
A precise αs determination from the
R-improved QCD Static Energy
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Introduction
• αs most important parameter in QCD → should be determined with high precision.

• Our strategy → comparing the QCD Static Energy obtained in lattice simulations
with highly accurate perturbative results.

• VQCD ∝ αs → very sensitive.

• We improve this method building on previous analyses [PRD, 86 (2012) 114031,
PRD, 90 (2020) 074038] in several ways:

- Leading renormalon subtraction → short-distance scheme (MSR).

- Resummation of associated large logs with R-evolution.

- Profiles functions for the renormalization scales.

• We can fit (for the first time) lattice data up to r ∼ 1 fm → E ∼ 200 MeV.
2 / 19



Static Energy and Static Potential
• The Static Energy is defined as the potential energy between an infinitely massive quark

anti-quark pair at a distance r , corrected by ultra-soft effects. In pNRQCD

Es(r) = Vs(r , µ) + δus(r , µ).

• The Static Potential is the basic object to understand the behavior of non-relativistic QCD:

Vs(r , µ) = V soft
s (r , µ) + V us

s (r , µ),

V soft
s (r) = −CF

αs(µ)

r

3∑
i=0

[
αs(µ)

4π

]i i∑
j=0

aij log
j (rµeγE ) .

• Coefficients ai0 are known to four loops. aij≥0 obtained with RGE. αs(µ) = α
(nℓ=3)
s (µ).

• Vs known in perturbation theory up to O(α4
s ) → ultra-soft contributions show up for the

first time

V us
s (r , µ) = −C 3

ACF

12π

α4
s (µ)

r
log (µreγE ) .
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Ultra-soft term and resummation

• µus appears both in the ultrasoft static potential V us
s and in the matrix element δus

δus (µs , µus) = −
C 3
ACF

12π

α3
s (µs)αs (µus)

r
log

[
CAαs (µs) e

−5/6

µusr

]

V us
s (r , µs , µus) = −

C 3
ACF

12π

α3
s (µs)αs(µus)

r
log (µusre

γE )

• One can see the necessity of resummation with these two (incompatible) choices
that minimize logs.

- µus ∼ αs/r [use this one: no large logs in δus]

- µus ∼ 1/r [discarded: sum up logs in V us
s ]
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Ultra-soft term and resummation

• Resummation is known up to N3LL (α4+n
s lnnαs)[PRD 80, 034016 (2009)].

• We perform resummation using pNRQCD RGE

µ
dVs (r , µs , µ)

dµ
= −2CFC

3
A

24r

αs(µ)

π

[
1 + B

αs(µ)

π

]
α3
s (µs)

{
1 + 3

αs (µs)

4π

[
a1,0 + 2β0 log

(
rµse

γE
)]}

.

• Integrating from µ = µs ∼ 1/r to µ = µus ∼ αs/r

Vs (r , µs , µus) =Vs (r , µs) + Uus (r , µs , µus) ,

Uus (r , µs,, µus) =
C 3
ACF

6β0r
α3
s (µs)

{(
1 + 3

αs (µs)

4π
[a1,0 + 2β0 log (rµse

γE )]

)
log

[
αs (µus)

αs (µs)

]
+

(
B − β1

4β0

)[
αs (µus)

π
− αs (µs)

π

]}
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• Replacing in the static energy → no large logs for µs ∼ 1/r and µus ∼ αs/r

Es(r) =V soft
s (r , µs) +

C 3
ACF

12

α3
s (µs)

r

{
2

β0

(
B − β1

4β0

)[
αs (µus)

π
− αs (µs)

π

]
+

2

β0

(
1 + 3

αs (µs)

4π
[a1,0 + 2β0 log (rµse

γE )]

)
log

[
αs (µus)

αs (µs)

]
−αs (µus)

π
log

[
CAαs (µs) e

−5/6

rµus

]
− αs (µs)

π
log(rµse

γE )

}
.
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R-improvement, renormalon substractions

• Static energy suffers from an r -independant O(ΛQCD) renormalon ambiguity.

• It is equals to −2 × the ambiguity of the pole mass.

EQQ(r) = 2mpole
Q + Es(r) renormalon-free

• To cancel the renormalon we need a short-distance mass scheme → MSR mass [JHEP 04
(2018) 003]

δmMSR
Q (µ,R) ≡ mpole

Q −mMSR
Q (R) = R

∞∑
n=1

δRn

[
αs(R)

4π

]n

= R
∞∑
n=1

[
αs(µ)

4π

]n n−1∑
j=0

δRnj log
j
( µ
R

)
.

• New type of large logs → resummation using R-evolution [PRL, 101 (2008) 151602].
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Previous works

• To see the advantages of R-evolution we go back to the first work that used the
static energy to obtain αs [PRD, 86 (2012) 114031]

Es(r) = Vs(r , µs , µus) + δUS(r , µs , µus) + RS(ρ),

• Vs(r , µs , µus) → ln(rµus)
• RS(ρ) → ln(ρ/µus)

• There is no right choice for µus → fits only posible for small values of r .

• The force was used in [PRD, 100 (2019) 114511]

Fs(r) =
dEs(r)

dr

• Force avoids explicit substraction.

• Using fully canonical scales ∼ 1/r → limits fit-range to r ∼ 0.076 fm.
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R-improvement, renormalon substractions

• The next goal is to obtain a renormalon-free potential.

EQQ(r) = 2mMSR
Q (R0) + 2δmMSR

Q (R0, µ) + Es(r) ≡ 2mMSR
Q (R0) + VMSR

s (r , µ,R0).

• We sum up large logs of µ/R0.

δmMSR
Q (R0) = δmMSR

Q (R0) + δmMSR
Q (R)− δmMSR

Q (R)

= δmMSR
Q (R) +mMSR

Q (R)−mMSR
Q (R0)

= δmMSR
Q (R) + ∆MSR (R,R0).

• ∆MSR (R,R0): solution to MSR mass R-RGE → sums up logs of R/R0.

• We have δmMSR
Q (R) ∼ log(µ/R). By choosing µ = R → no large logs.

• We define the R-improved static potential:

VMSR
s (r , µ,R0) =Vs(r , µ) + 2δMSR(R, µ) + 2∆MSR (R,R0) .
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Subtraction schemes: RS scheme

• It is defined from the pole mass by subtracting its leading asymptotic behavior
[JHEP 06 (2001) 022].

mpole
Q −mRS

Q (R) =
2π

β0
RN1/2

∞∑
n=1

[
β0αs(R)

2π

]n ∞∑
ℓ=0

gℓ

(
1 + b̂1

)
n−1−ℓ

,

• N1/2 is the normalization of the leading renormalon

N
(n)
1/2 =

β0
2π

n∑
k=0

Sk(
1 + b̂1

)
k

Sk =

j∑
k=0

γ̃Rk

j−k∑
i=0

(−1)i b̃Ni g̃
N
j−i−k ,

• N1/2 depends on λ, it reshuffles higher perturbative orders. We vary it to estimate
N1/2 (similar to scale variation).

• λ is also used to estimate R-evolution uncertainty.
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Dependence on λ

[JHEP 04 (2018) 003]

• The canonical value of λ = 1 is clearly biased.

• It is necessary to vary it to estimate the uncertainty coming from higher order missing terms.

• We pick λmid = 1.784 and vary it from 1.5 to 2.1.
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Profiles

• The static potential depends on log(rµs) → should be small.

• Choosing µs ∼ 1/r doesn’t always work → µs < ΛQCD for r ≳ 0.2 fm ∼ 1 GeV.

• Solution: use profile functions that ensure series convergence:

µs =

√(
ξ

r

)2
+

b

r
+ a2 + µ0 − a =

{
ξ
r for r → 0

µ0 for r → ∞

with ξ = O(1) and µ0 ∼ 1GeV. This makes sure the series is stable and convergent
over the entire spectrum.
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Profiles
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Fits
• Lattice QCD data from HotQCD. (2 + 1) flavor simulations. We have 9 lattices
sets with 2512 points between all of them.

• The static potential is defined up to an additive constant → each experiment n has
a different offset An.

• Minimization of χ2 function.

χ2 =

Nexp∑
n=1

Ni∑
i=1

(
V pert
n,i + An − V exp

n,i

σexp
n,i

)2

.

• We can marginalize analytically first with respect to the offsets.

∂χ2

∂An
= 0 =⇒ Ãn = −

∑
i
(Vn,i−V exp

n,i )
σ2
n,i∑

i
1

σ2
n,i

=⇒ χ̃2 =
∑
n,i

(
Vi − V exp

i

)2
σ2
i

−

[∑
n,i

(Vi−V exp
i )

σ2
i

]2
∑

n,i
1
σ2
i

• We perform the fit with 500 random profiles.
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Potential
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Study of the dataset
Fit for r ∈ [rmin, rmax]. rdata ≥ 0.023 fm.
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Order-by-order agreement
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Variation of profiles parameters one at a time

µs =

√(
ξ

r

)2
+

b

r
+ a2 + µ0 − a

R =

√(
β

r

)2

+
b

r
+ a2 + R0 − a

µus = κ
CA

2
{µsαs (µ)− µ0αs (µ0)}+ µ0.
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Preliminary results

• We perform a fit with r ∈ [0.03, 0.5] fm. Error includes: perturbative (dominant),
lattice (negligible) and dataset dependence (also negligible).

All data → α
(nf =3)
s (mτ ) = 0.3107± 0.00001lattice ± 0.053pert ± 0.0001rmax ± 0.0007rmin

↓

α
(nf =3)
s (mτ ) = 0.311± 0.053

α
(nf =5)
s (mZ ) = 0.1175 ± 0.0007

Competitive with the w.a. α
(5)
s (mZ ) = 0.1180± 0.0009 and compatible at 0.5-σ

level. Comparing with previous analyses:

α
(nf =5)
s (mZ ) = 0.11660+0.00110

−0.00056 [PRD 100 (2019) 11]

α
(nf =5)
s (mZ ) = 0.1181± 0.0009 [JHEP 09 (2020) 016]
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Conclusions

• Used the static energy to determine αs , building (and improving) on previous
analyses.

• Performed ultra-soft large-log resummation up to N3LL.

• Employed the MSR mass and R-evolution to improve the static potential.

• Designed profile functions to increase the validity of the potential up to r ∼ 1 fm ∼
200 MeV → lowest value reached.

• Carried out fits to lattice data to obtain a very competitive result for αs .

α
(nf =5)
s (mZ ) = 0.1175± 0.0007 [preliminary]
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BACKUP
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Renormalon substractions

[Eur. Phys. J. C 79 (2019) 4, 323] [Eur. Phys. J. C 79 (2019) 4, 323]
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Force-type subtractions

• Integrating the Force is equal to perform R-evolution.

• The renormalon doesn’t depend on r → we can subtract the potential at r0.

EF
s (r , r0) ≡ Es(r)− Es (r0) = Es(r)− Es (r1) + [Es (r1)− Es (r0)]

= Es(r)− Es (r1) +

∫ r1

r0

dr ′Fs

(
r ′
)
≡ Es(r)− Es (r1) + ∆F (r0, r1)

• [PRD, 90(7), 074038] chooses r1 = r → only ∆F left.

• Connecting with R-evolution, the substraction term is (choosing R = 1/r1 and µ = R):

Es(r1) ≡ δFsoft(R) =
1

2
V soft

s

(
1

R

)
= −2πCFR

∑
i=1

[
αs(R)

4π

]i i−1∑
j=0

ai−1,jγ
j
E ≡ R

∑
i=1

[
αs(R)

4π

]i

δFi .

• We can express ∆F as an R-evolution integral:

γF
soft(R) = −1

2

[
r 2F soft

s (r)
]
r=1/R

,

∆soft
F (r0, r1) =

∫ r1

r0

dr ′

(r ′)2

[(
r ′
)2

F soft
s

(
r ′
)]

=
1

2

∫ 1/r1

1/r0

dR ′γF
soft

(
R ′) .

• It inherits the infrared sensitivity of the Static Potential.
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αs dependence on ξ
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