\theta} = \frac{1/2\sigma_T - \sigma_L}{1/2\sigma_T + \sigma_L}$

- ► $\lambda_{\theta} = +1$ transverse; $\lambda_{\theta} = -1$ longitudinal; $\lambda_{\theta} = 0$ unpolarised
- Fixed Flavour Number Scheme results:
 - transversely polarised at LO
 - Iongitudinaly polarised at NLO, NNLO*

Q polarisation at large P_T

Phys.Rept. 889 (2020) 1-106, Phys. Rev. D 96, 094016 (2017)

•
$$\frac{dN}{d\cos\theta} \propto 1 + \lambda_{\theta} \cos^2 \theta$$
 where $\lambda_{\theta} = \frac{1/2\sigma_T - \sigma_L}{1/2\sigma_T + \sigma_L}$

- ► $\lambda_{\theta} = +1$ transverse; $\lambda_{\theta} = -1$ longitudinal; $\lambda_{\theta} = 0$ unpolarised
- Fixed Flavour Number Scheme results:
 - transversely polarised at LO
 - Iongitudinaly polarised at NLO, NNLO*

What about FF?

 ${}^{3}S_{1}^{[1]}$ FF at μ_{0}

Q polarisation at large P_T

Phys.Rept. 889 (2020) 1-106, Phys. Rev. D 96, 094016 (2017)

•
$$\frac{dN}{d\cos\theta} \propto 1 + \lambda_{\theta} \cos^2 \theta$$
 where $\lambda_{\theta} = \frac{1/2\sigma_T - \sigma_L}{1/2\sigma_T + \sigma_L}$

- ► $\lambda_{\theta} = +1$ transverse; $\lambda_{\theta} = -1$ longitudinal; $\lambda_{\theta} = 0$ unpolarised
- Fixed Flavour Number Scheme results:
 - transversely polarised at LO
 - Iongitudinaly polarised at NLO, NNLO*

What about FF?

• z = 0.1: $\lambda_{\theta} \approx -0.1$ and z = 0.9: $\lambda_{\theta} \approx 0.4$

 ${}^{3}S_{\bullet}^{[1]}$ FF at μ_{0}
$\ensuremath{\mathcal{Q}}$ in jet and fragmentation functions

See talk of Paul Caucal on Monday

Quarkonia in jets - formalism

- J/Ψ at high p_T is expected to predominantly come from jet fragmentation.
- Formalism based on the jet evolution outlined above + FF at the scale $\sim m_c$.

$$\begin{split} \frac{\mathrm{d}\sigma^{pp \to j_1 + j_2(J/\Psi) + X}}{\mathrm{d}p_T \mathrm{d}z_{J/\Psi}} &= H_{ab \to ij} \otimes f_a \otimes f_b \otimes J_j \otimes \mathcal{G}_i^{J/\Psi}(p_T, R, z, \mu) \\ \mathcal{G}_i^{J/\Psi} \sim \mathcal{C}_{ij}(p_T, R, \mu) \otimes \mathcal{K}_{\mathrm{DGLA}} \left[\underbrace{D_{j \to J/\Psi}(2m_c)}_{g \to c\bar{c}(\kappa)} & \frac{3S_1^{[1]}}{\alpha_s^3} & \frac{3S_1^{[8]}}{\alpha_s} & \frac{1S_0^{[8]}}{\alpha_s^2} & \frac{3P_i^{[8]}}{\alpha_s^2} \\ \hline \mathbf{LDME} \langle O_{\kappa}^{J/\Psi} \rangle & (v/c)^3 & (v/c)^7 & (v/c)^7 & (v/c)^7 \end{split}$$

 \Rightarrow competing orders of magnitudes between $g \rightarrow c \bar{c}(\kappa)$ and LDME in NRQCD.

20 / 27

Available computing tools for the study of fragmentation functions

Fragmentation function evolution (LHAPDF grid format):

- APFEL++ (https://github.com/vbertone/apfelxx)
 - lnput: $zD_i^Q(z, \mu_0)$
 - Must be a continuous function
- MELA (https://github.com/vbertone/MELA)
 - lnput: $\tilde{D}_i^{\mathcal{Q}}(N, \mu_0)$
 - Can be discontinuous (e.g. contain δ functions/plus distributions)
- Tools for phenomenological studies:
 - INCNLO (https://lapth.cnrs.fr/PHOX_FAMILY/readme_inc.html)
 - FMNLO (https://fmnlo.sjtu.edu.cn/)

Heavy hadron (H_Q) production: $p_T \gg m_Q$

Nucl.Phys.B 421 (1994) 530-544; slides from Ingo Schienbein

 H_Q production via **F**ixed **F**lavour **N**umber **S**cheme (FFNS):

$$\frac{d\sigma}{dp_{T,H_Q}} = \sum_{i,j,Q} \mathbf{f}_{i/A}(\mu_F) \otimes \mathbf{f}_{j/B}(\mu_F) \otimes \frac{d\hat{\sigma}_{ij \to QX}}{dp_{T,Q}}(\mu_F,\mu_R,m_Q) \otimes \mathbf{D}_Q^{H_Q}$$

- \otimes denotes a Mellin Convolution: $f \otimes g(x) = \int_0^1 dy \int_0^1 dz f(y)g(z)\delta(x yz)$ • PDF:
 - Only light flavours in initial state: $i, j \in \{q, \bar{q}, g\}$, where q = u, d, s
 - perturbative μ_F evolution which absorbs initial-state collinear singularities
 - **non-perturbative** boundary condition: $f_{i/H}(x, \mu_0)$ at $\mu_0 = O(1 \text{ GeV})$
- Owing to m_Q , no final-state collinear singularities in $\hat{\sigma}$ or $D_Q^{H_Q}$!
- However, logs of the kind $\alpha_s \ln(p_T/m_Q)$ appear in $\hat{\sigma}$
- For $p_T \gg m_Q$, these logs are large and should be resummed

Heavy hadron (H_Q) production: $p_T \gg m_Q$ H_Q production via Zero Mass Variable Flavour Number Scheme (ZM-VFNS):

For large scale (p_T ≫ m_Q) we can treat the quarks as massless in ô up to corrections O((m_Q/p_T)²):

 $\frac{d\sigma}{dp_{T,H_Q}} \simeq \sum_{i,j,k} f_{i/A}(\mu_{F_i}) \otimes f_{j/B}(\mu_{F_i}) \otimes \frac{d\hat{\sigma}_{ij \to kX}}{dp_{T,k}}(\mu_{F_i}, \mu_{F_f}, \mu_R) \otimes D_k^{H_Q}(\mu_{F_f})$

► In $\hat{\sigma}$ take $i, j, k \in \{q, \bar{q}, g, Q, \bar{Q}\}$ but consider them to be **massless**

- We introduce an additional scale, µ_{F_l}, and the large logs from the prevoious partonic cross section are effectively split into 2 terms ln(p_T/m_Q) = ln(p_T/µ_{F_l}) + ln(µ_{F_l}/m_Q):
 - $\ln(p_T/\mu_{F_f})$: contained within $\hat{\sigma}$, this is small provided $\mu_F \sim p_T$
 - ► $\ln(\mu_{F_f}/m_Q)$: resummed to all orders by evolution equations in $D_k^{H_Q}(\mu_{F_f})$
- The mass dependence is absorbed into the FF
- This results in a better control of the theortical uncertainty at large p_T

FFs: final-state counterpart to PDFs

• Parton Distribution Function: $f_{i/H}(x, \mu^2)$

parton *i* is emitted from hadron *H* carrying longitudinal momentum fraction *x* of *H*

DGLAP evolution amounts to resumming initial-state collinear divergences:

Fragmentation Function: $D_i^H(z, \mu^2)$

hadron H is emitted from parton i carrying longitudinal momentum fraction z of i

DGLAP evolution amounts to resumming final-state collinear divergences:

FFs: final-state counterpart to PDFs

• Parton Distribution Function: $f_{i/H}(x, \mu^2)$

parton *i* is emitted from hadron *H* carrying longitudial momentum fraction *x* of *H*

- Scale: $\mu^2 = -q^2$ [space-like]
- DGLAP evolution with space-like (S) splitting kernels:

$$\frac{\partial}{\partial \ln \mu^2} f_{i/H}(x,\mu^2) = \sum_j \int_x^1 \frac{dx'}{x'} P^S_{ij}\left(\frac{x}{x'},\alpha_s(\mu^2)\right) f_{j/H}\left(x',\mu^2\right)$$

Fragmentation Function: $D_i^H(z, \mu^2)$

hadron H is emitted from parton i carrying longitudial momentum fraction z of i

- Scale: $\mu^2 = q^2$ [time-like]
- DGLAP evolution with time-like (T) splitting kernels:

$$\frac{\partial}{\partial \ln \mu^2} D_i^{\mathcal{H}}(z,\mu^2) = \sum_j \int_z^1 \frac{dz'}{z'} P_{ji}^{\mathcal{T}}\left(z',\alpha_s(\mu^2)\right) D_j^{\mathcal{H}}\left(\frac{z}{z'},\mu^2\right)$$

Splitting kernels

- The kernels P_{ij}(x) describes the splitting of parton j into parton i carrying momentum fraction x of j
- At LO accuracy in $\alpha_s P_{ij}^{S} = P_{ij}^{T} = P_{ij}$:

$$P_{qq}(x) = 2C_F \left(\frac{1+x^2}{(1-x)_+} + \frac{3}{2}\delta(1-x) \right)$$

$$P_{qg}(x) = 2T_R \left(x^2 + (1-x)^2 \right)$$

$$P_{gq}(x) = 2C_F \left(\frac{1+(1-x)^2}{x} \right)$$

$$P_{gg}(x) = 4C_A \left(\frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) \right) + \delta(1-x) \frac{11C_A + 4N_f T_R}{3}$$

$$= \frac{4}{7}, T_B = \frac{1}{7}, \text{ and } C_A = 3$$

where $C_F = \frac{4}{3}$, $T_R = \frac{1}{2}$, and $C_A = 3$

Example: computation of $g \rightarrow J/\psi({}^{3}S_{1}^{[8]})$ FF using Collins-Soper definition I

1. Compute Amplitude on LHS of cut line: [eikonal coupling]

$$\mathcal{A}_{\nu\alpha} = -i\delta^{ab} \left[g_{\nu\alpha}(\boldsymbol{n} \cdot \boldsymbol{k}) - \boldsymbol{p}_{\nu} \boldsymbol{n}_{\alpha} \right] \left(i g \mu^{\epsilon} \gamma^{\alpha} T^{b} \right)$$

Example: computation of $g \rightarrow J/\psi({}^{3}S_{1}^{[8]})$ FF using Collins-Soper definition II

2. Contract with colour and spin projector:

$$\operatorname{Tr}\left[\mathcal{A}_{\nu\alpha}\Pi_{8}^{c}\Pi_{1}^{\delta}\right],$$

$$\Pi_{8}^{c} = \sqrt{2}T^{c}, \quad \Pi_{1}^{\delta} = \frac{1}{4m_{Q}^{2}}\left(\frac{p_{Q}}{2} - m_{Q}\right)\gamma_{\delta}\frac{(p_{Q}+2m_{Q})}{4m_{Q}}\left(\frac{p_{Q}}{2} + m_{Q}\right)$$

3. Compute amplitude square:

$$|\mathcal{A}|^{2} = \operatorname{Tr} \left[\mathcal{A}_{\nu\alpha} \Pi_{8}^{c} \Pi_{1}^{\delta} \right] \left(\operatorname{Tr} \left[\mathcal{A}_{\nu'\alpha'} \Pi_{8}^{c'} \Pi_{1}^{\delta'} \right] \right)^{\dagger} \Pi_{\delta\delta'} \delta^{cc'} (-g_{\nu\nu'}) \delta^{aa'}$$
$$\Pi_{\delta\delta'} \delta^{cc'} : \text{ colour and spin polarisation of } Q\bar{Q} \begin{bmatrix} {}^{3}S_{1}^{[8]} \end{bmatrix}$$
$$(-g_{\nu\nu'}) \delta^{aa'} : \text{ contract eikonal indicies}$$

Example: computation of $g \rightarrow J/\psi({}^{3}S_{1}^{[8]})$ FF using Collins-Soper definition III

4. Integrate over phase space and multiply by normalisation factors:

$$D_{g}^{J/\psi[^{3}S_{1}^{[8]}]}(z,\mu_{0}) = \frac{N_{\text{CS}}}{k^{4}} |\mathcal{A}|^{2} d\phi_{0} \frac{\langle \mathcal{O}_{8}^{J/\psi}(^{3}S_{1}) \rangle}{(D-1)(N_{c}^{2}-1)}$$

• $d\phi_0 = \frac{8\pi m_0}{k \cdot n} \delta(1 - z)$: normalisation of 0-body phase space • $N_{\text{CS}} = \frac{z^{D-3}}{(N_c^2 - 1)(k \cdot n)2\pi(D-2)}$: Collins-Soper normalisation

- ▶ $k^4 = (2m_Q)^4$: off-shellness of fragmenting gluon
- $\blacktriangleright \langle \mathcal{O}_8^{J/\psi}({}^3S_1) \rangle : \mathsf{LDME}$

(D-1)($N_c^2 - 1$): spin and colour averaging

to obtain final expression at $\mu_0 \sim 2m_c$:

$$D_{g}^{J/\psi[{}^{3}S_{1}^{[8]}]}(z,\mu_{0}) = \delta(1-z)\frac{\pi\alpha_{s}(\mu_{0})}{24m_{Q}^{3}}\langle \mathcal{O}_{8}^{J/\psi}({}^{3}S_{1})\rangle$$