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Introduction

® o most important parameter in QCD — should be determined with high precision.

® Qur strategy — comparing the QCD Static Energy obtained in lattice simulations
with highly accurate perturbative results.

VQcp o< as — very sensitive.

® \We improve this method building on previous analyses [PRD, 86 (2012) 114031,
PRD, 90 (2020) 074038] in several ways:

- Leading renormalon subtraction — short-distance scheme (MSR).
- Resummation of associated large logs with R-evolution.

- Profiles functions for the renormalization scales.

We can fit (for the first time) lattice data up to r ~ 1fm — E ~ 200 MeV.
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Static Energy and Static Potential

® The Static Energy is defined as the potential energy between an infinitely massive quark
anti-quark pair at a distance r, corrected by ultra-soft effects. In pPNRQCD

Es(r) = Vi(r, i) + bus(r, p).
® The Static Potential is the basic object to understand the behavior of non-relativistic QCD:

VS(ra ,U,) = VSSOft(rvlj’) + Vsus(rvu)a

VEor(r) = —Cp asfu) 23: [as(ﬂ)}izi;aij log/ (rpue).

- 4
i=0

o Coefficients ajp are known to four loops. ajj>o obtained with RGE. as(p) = ozg"“:?’)(u).

® V/, known in perturbation theory up to O(a?) — ultra-soft contributions show up for the

first time
_ GiCr ad(w)

Vsus(rvﬁ") = 127 P

log (ure®).
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Ultra-soft term and resummation

® /i, appears both in the ultrasoft static potential V** and in the matrix element J,s

C3Cr ol _5/6
Sus (Hhs, pus) = — AZF O (k1s) s (pus) log [CAas (us)e ]

127 r fhust
C3Cr a3 «
VES(r, sy pus) = — f‘27r = (115)ts(1us) log (pusre™®)
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Ultra-soft term and resummation

® (1,5 appears both in the ultrasoft static potential V** and in the matrix element J,s

; 3 —5/6
Ous (s, fus) = — CACF a5 (is) s (pus) log [CAQS (us) e ]

127 r Husr
C3Crad «
VI s ) = — A ) OSAS) 1o ey

® One can see the necessity of resummation with these two (incompatible) choices
that minimize logs.

- fus ~ «s/r [use this one: no large logs in dys]

- pys ~ 1/r [discarded: sum up logs in V9]
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Ultra-soft term and resummation

® (1,5 appears both in the ultrasoft static potential V** and in the matrix element J,s

ACF a3 ~5/6
s (s tus) = — A @5 (1) 02 (js) oo [CAaS (us) e ]

127 r Uus!
C3Cr o3(us)a A
VER(r, ps, prus) = = 75— S(Ms)r <045) 105 pugere)

® One can see the necessity of resummation with these two (incompatible) choices
that minimize logs.

- Hys ~ as/r [use this one: no large logs in dys]

- pys ~ 1/r [discarded: sum up logs in V]
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Ultra-soft term and resummation

® Resummation is known up to N3LL (a2+"In"as)[PRD 80, 034016 (2009)].
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Ultra-soft term and resummation

® Resummation is known up to N3LL (a2+"In"as)[PRD 80, 034016 (2009)].

e \We perform resummation using pPNRQCD RGE

3
PRiZ ((rl;tusm) _ 72;—:? ocs7(ru) [1 +B (u)} o (us) {1 + 3“5 (us) [al,o + 200 log (rusewf)] } .
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Ultra-soft term and resummation

® Resummation is known up to N3LL (a2+"In"as)[PRD 80, 034016 (2009)].

e \We perform resummation using pPNRQCD RGE

pWVelrus,p) __2CrGy 0‘57(:‘) [1+ B (“)} a? (n s){1+3a5 (1) [a1.0 + 260 log (rusewf)]}.

du 24r

® Integrating from p = ps ~ 1/r to = pys ~ as/r
Vs (ra ,u*vaus) :Vs (r,us) + Uus (rvﬂsa Nus) 5

zﬂcr az (us) { (1 + 3as£f7,:s) 310 + 260 log (%GWE)]) log |:O;9((/;u)):|

(- ) [octi) _ ocli)

Uas (1, s, fus) =
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Ultra-soft term and resummation

® Resummation is known up to N3LL (a2*"In"as)[PRD 80, 034016 (2009)].

e We perform resummation using pNRQCD RGE

PR (;’M’LS’“) = _22,:”@% aST(rH) [1 +B (“)} 2 (1) {1 - 3a5 (“5) [al,o + 2030 log (ruseWE)] } '

® Replacing in the static energy — no large logs for ps ~ 1/r and s ~ as/r

EL(r) =V (1, 1s) + C3Cr a2 (us) {2 (B_ 61> {as (ts) @ (us)}

12 r Bo 43, - !
2 i ; S us
+ %o (1 +3¢ 4(7/: ) [a1,0 + 250 |0g(ruse"/f)]) log [O;s((;:ts))]
s us C s s _5/6 S S
« (: ) log [ A% E,/;u)se :| o 7(:‘ ) |Og(ruse’)’E)} )
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R-improvement, renormalon substractions

® Static energy suffers from an r-independant O(Aqcp) renormalon ambiguity.

6/19



R-improvement, renormalon substractions

® Static energy suffers from an r-independant O(Aqcp) renormalon ambiguity.

® |t is equals to —2 x the ambiguity of the pole mass.

6/19



R-improvement, renormalon substractions

® Static energy suffers from an r-independant O(Aqcp) renormalon ambiguity.

® |t is equals to —2 x the ambiguity of the pole mass.

Eqqlr) = 2mz>°|e + Es(r) renormalon-free
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R-improvement, renormalon substractions

® Static energy suffers from an r-independant O(Aqcp) renormalon ambiguity.

® |t is equals to —2 x the ambiguity of the pole mass.

EQa(f) = QmE,OIE + Ei(r) renormalon-free

® To cancel the renormalon we need a short-distance mass scheme — MSR mass [JHEP 04
(2018) 003]

ngSR(,u, R) = mf;'e — mgSR(R) = RZéR [aS(R)}
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R-improvement, renormalon substractions

® Static energy suffers from an r-independant O(Aqcp) renormalon ambiguity.
® |t is equals to —2 x the ambiguity of the pole mass.
Eqg(r) =2m%"® + E,(r)  renormalon-free

® To cancel the renormalon we need a short-distance mass scheme — MSR mass [JHEP 04
(2018) 003]

Sm MSR(M) R) = m;()?ole _ MSR RZ(SR |:Oés :l

- RZ {O‘S ] Za ¢ (%):
® New type of large logs — resummation using R-evolution [PRL, 101 (2008) 151602].
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Previous works

® To see the advantages of R-evolution we go back to the first work that used the
static energy to obtain as [PRD, 86 (2012) 114031]

Es(r) = Vs(ra,u‘S?,uus) + 6U5(r7,ushuus) + RS(p),

b Vs(r7/’LS>MUS) — ln(r/’(’US)
* RS(p) — In(p/tius)

® There is no right choice for s — fits only posible for small values of r.

® The force was used in [PRD, 100 (2019) 114511]
dEs(r)
Fi(r) =
+(r) dr

Force avoids explicit substraction.

Using fully canonical scales ~ 1/r — limits fit-range to r ~ 0.076 fm.
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R-improvement, renormalon substractions

The next goal is to obtain a renormalon-free potential.
Eqg(r) = 2mQ®™ (Ro) + 26me™™ (Ro, 1) + Ex(r) = 2mg™™ (Ro) + V"™ (r, 11, Ro).
® We sum up large logs of u/Ro.
5mg ™ (Ro) = dmg " (Ro) + dmg > (R) — dmg " (R)
= Smy(R) + my S (R) — my*" (Ro)
= omy R (R) + AM™ (R, Ry).

AMSR (R Ry): solution to MSR mass R-RGE — sums up logs of R/Ro.
® We have dmy°®(R) ~ log(1/R). By choosing ;1 = R — no large logs.

We define the R-improved static potential:
VISR (1, 1, Ro) =Va(r, ) + 28V (R, ) + 28N (R, Ry) .
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Subtraction schemes: RS scheme

® |t is defined from the pole mass by subtracting its leading asymptotic behavior
[JHEP 06 (2001) 022].

m%"® — mg3(R) = 5o R’V1/2Z{ﬁoas ] de (1+b1) Ly

® Ny is the normalization of the leading renormalon

n J
(n) Bo Sk _ ~R "N ~
N1/2_%Z N Sk—Zw (— )b Jlk7
k=0 (1 + bl) . k=0 =0
® Ny, depends on A, it reshuffles higher perturbative orders. We vary it to estimate
Ny (similar to scale variation).

® ) is also used to estimate R-evolution uncertainty.
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Dependence on )\

e Mape=d) AMSR(2GeV)
77777777777777 N B AT LI S e B L 4
0.535F B b 1
ANy, —0426-— 3
0.530F b [ ]
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0.525F S ] ~027 ]
0320 N PAT -028F Amid ]
0.515F B F ]
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[JHEP 04 (2018) 003] A

® The canonical value of A = 1 is clearly biased.

® |t is necessary to vary it to estimate the uncertainty coming from higher order missing terms.
® We pick Amig = 1.784 and vary it from 1.5 to 2.1.
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Profiles

® The static potential depends on log(rus) — should be small.
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Profiles

® The static potential depends on log(rus) — should be small.
® Choosing s ~ 1/r doesn't always work — s < Agep for r 2 0.2 fm ~ 1 GeV.

® Solution: use profile functions that ensure series convergence:

52 b ) £ forr =0
Hs = =) +—-—+a*+p—a=4"
r r uo for r = oo

with € = O(1) and 9 ~ 1 GeV. This makes sure the series is stable and convergent
over the entire spectrum.
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Profiles

Renormalization scale profile
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Fits

Lattice QCD data from HotQCD. (2 + 1) flavor simulations. We have 9 lattices
sets with 2512 points between all of them.

The static potential is defined up to an additive constant — each experiment n has
a different offset A,,.

Minimization of x? function.

N, . 2
exp N (V:?rt—i-/\n _ V:);p)

exp
n,i

We can marginalize analytically first with respect to the offsets.

(Vai—Ve?) (vi-ve)]?
x> . 2 Tz ) Z (Vi _ Vie><p)2 Zn,i o2
aA” Zi U%[_ n,i 01'2 Zn,i 0%2

We perform the fit with 500 random profiles.
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Potential
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rmaz[fm]
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Study of the dataset

Fit for r € [Mnin, fmax|- fdata > 0.023 fm.

—— Ty = 0.06 fm ]

Tmin = 0.05 fm 1

T T ] T T T I T T T I T
i Imax default
0.32F L
—~ I 1
£
= 030 ,
=, - , .
d - 1
- — = 002fm
0.28 Pin = 0.03 fm
I —— rin = 0.04 fm
1 L l L 1 1 I 1 1 1 I 1
0.2 0.4 0.6
Tmaz [fm]

15/19



Order-by-order agreement
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Variation of profiles parameters one at a time

[

:— | |#0

‘ neoso-150 " _
ol

2
b
Hs = <§)+r+32+,uo—3

£ ry=-0.30 > 030
L &= 050200 3 ]
[ 3= 050— 200

[ k= 050200 :

2
ﬂ) +9+32+R0—a
r r

E Ro= 090 110 ] CA
p AT 102 1K 1 tus = ri— {psas (1) — poas (o) } + po-
o0 o000 0000 0002 0004
Aay
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Preliminary results

e We perform a fit with r € [0.03,0.5] fm. Error includes: perturbative (dominant),
lattice (negligible) and dataset dependence (also negligible).

All data — "= (m,) = 0.3107 & 0.00001j5¢tice = 0.053pere & 0.0001
!
al"=3) (m,) = 0.311 + 0.053
ol (mz) = 0.1175 + 0.0007

e &£ 0.0007,

Competitive with the w.a. ozgS)(mz) = 0.1180 = 0.0009 and compatible at 0.5-¢
level. Comparing with previous analyses:

"= (my) = 0.1166070-09529 [PRD 100 (2019) 11]
al"%(mz) = 0.1181 + 0.0009 [JHEP 09 (2020) 016]
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Conclusions

® Used the static energy to determine «s, building (and improving) on previous
analyses.

® Performed ultra-soft large-log resummation up to N3LL.
® Employed the MSR mass and R-evolution to improve the static potential.

® Designed profile functions to increase the validity of the potential up to r ~ 1fm ~
200 MeV — lowest value reached.

e Carried out fits to lattice data to obtain a very competitive result for as.
al"=)(mz) = 0.1175 +0.0007 [preliminary]
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Renormalon substractions

Vpolc

static
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[Eur. Phys. J. C 79 (2019) 4, 323]

[Eur. Phys. J. C 79 (2019) 4, 323]
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Force-type subtractions

® Integrating the Force is equal to perform R-evolution.
® The renormalon doesn't depend on r — we can subtract the potential at ry.
EF (r,n) = Er) — E.(n) = E(r) — E.(n) + [E- (n) — Ex (r0)]
_E()—E (n)+ / AF'F (F) = E(r) — B (n) + Ar (o, 1)
[PRD, 90(7), 074038] chooses rn = r — onri)y Afr left.

® Connecting with R-evolution, the substraction term is (choosing R =1/r and u = R):

— <F _ 1 cors (1 _ aS(R) = . o~ = aS(R) i F
Es(n) = 0lon(R) = 5 V& ( 5 ) = —21CrR o daik=R> | o
i=1 j=0 i=1

® We can express Ar as an R-evolution integral:

1 S0
’YSFOft(R) = _5 |:r2FS ft(r):| r:l/R’
) nodr 5 1 1/n
Asoft , :/ ! F:oft / — 7/ dR/ :; R/ .
£ (ro,n) . (r’)2 [(r) (r )] 5 U ot ft( )

It inherits the infrared sensitivity of the Static Potential.
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as dependence on &
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