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Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for oy

[Chien, Schwartz 2010]
which are about 10% smaller than for inclusive variables like the thrust or the mean jet

mass. This needs to be understood. It could be due to a difference in the behaviour of the These StUdieS Used, in paI‘TS, Only
perturbation series at higher orders. 2 5 % o f da ta binS'
[See also Dissertori et al 2007] 0.08 < p < 0.18

Prior to SCET, only NLL resummation possible
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Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for oy

[Chien, Schwartz 2010]
which are about 10% smaller than for inclusive variables like the thrust or the mean jet

mass. This needs to be understood. It could be due to a difference in the behaviour of the These StUdieS Used, in paI‘TS, Only
perturbation series at higher orders. 2 5 % o f da ta binS'
[See also Dissertori et al 2007] 0.08 < p < 0.18

Prior to SCET, only NLL resummation possible

(NSLL for thrust, C-parameter and HIM

With SCET « power corrections fyom first principles

L renormalon subkraction
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Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for oy

[Chien, Schwartz 2010]
which are about 10% smaller than for inclusive variables like the thrust or the mean jet

mass. This needs to be understood. It could be due to a difference in the behaviour of the These StUdieS Used, in paI‘TS, Only
perturbation series at higher orders. 2 5 % o f da ta binS'
[See also Dissertori et al 2007] 0.08 < p < 0.18

Prior to SCET, only NLL resummation possible

(NSLL for thrust, C-parameter and HIM

With SCET « power corrections fyom first principles

. renormalon subbraction
At that time, fixed-order O(a?) resulkts became available

Impossible to have consistent resulks for HIM!
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Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for oy

which are about 10% smaller than for inclusive variables like the thrust or the mean jet . .
These studies used, in parts, only

mass. This needs to be understood. It could be due to a difference in the behaviour of the

perturbation series at higher orders. 2 5% o f da ta binS:
[See also Dissertori et al 2007] 0.08 < p < 0.18
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Thrust at N3LL with Power Corrections and a Precision Global Fit for a(m,)
[Abbate, Fickinger, Hoang, Mateu, Stewart 2010]
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Precise Determination of o, from the C-parameter Distribution
[Hoang, Kolodrubetz, Mateu, Stewart 2015]
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Event shapes describe geometric
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Anatomy of dijet event

Event shapes describe geometric
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The HOM diskribution
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The HIM diskribution
Anatomy of dijet event
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Anatomy of dijet event
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The HIM distribution
Anatomy of dijet event
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The HOM diskribution
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HOM distribution — dijet
Dijet resummation @ N3LL: [AH. Hoang, VM, IW. Stewart & M.D.
Schwartz, 2026 ] along with {Lrsﬁmprmc‘iytﬁs power corrections

HIM obtained as marginalisation of dihemisphere mass distro

do d2G

Q%p
20 d — 020, 55 = 5) = 2Q*E(Q%p, O?
dIO Q /0 SdSldSQ (81 Q p? 82 8) Q (Q 107 Q p)

semii~cumulative



HOM distribution — dijet
Dijet resummation @ N3LL: [AH. Hoang, VM, IW. Stewart & M.D.

Schwartz, 2026 ] along with {irsﬁnprimciptes power corrections

HIM obtained as marginalisation of dihemisphere mass distro

do Q%p d=c
i et ) 2 d i 2 e — 9 2E # 2

semii~cumulative

Haodronic eross section obtained as 2D convolution:

do
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HOM distribution — dijet
Dijet resummation @ N3LL: [AH. Hoang, VM, IW. Stewart & M.D.
Schwarkz, 2025 ] along with {irs&grimciptes power corrections

HIM obtained as marginalisation of dihemisphere mass distro

do Q%p d%o
i et ) 2 d i 2 e — 9 2E # 2
dIO Q /0 Sd81d82 (81 Q 107 82 8) Q (Q 107 Q p)

semii—~cunulakive

Hadrownic cross seckion obtained as 2D convolution:

0



HOM distribution — dijet
Dijet resummation @ N3LL: [AH. Hoang, VM, IW. Stewart & M.D.
Schwartz, 2025 ] along with {E,rsEnprmci,pLespamer corrections
HOM obtained as marginalisation of dihem{sphere mass distro

do d2G

Q%p
Lo e d — )~ = s) = 20°=(0? ¢
dp Q /0 Sd81d82 (81 Q 107 82 8) Q (Q 107 Q p)

semii—~cunulakive

Hodronic cross secktion obtained as 2D convolution:

d
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HOM distribution — dijet
Dijet resummation @ N3LL: [AH. Hoang, VM, IW. Stewart & M.D.
Schwarkz, 2025 ] along with «fwsEnFrmc:,pLes pamer corrections

HOM obtained as marginalisation of cic,hamuspkere mass distro

do d2G

Q%p
20 d — 020, 55 = 5) = 2Q*E(Q%p, O?
d,O Q /0 SdSldSQ (31 Q P, S2 8) Q (Q paQ ,0)

semii—~cunulakive

Hodronic cross secktion obtained as 2D convolution:

d
@ ZQQ/dkldk--
dp

In tail region gives raise ko nown-trivial OPE in terms of

O = / dkq dko k¢ K F (K1, ko)

Leading power: SR (p - @)
dp dp @



HOM distribution — dijet factorization

Factorisation of singular partonic distribution is also 2D

2Es
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HOM distribution — dijet factorization
Factorisation of sinqular partonic distribution is also 2D
1 deeas ' '
g0 d31d82 -/ . 2 i |
OO - - S




HOM distribution — dijet factorization

Factorisation of singular partonic distribution is also 2D

1 d%6., ‘ '
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tvolves one lhard factor ESSUCEIUREHENS and one foft function
We also include soft ERGIMMONISIPIACIONS




HOM distribution — dijet factorization
Factorisation of sihgutar partonic cii,st“rLbu&iov\ s also .213

I d2asmg

"y

Involves one hard factor, bwo jet functions and one soft function

We also include soft renormalon subtractions

RGE bebween different _ sums up large logs



HOM distribution — dijet factorization

Factorisation of singular partonic distribution is also 2D

2Es

00 dSldSQ

_H(Qnu)/dglde ( Q£1 QA(Rv :u)nu)

X J(SQ & Q 52 28 Q A(Ra :u)a :LL) 65(Rn“)(a(21 4 8(22 )-

Involves one hard factor, bwo jet functions and one soft function

We also include soft renormalon subbractions

RGE between different matrix elements sums up large Logs

Nomﬂgimbat logs in _mak’es Ehis nown-trivial
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Around symmetric Erijet Limik p — 1/3, distribution factorizes as

% [Bha&&o\cho\rja, Michel,
dO_Sh i HSh X Jl ® J2 ® J3 ® 51,2,3 Schwartz, Stewart, Zhang 2023]
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Thrust has right
shoulder cmtj

%, LO thrust or HIM

HIM has and
shoulders

0.330 0.332 0.334 0.336 0.338
X=TOrp

[Bhattacharya, Schwartz, Zhang 2022]

Around symmetric Erijet Limik p — 1/3, distribution factorizes as

% [Bha&&o\cho\rja, Michel,
dO_Sh i HSh X Jl ® J2 ® J3 ® 51,2,3 Schwartz, Stewart, Zhang 2023]

Matching between dijet, FO & shoulder writing full cross section as

d6 = [dbaij — d65 %] + [doen — d658] + dowo

Parametbrize 3-jet power correcktions as dosn _ dosn ( 0 %)

bl dp Q



Fit procedure
Use X° function including theoretical and experimental uncertainties
Experiment

38 Grey < Q < 207 Grey
(700 datapoints)

Minimal Overlap Model for
ssjs&ema&ac uncertainties
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Use X° function including theoretical and experimental uncertainties

Experimem&

38 GeV < @ < 207 GeV
(700 datapoints)

Minimal Overlap Model for
svsﬁema&c uhcertaintkies

exp __ ¢ stat)?2 . SysS Sys\ 2
O = 0;; (A7) + dp, p, min(A} , A )

Theorv

Fver& uncertainkies assessed wikh
renormalizakbion scale vartakiown
ot Graussian + kigki.j correlabed

flok random scan: §000 seks of 17
parameters, yielding theory &
uncertainty for each data-point T;

max min min
= 'CU’L' - xi Atheo - Ly — Xy
2

T — 5 = ;

theo <($Z - CE’L)(xj » a_jj)>

max

correlakion

T = 3)2) /(s — 75)?)



Use X° function including theoretical and experimental uncertainties

Experimem& T heorj

Fer& uncertainkies assessed wikh
renormalizakbion scale vartakiown
ot Graussian + kigki.j correlabed

38 GeV < @ < 207 GeV
(700 datapoints)

Mininmal Overlap Model for flok random scan: §000 seks of 17
systematic uncertainties parameters, yielding theory &

uncertainty for each data-point T;

exp _ stat\)2 . SAS Sys\ 2

0 = 0ij(A7™)" + 0p, p;min(A;”", AF”) .

wmax + pn N pmax _ xmin

— 7 /A At eo __ 1 7
(]

T — 5 = ;

theo <($Z - f’é)(xj » a_jj)>

correlakion

T = 3)2) /(s — 75)?)

tokal covariance makrix N

tot __ _exp theo A theo ,.theo
0i; =0, + A Aj Tii =



ik resulks — Fixed Order

a

g <p<03 for different a

Resulks for a5 using fit range

Apeak = Peak position

T I T
1
— Fixed Orderl+ O

high-sensitivity to fit range

large fit uncertainty
Gapea | pick whichever value you Like!

8 10 12
Fit range lower bound on Qp (GeV)

" Mokl | omp) [ trew | 0f | 6 |8 | x/dot | 0f(GeV] | 64[Gev) |
o5 Lios [oooz01s|

Fixed Order 2D 0.1166 = 0.0034 | +0.0014 | +=0.0027



Fik resulks — cl;j@.% resummoaktion

Resulks for a; using fit range % <p<03 for different a

Apeak = Peak position

Low-sensitivity to fit range

small fik uncertainty

a < [Sapeaka 6apeak]

daka pre_{ers @ >0

4 6 8. 0 0 B |
Fit range lower bound p@Q (GeV) i @“Pet&{d btﬂ Eheerj

/ot | 95 [GeV] | 61 [Gev

Fixed Order 2D 0.1166 +=0.0034 | +£0.0014 | +£0.0027 +0.0015 | 1.108 |/ 0.06 +=0.13
FO + dijet 2D 0.1148 +0.0018 | £0.0010 | £0.0014 +0.0004 | 1.055 || 0.53 +0.09



Fik resulks — cli'{}(a.% + shoulder resumwmwakion

Resulks for a; using fit range % <p<03 for different a

peak = peak position

— FO (2D) |
|
— FO o dij (2D)

Low-sensitivity to fit range

— FO @ dij @ sh (3D)

small fik uncertainty

i . - ‘h a < [Sapeaka 6apeak]

apent . 6. daka pr@f@.rs Q19 >0
as ex!aet:&ad bv Eheorj

Fit range lower bound on p@ (GeV)

[ dell [ otm) [wwen| ® | o [wowe [y mioe) | 6G]

Fixed Order 2D 0.1166 = 0.0034 | £0.0014 | £0. 0027 +0.0015 0. 06 +0.13

FO + dijet 2D 0.1148 £ 0.0018 | +0.0010 | +0.0014 - +0.0004 . 0.53 £0.09 -
FO + dijet 3D 0.1156 = 0.0024 | £0.0010 | £0.0021 | =0.0004 | +=0.0007 . 0.524+0.08 | 0.53+0.13
FO + dijet + shoulder 3D | 0.1145 +0.0020 | +0.0009 | £0.0018 | +0.0001 | £0.0003 . 0.57 £0.09 | —0.50 £0.17




Fik resulks — cl,;j@_& + shoulder resunmakion
a

5 <p<03 for different a

Resulks for a5 using fit range

Apeak = Peak position

— FO (2D) .
|

— FO o dij (2D)

— FO @ dij @ sh (3D)
|

|
|
| Q¢ (FO 2D)

|

| Q7 (FO @ dij 3D)

: Qf (FO @ dij @ sh 3D)
| — _ — _—

|

|

|

|

k

Apea

Fixed Order 2D 0.1166 £ 0.0034 | £0.0014 | £0.0027 +0.0015 0.06 £0.13
FO + dijet 2D 0.1148 £ 0.0018 | +0.0010 | +0.0014 +0.0004 0.53 £0.09 - bj &keorj
FO + dijet 3D 0.1156 = 0.0024 | £0.0010 | £0.0021 | =0.0004 | +=0.0007 0.524+0.08 | 0.53+0.13

| Model | aumg) [thiexp | 9 | € |fitrange | x?/dof | Of[GeV] | ©1[GeV] | HAN expected

FO + dijet + shoulder 3D | 0.1145 +0.0020 | +0.0009 | £0.0018 | +0.0001 | £0.0003 0.57 £0.09 | —0.50 £0.17



Sum mMary

o Innovations of our analysis

- Improved dijet/OPE and trijet/shoulder region

- Inclusion of theory correlations in fiks

o Dijeb resumnation crucial for robust resulks

o Shoulder resummation crucial for 6; <0

campa&ibiﬁ. wikth bhrust and C-parameter

tzmmparisan
ko daka

theory
ALEPH
OPAL
L3
DELPHI

o, =0.114570-00%8 2 /dof = 1.04
FO®dijésh3D) rm—m—m——

a, =0.11565:992 v 2 /dof = 1.05
PDG avg

o, =0.1148700018 2 /dof =1.06 2023

oy =0.116670008, x?/dof =1.11
FO (2D)

0.110 0.112 0.114 0.116 0.118 0.120
as(mZ)



