

Towards a combined α_s and m_t determination from a global PDF analysis

In collaboration with R. Ball, T. Sharma and R. Stegeman

Jaco ter Hoeve 07/07/2025

EPS-HEP CONFERENCE 07-11 JULY, 2025 PALAIS DU PHARO **MARSEILLE, FRANCE**

The top mass and α_{s}

The top mass m_t and the strong coupling α_s

- are key input to many (HL)-LHC processes
- are essential to stress test the SM
- show strong interplay with many BSM models
- hamper the unification of forces at the GUT scale
- determine the **stability** of the universe, 3σ requires $\delta m_t \sim 250 \,{\rm MeV}, \, \delta \alpha_s(M_Z) < 0.00025$

PDG:
$$m_t = 172.4 \pm 0.7 \text{ GeV}$$

 $\alpha_s = 0.1180 \pm 0.0009$

The top mass is correlated to the PDFs ...

... and so is α_s

Accounting for correlations

Uncertainties on α_s and m_t are **underestin** the PDFs

Fit a PDF at a **given** value of α_s to find χ^2

Uncertainties on α_s and m_t are **underestimated** when not fitted simultaneously with

Jointly optimise the PDFs and α_{s}

Accounting for correlations

Q: So why not include α_s directly as fit parameter?

A: requires running DGLAP repeatedly during optimisation...

Challenge: NNPDF works with precomputed grids at a given value of α_{c}

Solutions:

- 1. Correlated Replica Method compute χ^2 at each value of α_{s} for each replica...
- 2. Theory Covariance Method single fit only using an α_s , m_t theory covariance matrix in a Bayesian framework!

CRM: many fits needed!

0.1186	/
0.1184	10 0 000
0.1182	2.2.0
0.1180	
0.1178	
0.1176	

0.1192

Accounting for correlations

Q: So why not include α_s directly as fit parameter?

A: requires running DGLAP repeatedly during optimisation...

Challenge: NNPDF works with precomputed grids at a given value of α_s

Solutions:

1. Correlated Replica Method - compute χ^2 at each value of α_{s} for each replica...

2. Theory Covariance Method - single fit only using an α_{s} , m_{t} theory covariance matrix in a Bayesian framework! **N**

CRM: many fits needed!

0.1186	/
0.1184	10 0 000
0.1182	2.2.0
0.1180	
0.1178	
0.1176	

0.1192

0.1190

Theory covariance method

Can be **similarly** applied to α_s and m_t (or any other parameter!)

Ball, Pearson [2105.05114]

Bayesian framework: let the data inform our prior knowledge through nuisance parameters

Existing work

Jaco ter Hoeve

T. Cridge et al. (MSHT) [2306.14885]

[2407.00545]

S. Alekhin et al. (ABMP) $m_t = 170.2 \pm 0.7 \,\mathrm{GeV}$ $\alpha_{\rm s} = 0.1150 \pm 0.0009$

 $m_t = 173.0 \pm 0.6 \,\mathrm{GeV}$

Input to the fit

Experimental input

We benefit from the NNPDF4.0 global dataset, with in the top sector specifically

Experiment	\sqrt{s}	Variables	Channel	ℒ [fb-1]	Refs.
ATLAS	7, 8, 13	Total	_	4.6, 20.3, 139	[1406.5375], [2006.13
ATLAS	8	$m_{t\bar{t}}, y_{t\bar{t}}$	dilepton	4.6, 20.2	[1607.07281]
ATLAS	8	$y_t, y_{t\overline{t}}, p_T^t, m_{t\overline{t}}$	ℓ + jets	20.3	[1511.04716]
ATLAS	13	$m_{t\bar{t}}, y_{t\bar{t}}, (m_{t\bar{t}}, y_{t\bar{t}})$	hadronic	36.1	[<u>2006.09274]</u>
ATLAS	13	$y_t, y_{t\bar{t}}, p_T^t, m_{t\bar{t}}, (m_{t\bar{t}}, p_T^t), (y_t, p_T^t)$	ℓ + jets	36	[<u>1908.07305]</u>
CMS	5, 7, 8, 13	Total	_	0.0274, 5, 19.7, 0.043	[<u>1711.03143], [1603.023</u> [<u>1510.05302]</u>
CMS	8	$(m_{t\overline{t}}, y_t), (m_{t\overline{t}}, y_{t\overline{t}}), (p_T^t, y_t)$	dilepton	19.7	[<u>1703.01630]</u>
CMS	8	$y_t, y_{t\bar{t}}, p_T^t, m_{t\bar{t}}$	ℓ + jets	19.7	[<u>1505.04480]</u>
CMS	13	$y_t, y_{t\overline{t}}, p_T^t, m_{t\overline{t}}$	dilepton	35.9	[<u>1811.06625]</u>
CMS	13	$m_{t\overline{t}}, p_T^t, y_t, y_{t\overline{t}}, (m_{t\overline{t}}, y_{t\overline{t}}),$	ℓ + jets	137	[2108.02803]

Theory predictions

- All differential top processes are computed at NNLO QCD (parton level) with MATRIX interfaced to PineAPPL
- All inclusive cross sections are computed at NNLO QCD with top++
- Prior values $m_t^{\text{pole}} = 170, 172.5, 175 \text{ GeV}, \alpha_s = 0.116, 0.118, 0.120$
- Relative MC precision $\Delta\sigma/\sigma \approx 10^{-3}$
- Careful benchmark against mg5 aMC@NLO, top++, hightea finding excellent agreement within uncertainties

S. Devoto et al. [2506.14486]

M. Czakon et al. [1112.5675], [1303.6254] MATRIX

Results

• • •

Impact of kinematic distributions

- Theory setting: NNLO QCD + Missing Higher Order Uncertainties (MHOUs)
- Consistent results within one sigma
- Top mass is mostly sensitive to the $m_{t\bar{t}}$ distribution due to $t\bar{t}$ threshold
- The PDFs and m_t each benefit from different observables: $m_{t\bar{t}}$ for m_t and y_t for the gluon PDF

Closure tests

To test the methodology, we run the methodology on pseudodata generated from a known underlying law

Are α_s, m_t the same (within uncertainties)?

Jaco ter Hoeve

NNPDF collab. [1410.8849]

Result

- Draw pseudo data a 100 times at $\alpha_{\rm s} = 0.118, m_t = 172.5 \,{\rm GeV}$
- We nicely validate our methodology within uncertainties
- Positivity constraints introduce non Gaussian effects, while the TCM assumes Gaussianity

Conclusion and next steps

- The top mass and strong coupling are essential input to stress test the SM, and are correlated to the PDFs
- Presented a simultaneous extraction of the top mass, $\alpha_{s}(M_{Z})$ and the PDFs in the NNPDF framework

Next:

- Move to aN3LO + QED + MHOU
- Incorporate more SM and BSM parameters, such as m_W , m_H and Wilson coefficients in the SMEFT framework

Conclusion and next steps

- The top mass and strong coupling are essential input to stress test the SM, and are correlated to the PDFs
- Presented a simultaneous extraction of the top mass, $\alpha_s(M_Z)$ and the PDFs in the NNPDF framework

Next:

- Move to aN3LO + QED + MHOU
- Incorporate more SM and BSM parameters, such as m_W , m_H and Wilson coefficients in the SMEFT framework

Contact: jaco.ter.hoeve@ed.ac.uk Thanks for your attention!

