

Extensions of MadGraph5_aMC@NLO for QCD studies

Implementation of quarkonium production EPS-HEP 2025

Alice COLPANI SERRI

in collaboration with C. Flett, J.-P. Lansberg, O. Mattelaer, H.-S. Shao, L. Simon

July 11, 2025

alice.colpani_serri.dokt@pw.edu.pl

EPS-HEP 2025, Marseille

Warsaw University of Technology

MadGraph5_aMC@NLO = diagram/amplitude/event generator
* compute matrix element in helicity-amplitude formalism

$$\sigma(h_{\mathsf{A}}h_{\mathsf{B}} \to k+X) = \sum_{i,j} \int \mathrm{d}x_i \mathrm{d}x_j \mathrm{d}\Phi f_{i/h_{\mathsf{A}}}(x_i) f_{j/h_{\mathsf{B}}}(x_j) \hat{\sigma}(x_i, x_j, \mu_F, \mu_R)$$

alice.colpani serri.dokt@pw.edu.pl

MadGraph5_aMC@NLO = diagram/amplitude/event generator
* compute matrix element in helicity-amplitude formalism

$$\sigma(h_{\mathsf{A}}h_{\mathsf{B}} \to k+X) = \sum_{i,j} \int \mathrm{d}x_i \mathrm{d}x_j \mathrm{d}\Phi f_{i/h_{\mathsf{A}}}(x_i) f_{j/h_{\mathsf{B}}}(x_j) \hat{\sigma}(x_i, x_j, \mu_F, \mu_R)$$

- Lagrangian \rightarrow Feynman rules \rightarrow matrix element \rightarrow parton events
- Hadronise events and detector events possible
- (Differential) cross-section computation
- LHE weighted-unweighted event generation

MadGraph5_aMC@NLO = diagram/amplitude/event generator
* compute matrix element in helicity-amplitude formalism

$$\sigma(h_{\mathsf{A}}h_{\mathsf{B}} \to k+X) = \sum_{i,j} \int \mathrm{d}x_i \mathrm{d}x_j \mathrm{d}\Phi f_{i/h_{\mathsf{A}}}(x_i) f_{j/h_{\mathsf{B}}}(x_j) \hat{\sigma}(x_i, x_j, \mu_F, \mu_R)$$

- Lagrangian \rightarrow Feynman rules \rightarrow matrix element \rightarrow parton events
- Hadronise events and detector events possible
- (Differential) cross-section computation
- LHE weighted-unweighted event generation

NEW in MG5: **Quarkonium states** and Asymmetric collisions

2 / 16

Quarkonium = meson made of a heavy quark Q and its \overline{Q} \hookrightarrow charmonium ($c\overline{c}$): J/Ψ , Ψ ', η_c , χ_c ...

 \hookrightarrow bottomonium ($b\bar{b}$): Υ , η_b , χ_b ...

Many reasons why quarkonia are interesting: QCD studies, investigation of the internal structure of nucleons...

Quarkonium = meson made of a heavy quark Q and its \overline{Q} \hookrightarrow charmonium ($c\overline{c}$): J/ψ , Ψ ', η_c , χ_c ... \hookrightarrow bottomonium ($b\overline{b}$): Υ , η_b , χ_b ...

Many reasons why quarkonia are interesting: (

Many reasons why quarkonia are interesting: QCD studies, investigation of the internal structure of nucleons...

Focus on inclusive processes \rightarrow NRQCD formalism:

$$\sigma(pp \to Q + X) = \sum_{i,j,n} \int dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2)$$
$$\times \hat{\sigma}(ij \to Q\bar{Q}[n] + X) \langle \mathcal{O}_n^Q \rangle$$

n = 2s + 1

JHEP 02 (2008) 102

- ✓ single quarkonium production phenomenology (only)
- X (deprecated) module within MadGraph4

JHEP 02 (2008) 102

- ✓ single quarkonium production phenomenology (only)
- X (deprecated) module within MadGraph4

Helac-Onia:

CPC 198 (2016) 238-259

- (S-wave/P-wave) multiple-quarkonium production based on tree-level helicity amplitudes
- X LO accuracy, no plan for NLO upgrade

JHEP 02 (2008) 102

- ✓ single quarkonium production phenomenology (only)
- X (deprecated) module within MadGraph4

Helac-Onia:

CPC 198 (2016) 238-259

- (S-wave/P-wave) multiple-quarkonium production based on tree-level helicity amplitudes
- X LO accuracy, no plan for NLO upgrade

MadGraph5_aMC@NLO:

JHEP 07 (2014) 079

- flexibility to support SM, BSM and large number of particle physics models + LO, NLO matrix element generator
- ? no quarkonia final states \rightarrow (technical) complexities arise

JHEP 02 (2008) 102

- ✓ single quarkonium production phenomenology (only)
- X (deprecated) module within MadGraph4

Helac-Onia:

CPC 198 (2016) 238-259

- ✓ (S-wave/P-wave) multiple-quarkonium production based on tree-level helicity amplitudes
- X LO accuracy, no plan for NLO upgrade

MadGraph5_aMC@NLO:

JHEP 07 (2014) 079

- flexibility to support SM, BSM and large number of particle physics models + LO, NLO matrix element generator
- ? no quarkonia final states \rightarrow (technical) complexities arise

Automation of S-wave LO quarkonium with P-waves and NLO in sight

JHEP 07 (2024), 050

Quarkonium implementation in MG5

$$a(k_1)b(k_2) \rightarrow Q(k_3)\bar{Q}(k_4) + \dots$$

$$Q\bar{Q}[n] \quad n = {}^{2s+1} L_J^c$$

alice.colpani serri.dokt@pw.edu.pl

$$a(k_1)b(k_2) \rightarrow Q(k_3)\bar{Q}(k_4) + \dots$$

$$Q\bar{Q}[n] \quad n = {}^{2s+1} L_J^c$$

$$\mathcal{A}(r) = \bar{u}_{\lambda_Q}(k_3) \Gamma(r) v_{\lambda_{\bar{Q}}}(k_4)$$

alice.colpani serri.dokt@pw.edu.pl

$$a(k_1)b(k_2) \rightarrow Q(k_3)\bar{Q}(k_4) + \dots$$

$$Q\bar{Q}[n] \quad n = {}^{2s+1} L_J^c$$

$$\mathcal{A}(r) = \bar{u}_{\lambda_Q}(k_3) \Gamma(r) v_{\lambda_{\bar{Q}}}(k_4)$$

$$\downarrow \text{ colour projection } \downarrow$$

$$\mathcal{A}_{\{[C]\}}(r) = \sum_{c_3, c_4} \mathbb{P}_C \mathcal{A}(r)$$

Colour projectors
$$\mathbb{P}_1 = oldsymbol{\delta}_{ij} / \sqrt{N_c}$$
 and $\mathbb{P}_8 = \sqrt{2} t^c_{ij}$

alice.colpani serri.dokt@pw.edu.pl

$$a(k_1)b(k_2) \rightarrow Q(k_3)\bar{Q}(k_4) + \dots$$

$$Q\bar{Q}[n] \ n =^{2s+1} L_J^c$$

$$\begin{aligned} \left[\mathcal{A}(r) &= \bar{u}_{\lambda_{Q}}(k_{3}) \Gamma(r) v_{\lambda_{\bar{Q}}}(k_{4}) \right] \\ \downarrow \text{ colour projection } \downarrow \\ \left[\mathcal{A}_{\{[C]\}}(r) &= \sum_{c_{3}, c_{4}} \mathbb{P}_{C} \mathcal{A}(r) \right] \\ \downarrow \text{ spin projection } \downarrow \\ \mathcal{A}_{\{C,S\}}(r) &= \sum_{\lambda_{Q}, \lambda_{\bar{Q}}} \mathbb{P}_{S} \mathcal{A}_{\{C\}}(r) \end{aligned}$$

Colour projectors

$$\mathbb{P}_{1} = \delta_{ij} / \sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c}$$
Spin projectors

$$\mathbb{P}_{S} = \frac{\bar{v}_{\lambda_{\bar{Q}}}(k_{4})\Gamma_{S}u_{\lambda_{Q}}(k_{3})}{2\sqrt{2m_{Q}m_{\bar{Q}}}}$$

$$\Gamma_{S} = \delta_{ij} - \delta_{ij} + \delta_{ij} + \delta_{ij}$$

$$\Gamma_0 = \gamma_5$$
 and $\Gamma_1 = \notin(K)$

alice.colpani serri.dokt@pw.edu.pl

$$a(k_1)b(k_2) \rightarrow Q(k_3)\bar{Q}(k_4) + \dots$$

$$Q\bar{Q}[n] \quad n = {}^{2s+1} L_J^c$$

$$\begin{array}{l}
\left[\mathcal{A}(r) = \bar{u}_{\lambda_{Q}}(k_{3})\Gamma(r)v_{\lambda_{\bar{Q}}}(k_{4})\right] \\
\downarrow \text{ colour projection } \downarrow \\
\left[\mathcal{A}_{\{[C]\}}(r) = \sum_{c_{3},c_{4}} \mathbb{P}_{c}\mathcal{A}(r)\right] \\
\downarrow \text{ spin projection } \downarrow \\
\left[\mathcal{A}_{\{c,s\}}(r) = \sum_{\lambda_{Q},\lambda_{\bar{Q}}} \mathbb{P}_{s}\mathcal{A}_{\{C\}}(r)\right] \\
\end{array}$$

$$\begin{array}{l}
\left[\mathcal{C} \text{ colour projectors} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \sqrt{2}t_{ij}^{c} \\
\mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{1} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \delta_{ij}/\sqrt{N_{c}} \text{ and } \mathbb{P}_{8} = \delta_{ij}/\sqrt{N_{c}} \text{ an$$

Now implemented in MadGraph5

alice.colpani serri.dokt@pw.edu.pl

 $|J/\psi\rangle = J/\psi(1|3S11) + J/\psi(1|1S08) + J/\psi(1|3S18) + \dots$

```
boundstates.py
    # J/psi
    ipsi 13s11 = Boundstate(pdg code = 443.
                             name = 'Jpsi(1|3S11)'.
                             particle = 'c',
                             antiparticle = 'c~',
                             principal = 1,
                             spin = 3,
                             orbital = 0.
                             J = 1,
                             color = 1.
                             charge = 0,
                             texname = 'jpsi13S11')
    jpsi 11s08 = Boundstate(pdg code = 9941003,
                             name = 'Jpsi(1|1S08)',
                             narticle = 'c
```

(Boundstate class similar to Particle)

alice.colpani serri.dokt@pw.edu.pl

EPS-HEP 2025, Marseille

6 / 16

$$|J/\psi\rangle = J/\psi(1|3S11) + J/\psi(1|1S08) + J/\psi(1|3S18) + \dots$$

A list of ALL available Fockstates can be shown with the prompt $$\rm MG_aMC \ > \ display \ fockstates$

alice.colpani serri.dokt@pw.edu.pl

 $|J/\psi\rangle = J/\psi(1|3S11) + J/\psi(1|1S08) + J/\psi(1|3S18) + \dots$

```
# Doundstates_default.txt
(similar to multiparticle_default.txt)
# Doundstates_default.txt
# Physical Boundstates (S-waves only)
#
# Syntax: label = Fock states (separated by spaces)
#
# Charmonium
etac = etac(1|1501) etac(1|1508) etac(1|3518)
etac(2|3518)
Jpsi = Jpsi(1|3511) Jpsi(1|1508) Jpsi(1|3518)
psi(2s) = psi(2|3511) psi(2|1508) psi(2|3518)
# Charmed R mesons
```

$$|J/\psi\rangle = J/\psi(1|3S11) + J/\psi(1|1S08) + J/\psi(1|3S18) + \dots$$

A list of ALL available Boundstates can be shown with the prompt MG_aMC > display boundstates

alice.colpani_serri.dokt@pw.edu.pl

Generate process: single, associated and multiple production From the mg5amcnlo folder: type ./bin/mg5_aMC MG_aMC > Generate process: single, associated and multiple production
From the mg5amcnlo folder: type ./bin/mg5_aMC
MG_aMC >
MG_aMC > import model sm_onia (or sm_onia-c_mass)

Generate process: single, associated and multiple production
From the mg5amcnlo folder: type ./bin/mg5_aMC
MG_aMC >
MG_aMC > import model sm_onia (or sm_onia-c_mass)

* Example: $p + p \rightarrow J/\psi + c + \bar{c}$

MG_aMC > generate p p > jpsi c c~

Generate process: single, associated and multiple production From the mg5amcnlo folder: type ./bin/mg5_aMC MG_aMC > MG_aMC > import model sm_onia (or sm_onia-c_mass) * Example: $p + p \rightarrow J/\psi + c + \bar{c}$ MG_aMC > generate p p > jpsi c c~ It will be equivalent to: MG_aMC > generate p p > jpsi(1|3S11) c c~ MG_aMC > add process p p > jpsi(1|1S08) c c~

MG_aMC > add process p p > jpsi(1|3518) c c~

Generate process: single, associated and multiple production From the mg5amcnlo folder: type ./bin/mg5_aMC MG aMC > MG_aMC > import model sm_onia (or sm onia-c mass) ★ Example: $p + p \rightarrow J/\psi + c + \bar{c}$ MG_aMC > generate p p > jpsi c c~ It will be equivalent to: MG_aMC > generate p p > jpsi(1|3S11) c c~ $MG_aMC > add process p p > jpsi(1|1S08) c c~$ $MG_aMC > add process p p > jpsi(1|3S18) c c~$

1. Benchmarked our matrix elements squared against Helac-Onia

Generate process: single, associated and multiple production From the mg5amcnlo folder: type ./bin/mg5_aMC MG_aMC > MG_aMC > import model sm_onia (or sm_onia-c_mass) * Example: $p + p \rightarrow J/\Psi + c + \bar{c}$

MG_aMC > generate p p > jpsi c c~

It will be equivalent to:

MG_aMC > generate p p > jpsi(1|3S11) c c~ MG_aMC > add process p p > jpsi(1|1S08) c c~ MG_aMC > add process p p > jpsi(1|3S18) c c~

1. Benchmarked our matrix elements squared against Helac-Onia

2. Benchmarked cross section for quarkonium production processes

Matrix-element benchmarking

Using the standalone mode within MadGraph5:

• $g g > J/\psi(1|3S18) g$

Phase-space point (input)				
E	рх	ру	pz	
0.5000000E+03	0.0000000E+00	0.0000000E+00	0.5000000E+03	
0.5000000E+03	0.0000000E+00	0.0000000E+00	-0.5000000E+03	
0.5000048E+03	0.1109232E+03	0.4448265E+03	-0.1995510E+03	
0.4999952E+03	-0.1109232E+03	-0.4448265E+03	0.1995510E+03	

Matrix-element results:

MadGraph5	0.004119538625333256 GeV^0
Helac-Onia	0.0041195386253842555 GeV^0

• g g > $J/\psi(1|3S18) J/\psi(1|3S18)$ g

MadGraph5	7.834108245259083 · 10 ⁻¹¹ GeV^0
Helac-Onia	7.834108245162441 ⋅ 10 ⁻¹¹ GeV^0

• $g g > J/\psi(1|3S11) \Upsilon(1|3S18) g$

MadGraph5	$1.1567670809229112 \cdot 10^{-15} \text{ GeV}^0$
Helac-Onia	1.1567669436267628 · 10 ⁻¹⁵ GeV^0

• g g > $J/\psi(1|3S11) e^+e^-$ g

MadGraph5	$1.1045368093659422 \cdot 10^{-15} \text{ GeV}^0$
Helac-Onia	1.1045244940481948 · 10 ⁻¹⁵ GeV^0

alice.colpani serri.dokt@pw.edu.pl

Cross-section benchmarking

MadGraph5 employs multichannelling for integration (VEGAS) Quarkonium in the final state is a single particle, not two $\land 2 \rightarrow 1$ process interpreted as $2 \rightarrow 2$...

Default integration in MG5 works well for our purpose Phase-space integration performed without multi-channeling

ţ

Sufficient for all phenomenologically relevant cases

Benchmarked cross-sections predictions against Helac-Onia

Process	MadGraph5 Helac-Onia	Process	MadGraph5 Helac-Onia
$u\bar{u} \rightarrow J/\psi \left[{}^{3}S_{1}^{[8]} \right] + H$	42.055(2) yb	$gg \rightarrow J/\psi \left[{}^{3}S_{1}^{[8]} \right] + H$	1.8530(7) ab
2 3	42.056(3) yb	2 3	1.8523(7) ab
$gg \rightarrow J/\psi \left[{}^{3}S_{1}^{[8]} \right] + HH$	15.927(3) yb	$gg \rightarrow J/\psi \begin{bmatrix} 3 S_1^{[8]} \end{bmatrix} + HHH$	1.9802(5) rb
2 3	15.93(2) yb	2 3	1.967(4) rb
$gg \rightarrow J/\psi \begin{bmatrix} 3 S_1^{[8]} \end{bmatrix} + g$	8.9215(7) µb	$gg \rightarrow J/\psi \begin{bmatrix} 3 S_{1}^{[1]} \end{bmatrix} + J/\psi \begin{bmatrix} 3 S_{1}^{[1]} \end{bmatrix}$	8.921(2) nb
2 3	8.927(2)µb		8.916(4) nb
$gg \rightarrow J/\psi \begin{bmatrix} 3 S_{1}^{[8]} \end{bmatrix} + J/\psi \begin{bmatrix} 3 S_{1}^{[8]} \end{bmatrix}$	86.240(7) pb	$gg \rightarrow \eta_c \begin{bmatrix} 1 S_{0}^{[8]} \end{bmatrix} + \eta_b \begin{bmatrix} 1 S_{0}^{[8]} \end{bmatrix}$	195.984(9) fb
	86.27(2) pb		195.987(9)fb
$u\bar{u} \rightarrow \eta_c \begin{bmatrix} 1 S_{0}^{[1]} \end{bmatrix} + J/\psi \begin{bmatrix} 3 S_{1}^{[8]} \end{bmatrix}$	152.79(1) fb	$u\bar{u} \rightarrow \eta_c \begin{bmatrix} 1 S_{0}^{[1]} \end{bmatrix} + \Upsilon \begin{bmatrix} 3 S_{1}^{[1]} \end{bmatrix}$	212.90(2) zb
	152.73(6) fb		212.9(1) zb
$u\bar{u} \rightarrow B_c^+ \begin{bmatrix} 1 S_{0}^{[1]} \end{bmatrix} + B_c^{*-} \begin{bmatrix} 3 S_{1}^{[1]} \end{bmatrix}$	2.7920(5) pb	$e^+e^- \rightarrow J/\psi \begin{bmatrix} 3 S_1^{[1]} \end{bmatrix} + Z$	1.61586(9)fb
	2.7925(7) pb		1.61584(8) fb

LDMEs for quarkonia

PRL 114 (2015) 092005, PRD 94 (2016) 014028

$\mathcal{Q}[n]$	$\langle \mathcal{O}^{\mathcal{Q}}_n \rangle \; \left[\mathrm{GeV}^{3} \right]$	Q[n]	$\langle \mathcal{O}^{\mathcal{Q}}_n \rangle \left[\mathrm{GeV}^{3} \right]$
$\eta_c \begin{bmatrix} 1 S_{0}^{[1]} \end{bmatrix}$	0.386666666666666	$J/\psi \begin{bmatrix} 3 S_{1}^{[1]} \end{bmatrix}$	1.16
$\eta_c [3S_{1}^{[8]}]$	0.0146	J/ψ[¹ S ₀ ^[8]]	0.0146
η_{c} $[{}^{1}S_{0}^{[8]}]$	0.003009743333333	$J/\psi {}^{3}S_{1}^{[8]}$	0.00902923
$\eta_c(2S) \begin{bmatrix} 1 S_{0}^{[1]} \end{bmatrix}$	0.25333333333333333	$\psi(2S)$ $\begin{bmatrix} {}^{3}S_{1}^{[1]} \end{bmatrix}$	0.76
$\eta_c(2S)$ ${}^{3}S_{1}^{[8]}$	0.02	$\psi(2S)$ ${}^{1}S_{0}^{[8]}$	0.02
$\eta_c(2S) \left[\mathbf{^1}S_{0}^{[8]} \right]$	0.0004	$\psi(2S)\left[{}^{3}S_{1}^{[8]}\right]$	0.0012
$\eta_b \begin{bmatrix} 1 S_{0}^{[1]} \end{bmatrix}$	3.09333333333333333	$\Upsilon \begin{bmatrix} 3 S_{1}^{[1]} \end{bmatrix}$	9.28
$\eta_b \begin{bmatrix} 3 S_{1}^{[8]} \end{bmatrix}$	0.000170128	Υ ^{[1}S₀^[8]	0.000170128
$\eta_b \begin{bmatrix} 1 S_{0}^{[8]} \end{bmatrix}$	0.0099142	Υ ³ S ₁ ^[8]	0.0297426
$\eta_b(2S) \begin{bmatrix} 1 S_{0}^{[1]} \end{bmatrix}$	1.54333333333333333	$\Upsilon(2S) \begin{bmatrix} 3 S_{1}^{[1]} \end{bmatrix}$	4.63
$\eta_b(2S) [{}^{3}S_{1}^{[8]}]$	0.0612263	$\Upsilon(2S)$ $[{}^{1}S_{0}^{[8]}]$	0.0612263
$\eta_b(2S) \left[\mathbf{^1}S_0^{[8]} \right]$	0.003197393333333	$\Upsilon(2S)\left[{}^{3}S_{1}^{[8]}\right]$	0.00959218
$B_c^{\pm} \begin{bmatrix} 1 \\ S_0^{[1]} \end{bmatrix}$	0.736	$B_c^{*\pm} \begin{bmatrix} 3 S_{1}^{[1]} \end{bmatrix}$	2.208
$B_c^{\pm} \begin{bmatrix} 3 S_{1}^{[8]} \end{bmatrix}$	0.00736	$B_{c}^{*\pm} \begin{bmatrix} 1 S_{0}^{[8]} \end{bmatrix}$	0.02208
$B_c^{\pm} \begin{bmatrix} 1 S_{0}^{[8]} \end{bmatrix}$	0.00736	$B_{c}^{*\pm}\left[{}^{3}S_{1}^{[8]}\right]$	0.02208

alice.colpani serri.dokt@pw.edu.pl

Warsaw University of Technology

Cross-section results

Cross-section results for quarkonia: some examples

Disclaimer! Cross sections only to show the flexibility of the code + hierarchy of the processes depend on LDMEs Jet cuts: $p_{T,i} > 10$ GeV, $\eta_i < 5$

Single-quarkonium production

	process	σ process		σ		
	$pp \rightarrow \eta_c$	$_{c}$ 2.9366(5) µb $ pp \rightarrow \eta_{b}$ 5.4		5.4935(7) µb		
	$pp \rightarrow J/\psi$	536.14(6) nb $pp \rightarrow \Upsilon$ 6.0		6.0655(4) nb		
-	+					
р	process σ process σ					
p	$p \rightarrow \eta_c + j$	805.4(4) nb	$pp \rightarrow \eta_b +$	<i>j</i> 315.4(2) nb		
p	$p \rightarrow J/\psi + j$	329.8(2) nb	$pp \rightarrow \Upsilon + f$	i 19.85(1) nb		

alice.colpani serri.dokt@pw.edu.pl

Photon cuts: $p_{T,\gamma} > 2 \text{ GeV}, \eta_{\gamma} < 2.5$ Associated-quarkonium productionprocess σ $pp \rightarrow J/\psi + \gamma$ 19.13(1) nb $pp \rightarrow \gamma + \gamma$ 897.4(5) pb $pp \rightarrow J/\psi + W^+$ 1.9328(6) pb $pp \rightarrow \gamma + W^+$ 102.81(4) fb

Ouar	konium	_noir	nroc	luction
Quai	Komum	-pan	proc	uction

process	σ	process	σ
$pp ightarrow \eta_c + \eta_c$	35.81(1) nb	$pp ightarrow \eta_b + \eta_b$	75.64(3) pb
$pp ightarrow \eta_c + J/\psi$	7.233(3) nb	$pp o \eta_b + \Upsilon$	1.9244(6) pb
$pp ightarrow J/\psi + J/\psi$	10.756(3) nb	$pp o \Upsilon + \Upsilon$	44.63(1) pb

alice.colpani serri.dokt@pw.edu.pl

HEFT: quarkonium in association to Higgs boson

PRD 66 (2002) 114002, PRD 104 (2021) 054006

$$\star p + p \rightarrow Q + H$$

with $Q = J/\psi$ or Υ

alice.colpani serri.dokt@pw.edu.pl

HEFT: quarkonium in association to Higgs boson

PRD 66 (2002) 114002, PRD 104 (2021) 054006

 $\star p + p \rightarrow Q + H$

with $Q = J/\psi$ or Υ

H

alice.colpani_serri.dokt@pw.edu.pl

Warsaw University of Technology

* $p + p \rightarrow Q + H$ with $Q = J/\psi$ or Υ

From the mg5amcnlo folder: type ./bin/mg5_aMC

 $MG_aMC >$

alice.colpani serri.dokt@pw.edu.pl

* $p + p \rightarrow Q + H$ with $Q = J/\psi$ or Υ

From the mg5amcnlo folder: type ./bin/mg5_aMC

MG_aMC >

MG_aMC > import model heft_onia

* $p + p \rightarrow Q + H$ with $Q = J/\psi$ or Υ

From the mg5amcnlo folder: type ./bin/mg5_aMC

* $p + p \rightarrow Q + H$ with $Q = J/\psi$ or Υ

From the mg5amcnlo folder: type ./bin/mg5_aMC

MG_aMC > MG_aMC > import model heft_onia MG_aMC > generate g g > Upsilon H

similar for J/ψ

$$\sigma(gg \rightarrow J/\psi + H) = 1.53^{+0.40}_{-0.29} \text{ fb}$$

 $\sigma(gg \rightarrow \Upsilon + H) = 91^{+23}_{-17} \text{ ab}$

alice.colpani serri.dokt@pw.edu.pl

 \star p_T distributions for J/ψ and Υ

alice.colpani serri.dokt@pw.edu.pl

Warsaw University of Technology

Cross-section results for quarkonia: parton showering

 p_T distribution of J/ψ in pp $\rightarrow J/\psi c \bar{c} + Pythia8$ showering

alice.colpani_serri.dokt@pw.edu.pl

Summary and outlook

Implementation of LO S-wave quarkonia in MG5: done \checkmark

- leptonium states also included (lepton-antilepton)
- final testing, cross-section results, parton showering
- Automating S-wave NRQCD and NRQED bound-state calculations within the MadGraph5 aMC@NLO framework in preparation 2508.xxxxx

Next steps: include * P-wave states * NLO extension JHEP 07 (2024), 050

Implementation of asymmetric collisions in MG5: done \checkmark

- hadron-hadron (AB) results PLB 866 (2025) 139554, 2501.14487
- photoproduction (eA) results + publication soon

Next: * All codes on online platform: https://nloaccess.in2p3.fr

Summary and outlook

Implementation of LO S-wave quarkonia in MG5: done \checkmark

- leptonium states also included (lepton-antilepton)
- final testing, cross-section results, parton showering
- Automating S-wave NRQCD and NRQED bound-state calculations within the MadGraph5 aMC@NLO framework in preparation 2508.xxxxx

Next steps: include * P-wave states * NLO extension JHEP 07 (2024), 050

Implementation of asymmetric collisions in MG5: done \checkmark

- hadron-hadron (AB) results PLB 866 (2025) 139554, 2501.14487
- photoproduction (eA) results + publication soon

Next: * All codes on online platform: https://nloaccess.in2p3.fr

Thank you!

Backup slides

alice.colpani serri.dokt@pw.edu.pl

EPS-HEP 2025, Marseille

Warsaw University of Technology

Many reasons, including:

- global data-theory comparisons
- physics cases for future experimental facilities
- global NRQCD fits

Matrix element/event generators publicly available (↔ interfacing of e.g. HERWIG or PYTHIA with e.g. MG5_aMC)

facilitates complete computation

- \checkmark versatility and enhanced physics simulation capabilities
- integration complexity, computational overhead, code compatibility and increased learning requirements

□ Implementation of quarkonia in MadGraph5_aMC@NLO at LO → Single and multiple S-wave inclusive quarkonium production

- Colour projectors
- Spin projectors
- Interface
- Phase space adaptation

 \square Extensions to states with leading P-wave Fock states LO implementation $\longrightarrow \square$ NLO in the easiest way possible!

 $\Box \text{ TMD factorisation also to be implemented}$ $\hookrightarrow \text{ for example gg} \rightarrow \text{di-} J/\psi \qquad (... \text{ not only for quarkonia})$

Colour projectors $\mathbb{P}_{C}(1)$

Quarkonium in the quantum state $n \rightarrow$ colour singlet or octet?

$$\mathbb{P}_1 = \delta_{ij} / \sqrt{N_c}$$
$$\mathbb{P}_8 = \sqrt{2} t_{ij}^c$$

• Example: $gg \rightarrow c\bar{c}$ 3 diagrams at LO

Colour projectors $\mathbb{P}_{\mathcal{C}}(2)$

(A)
$$\sim (t^a_{ik}t^b_{kl}) = (t^at^b)_{il} \longrightarrow \text{we set } (t^at^b)_{il} = c1$$

(B) $\sim (t^b_{ik}t^a_{kl}) = (t^bt^a)_{il} \longrightarrow \text{we set } (t^bt^a)_{il} = c2$
 $\hookrightarrow \text{ open } c\bar{c} \text{ colour basis of dim } = 2$

Colour projectors \mathbb{P}_C (3)

$$(\mathbf{C}) \sim f^{abc}(t_{il}^{c}) = (t^{a}t^{b})_{il} - (t^{b}t^{a})_{il}$$

= $c1 - c2$
 $c1c1^{\dagger} = (t^{a}t^{b})_{il}(t^{b}t^{a})_{il} = \operatorname{Tr}(t^{a}t^{b}t^{b}t^{a}) = \frac{16}{3}$
:
 $\longrightarrow \operatorname{colour\ matrix:} \begin{pmatrix} c1c1^{\dagger} & c1c2^{\dagger} \\ c2c1^{\dagger} & c2c2^{\dagger} \end{pmatrix}$

alice.colpani serri.dokt@pw.edu.pl

Colour projectors \mathbb{P}_C (4)

Apply colour projectors: $\mathbb{P}_1 = \delta^{il}$ and $\mathbb{P}_8 = t_{il}^c$

• Colour singlet:

$$(t^a t^b)_{il} \delta^{il} = \operatorname{Tr}(t^a t^b) \tag{A}$$

$$(t^b t^a)_{il} \delta^{il} = \mathsf{Tr}(t^b t^a) \tag{B}$$

• Colour octet:

$$\begin{aligned} & (t^{a}t^{b})_{il}t^{c}_{il} &= \operatorname{Tr}(t^{a}t^{b}t^{c}) = \frac{1}{4}(d^{abc} + if^{abc}) & (1) \\ & (t^{b}t^{a})_{il}t^{c}_{il} &= \operatorname{Tr}(t^{b}t^{a}t^{c}) = \frac{1}{4}(d^{bac} + if^{bac}) & (2) \end{aligned}$$

The amplitude will be given by the sum of the three contributions

$$\mathcal{A} = \mathcal{A}(\mathbf{A}) + \mathcal{A}(\mathbf{B}) + \mathcal{A}(\mathbf{C})$$

EPS-HEP 2025. Marseille

7 / 14

Colour projectors for m colour singlet and colour octet quarkonia production and associated production implemented \checkmark

Metacode: quarkonium formalism implemented via extension of python files which produce fortran code \rightarrow numerical manipulations

In /mg5amcnlo/madgraph/core

- color_algebra.py
- color_amp.py
- helas_objects.py

Spin projectors \mathbb{P}_S implementation

Quarkonium in the quantum state $n \rightarrow$ spin singlet or triplet?

• Considering $a(k_1)b(k_2) \rightarrow Q(k_3)\overline{Q}(k_4)$: JHEP 07 (2024), 050 $\mathcal{A}(r) = \overline{u}_{\lambda_Q}(k_3)\Gamma(r)v_{\lambda_{\overline{Q}}}(k_4)$

• Apply colour projector:
$$\mathcal{A}_{\{C\}}(r) = \sum_{c_3, c_4} \mathbb{P}_C \mathcal{A}(r)$$

• Apply spin projector: $\mathcal{A}_{\{C,S\}}(r) = \sum_{\lambda_Q,\lambda_{\bar{Q}}} \mathbb{P}_{S}\mathcal{A}_{\{C\}}(r)$

$$\mathbb{P}_{S} = \frac{\bar{v}_{\lambda_{\bar{Q}}}(k_{4})\Gamma_{S}u_{\lambda_{Q}}(k_{3})}{2\sqrt{2m_{Q}m_{\bar{Q}}}} \qquad S = 0, \Gamma_{S} = \gamma_{5}; 1, \Gamma_{S} = \notin(K)$$

Declaration of new effective spinors in:

- /mg5amcnlo/aloha/template_files/aloha_functions.f
- /mg5amcnlo/madgraph/core/helas_objects.py

Python: calls template_files \rightarrow matrix_i.f files

alice.colpani_serri.dokt@pw.edu.pl

Amplitudes organised into colour basis JAMPs

$$\mathcal{A} = \sum_{i} A_{i} \stackrel{\text{example}}{=} A(\mathbf{A}) + A(\mathbf{B}) + A(\mathbf{C})$$
$$A(\mathbf{A}) = c1A_{1} \qquad A(\mathbf{B}) = c2A_{2} \qquad A(\mathbf{C}) = c1A_{31} - c2A_{32}$$
$$\frac{\text{JAMP decomposition}}{\text{JAMP}_{1}} \quad = A_{1} + A_{31} \propto c1$$
$$\text{JAMP}_{2} = A_{2} - A_{32} \propto c2$$

$$|\mathcal{A}|^{2} = \sum_{i,j=1,2} \mathsf{JAMP}_{i}^{*} \langle c_{i} | c_{j} \rangle \mathsf{JAMP}_{j}$$

(Depends on spin projectors - constructed from helas routines) Efficiency: large number of Feynman diagrams possible...

...but colour basis much smaller!

New parts in the code: search # ONIA

GitHub: release **onia** branch of MG5 version 3.x

alice.colpani serri.dokt@pw.edu.pl

EPS-HEP 2025, Marseille

Warsaw University of Technology

Currently in MadGraph5 (symmetric AA collisions):

$$\sigma(AA \to X) = \sum_{i,j} \int dx_i dx_j f_i^A(x_i, \mu_F; LHAID) f_j^A(x_j, \mu_F; LHAID) \hat{\sigma}_{(ij \to X)}$$

alice.colpani serri.dokt@pw.edu.pl

Currently in MadGraph5 (symmetric AA collisions):

$$\sigma(AA \to X) = \sum_{i,j} \int dx_i dx_j f_i^A(x_i, \mu_F; \text{LHAID}) f_j^A(x_j, \mu_F; \text{LHAID}) \hat{\sigma}_{(ij \to X)}$$

alice.colpani serri.dokt@pw.edu.pl

Currently in MadGraph5 (symmetric AA collisions):

$$\sigma(AA \to X) = \sum_{i,j} \int dx_i dx_j f_i^A(x_i, \mu_F; LHAID) f_j^A(x_j, \mu_F; LHAID) \hat{\sigma}_{(ij \to X)}$$

For asymmetric collisions (hadron-hadron AB):

$$\sigma(AB \to X) = \sum_{i,j} \int dx_i dx_j f_i^A(x_i, \mu_F; LHAID1) f_j^B(x_j, \mu_F; LHAID2) \hat{\sigma}_{(ij \to X)}$$

↔ work done by C. Flore, D. Kikoła, A. Kusina, J-P. Lansberg, O. Mattelaer and A. Safronov

Currently in MadGraph5 (symmetric AA collisions):

$$\sigma(AA \to X) = \sum_{i,j} \int dx_i dx_j f_i^A(x_i, \mu_F; LHAID) f_j^A(x_j, \mu_F; LHAID) \hat{\sigma}_{(ij \to X)}$$

For asymmetric collisions (hadron-hadron AB):

$$\sigma(AB \to X) = \sum_{i,j} \int dx_i dx_j f_i^A(x_i, \mu_F; LHAID1) f_j^B(x_j, \mu_F; LHAID2) \hat{\sigma}_{(ij \to X)}$$

↔ work done by C. Flore, D. Kikoła, A. Kusina, J-P. Lansberg, O. Mattelaer and A. Safronov

For asymmetric collisions (photoproduction eA):

$$\sigma(eA \rightarrow X) = \sum_{j} \int dx_{\gamma} dx_{j} f_{\gamma}^{e}(x_{\gamma}, Q_{\max}^{2}) f_{j}^{A}(x_{j}, \mu_{F}; \text{LHAID}) \hat{\sigma}_{(\gamma_{j} \rightarrow X)}$$

↔ work done by C. Flore, D. Kikoła, J-P. Lansberg, O. Mattelaer and L. Manna

alice.colpani_serri.dokt@pw.edu.pl

EPS-HEP 2025, Marseille

Warsaw University of Technology

Asymmetric collisions (hadron-hadron AB)

Automated NLO calculations for asymmetric hadron-hadron collisions in MadGraph5_aMC@NLO 2501.14487

alice.colpani_serri.dokt@pw.edu.pl

Warsaw University of Technology

Automated NLO calculations for asymmetric hadron-hadron collisions in MadGraph5_aMC@NLO 2501.14487

Resolved photoproduction in MadGraph5_aMC@NLO 2410.17061

Asymmetric collisions (photoproduction eA)

Resolved photoproduction in MadGraph5_aMC@NLO 2410.17061

alice.colpani serri.dokt@pw.edu.pl

Warsaw University of Technology