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Precision physics
• The Standard Model (SM) of particle physics provides a very successful description of 

elementary particles and their interactions. 


• Data collected at LHC give us an incredible confirmation of the SM! 


• Despite its success, we know that the SM is not the ultimate theory of fundamental 
interactions.


• High precision experiments (like the high-luminosity phase at LHC) become crucial to 
test the validity of the SM.


• From a theoretical point of view, one of the more important aspects of increasing precision 
is adding higher order correction to physical observables.

2



Cross-section for hadron collisions
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• The cross-section for a QCD process involving hadrons in the initial state can be 
computed using the formula

σ(pA, pB) = ∑
a,b

∫
1

0
dxa fa/A(xa, μ2

F) ∫
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0
dxb fb/B(xb, μ2

F) ̂σa,b(xapA, xbpB, μ2
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Parton distribution functions 
(non-perturbative)

Partonic cross-section 
(perturbative)

• We are interested in computing higher-order QCD corrections of the cross-section. The partonic 
cross-section can be expanded in as a power series in the strong coupling constant .αs
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QCD at NNLO
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• The computation of higher-order terms in perturbation theory involves the evaluations of 
Feynman diagrams with a higher number of loops and/or legs. 


• In this talk I will focus on the problem of treating Infra-Red (IR) divergences that arise in 
diagrams that involve multiple emissions. The QCD NNLO correction for a processes with 

 jets at the Born level is given bym

σNNLO = ∫m+2
dσRR

m+2 Jm+2 + ∫m+1
dσRV

m+1Jm+1 + ∫m
dσVV

m Jm

• While the sum of these three contribution is finite for IR-safe observables, the three 
integrals are separately divergent in  dimensions in the limits in which one or more 
partons become unresolved. 


• We have to regularize the integrals if we want to perform numerical computations. This 
problem can be solved using local subtraction.

d = 4



Colorful subtraction formula
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• Colorful subtraction[Del Duca, Somogyi, Trocsanyi]: the idea is to construct local counterterms that have the 
same IR behavior as the real matrix elements. 


• This is done exploiting well-known limits of QCD amplitudes in which one or more partons 
become unresolved. 


• In the Colorful method, the NNLO cross-section for an observable  is regularized asJ



Role of the counterterms
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• Each counterterm is defined to regularize specific limits

[From F. Tramontano 
slides of HP2 2024]



Construction of the counterterms
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• The counterterms are constructed following three basic principles: 


1. They coincide with the QCD matrix elements in the IR limits.


2. They rely on momentum mappings such that the phase space factorizes. 


3. The overlaps of singly and doubly unresolved limits is treated in a process-independent 
way.


• The IR limits of the QCD matrix elements cannot be directly used as counterterms, since 
they are well-defined only in the strict IR regions. Their definition has to be carefully 
extended over the whole phase space.



Features of the subtraction
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• Once the counterterms are subtracted from the cross-section, each line of the subtraction 
formula is finite in  dimensions and therefore can be integrated numerically in a 
computer code.


• To preserve the correct result, the counterterms have to be added back integrated over the 
radiation phase space.


• The integration is performed analytically up to the required order in . This gives to our 
method a strong numerical stability. 


• The integration of the counterterms  and  is one of the most challenging tasks for a 
practical implementation of the subtraction method.


• Given the universal nature of the counterterms, their integration can be performed once 
and for all, and the results can be applied to different processes. 

d = 4
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 counterterm A2
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• The counterterm  regularizes the doubly-unresolved limits of matrix elements with two 
extra emissions. 


• Its definition relies on the double and triple collinear splitting kernels, and double soft 
eikonal factors.

A2



 counterterm integration recipeA2

10

For each counterterm, sort all the denominators into integral 
topologies. This requires heavy use of partial fractioning. 

For each topology, perform IBP reduction to master integrals 
(Reverse Unitarity[Anastasiou, Melnikov]).

Set up differential equations for master integrals.

Solve DEQs in canonical form. Boundary conditions are 
computed with direct integration.



Explicit example - triple collinear counterterm
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• The explicit expression of the triple collinear counterterm is

• This regulates the IR limit in which emitted partons with momenta  and  become 
collinear to initial-state parton with momentum .


• We have to integrate this counterterm over the factorized radiation phase space

pr ps
pa



Topologies for the triple collinear counterterm
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• We find that the denominators appearing in the triple collinear counterterm can be sorted 
into 20 topologies

And so on…

• For each family we perform an IBP reduction to MIs. In total, for the  counterterm, we 
have 42 MIs. The total number of integrated counterterms is 157. 

A2



Differential equations for MIs
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• The master integrals are computed as solutions of differential equations [Gehrmann, Remiddi] in 
the external variables  and . 


• The systems of differential equations have the form (  is a column vector containing the 
MIs for a given topology)

ξa ξb

⃗f

d ⃗f(ξa, ξb; ϵ) = ∑
i=a,b

Ai(ξa, ξb; ϵ)dξi
⃗f(ξa, ξb; ϵ)

• The system is solved in the canonical basis [Henn], i.e. in a new basis  such that the 
 dependence in the system is factorized 

⃗g = T ⃗f
ϵ

d ⃗g (ξa, ξb; ϵ) = ϵ ∑
i=a,b

Bi(ξa, ξb)dξi ⃗g (ξa, ξb; ϵ)

• The solutions are given in terms of multiple polylogarithms, but after an heavy usage of 
polylogs properties the MIs can be expressed in a very simple form involving only weight 2 
functions.



Integration of the  countertermA12
• The integration of the  counterterm is performed using direct integration. A12
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• Analytical integration seems hopeless… but actually it is not! This integral can be 
performed analytically after several steps of sector decomposition, partial fractioning 
and distributional expansions. 


• A dedicated tool for partial fractioning (LinApart)[Chargeishvili, Fekésházy, Somogyi, Van Thurenhout] has been 
developed to speed up the computation. 



NNLOCAL code
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• The subtraction method has been implemented in the public code NNLOCAL. 

• As validation of our code, we applied it 
to the computation of NNLO cross-
section for Higgs production in gluon 
fusion in the heavy-top limit with , 
i.e. in a theory without quarks.


• Since the counterterms are integrated 
analytically, we can check IR pole 
cancellation explicitly. 


• Our result for the total cross-section is 
validated against the code n3loxs[Baglio, 
Duhr, Mistlberger, Szafron]. We observe perfect 
agreement.

nf = 0



Differential results
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• Our code is fully 
differential in all particle 
momenta, therefore any 
infrared and collinear safe 
quantity can be computed 
using NNLOCAL. 


• We present results for the 
rapidity distribution of the 
Higgs boson at NNLO in 
the heavy-top theory with 

 flavors. nf = 0

ΔyH = 0.25 ΔyH = 0.1



Conclusions and outlook
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• One of the bottlenecks for the computation of NNLO cross-sections in proton-proton 
collisions is the presence of IR divergences, that need to be regularized if we want to build 
fully-differential tools. 


• One possibility is offered by the Colorful subtraction method!


• After defining suitable counterterms, we integrate them analytically in order to have explicit 
pole cancellation and robust numerical control. 


• We implemented our framework in the code NNLOCAL, and validated it using as benchmark 
the process  in the heavy-top theory with  quark flavor. 


• Many exciting future directions for this project: include quark channels as well as other 
color-singlet procesess in NNLOCAL, include jets in the final state, extensions to N3LO…

gg → H nf = 0


