

The evolution of the parton distribution functions to percent accuracy

Giulio Falcioni, in collaboration with F. Herzog, S. Moch, A. Pelloni, S. Van Thurenhout, A. Vogt

EPS-HEP, Marseille - 7th Jul 2025

PDF scale evolution to N³LO

The precision era at the LHC

Percent-level precision for LHC physics $\rightarrow N^{3}LO$ QCD corrections E.g. Neutral current Drell-Yan [Duhr,Dulat,Mistlberger 2020] @ 100 GeV

$K_{N^{3}LO}$	$\delta(scale)$	$\delta(PDF + \alpha_s)$	δ (PDF-TH)
-2.1%	$^{+0.66\%}_{-0.79\%}$	$^{+1.8\%}_{-1.9\%}$	$\pm 2.5\%$

Unwanted uncertainty

 $\delta({\sf PDF-TH}) = {\sf performing \ N^3LO \ calculations \ with \ NNLO \ {\sf PDFs}} \label{eq:pdf-th}$ [Anastasiou et al. 2016]

$$\delta(\mathsf{PDF}\mathsf{-}\mathsf{TH}) = \frac{1}{2} \left| \frac{\sigma^{\mathsf{NNLO}}(\mathsf{NNLO}\;\mathsf{PDF}) - \sigma^{\mathsf{NNLO}}(\mathsf{NLO}\;\mathsf{PDF})}{\sigma^{\mathsf{NNLO}}(\mathsf{NNLO}\;\mathsf{PDF})} \right|$$

What do we need to get $N^{3}LO PDFs$?

Scale evolution of the PDFs

The DGLAP equations control the evolution of the PDFs

$$\mu^2 \frac{d}{d\mu^2} \begin{pmatrix} f_{\text{ns},(i)} \\ f_q \\ f_g \end{pmatrix} (x,\mu^2) = \begin{pmatrix} P_{\text{ns},(i)} & 0 & 0 \\ 0 & P_{qq} & P_{qg} \\ 0 & P_{gq} & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_{\text{ns},(i)} \\ f_q \\ f_g \end{pmatrix}$$

Perturbative information

$$P_{ij}(\alpha_s, x) = \underbrace{a P_{ij}^{(0)}}_{LO} + \underbrace{a^2 P_{ij}^{(1)}}_{NLO} + \underbrace{a^3 P_{ij}^{(2)}}_{NNLO} + \underbrace{a^4 P_{ij}^{(3)}}_{N^3LO}, a = \frac{\alpha_s}{4\pi}$$

Different behaviour according to **flavour** decomposition.

G. Falcioni (UZH and UniTo-INFN)

PDF scale evolution to N³LO

Non-singlet sector

Evolution of flavour-dependent combinations of PDFs

$$f_{\mathsf{ns},(\pm)}^{ik} = (f_i \pm f_{\overline{i}}) - (f_k \pm f_{\overline{k}}), \quad f_{\mathsf{ns},(V)} = \sum_i (f_i - f_{\overline{i}}).$$

- $P_{ns}^{(3)}$ in the planar limit [Moch,Ruijl,Ueda,Vermaseren,Vogt 2017]
- Large-n_f limit: leading [Gracey 1994-1998] and subleading [Davies,Vogt,Ruijl,Ueda,Vermaseren 2016] contributions
- Terms $\mathcal{O}(n_f C_F^3)$ [Gehrmann, von Manteuffel, Sotnikov, Yang 2023]
- Complete terms $\mathcal{O}(n_f)$ [Kniehl, Moch, Velizhanin, Vogt 2025]

Approximation of $P_{ns}^{(3)}$ from **fixed moments** [Moch,Ruijl,Ueda,Vermaseren,Vogt 2017]: PDF evolution to **1%** precision

Singlet sector

Less information on the singlet splitting functions: $\begin{pmatrix} P_{qq} & P_{qg} \\ P_{qg} & P_{qg} \end{pmatrix}$

- Large-n_f limit: leading [Gracey 1994-1998] and subleading [Davies,Vogt,Ruijl,Ueda,Vermaseren 2016] contributions
- Complete terms $\mathcal{O}(n_f^2)$ in $P_{qq}^{(3)}$ [Gehrmann,von Manteuffel,Sotnikov,Yang 2023]
- Complete terms $\mathcal{O}(n_f^2)$ in $\mathcal{P}_{gq}^{(3)}$ [GF,Herzog,Moch,Vermaseren,Vogt 2023]

Information from fixed moments

[Moch,Ruijl,Ueda,Vermaseren,Vogt 2023]: 6 moments of $P_{qq}^{(3)}$ and 5 moments of $P_{ij}^{(3)}$, with i/j = g. Not enough for percent precision! Can we improve upon this?

Moment space

The evolution of the moments of the PDFs is determined by

$$\gamma_{\rm ij}^{(k)}(N) = -\int_0^1 dx \, x^{N-1} \, P_{\rm ij}^{(k)}(x) \, dx$$

Computational approaches

• Expansion of the DIS structure functions

Successfull at NNLO [Moch,Vermaseren,Vogt 2004] $\gamma_{qq}^{(3)}$ ($N \le 12$) and $\gamma_{ij}^{(3)}$ ($N \le 10$) [Moch,Ruijl,Ueda,Vermaseren,Vogt 2023]

• OPE: computationally simpler, theory pitfalls

- Operator approach [**GF**,Herzog 2022;GF,Herzog,Moch,Van Thurenhout 2024]
- All-N counterterms [Gehrmann,von Manteuffel, Yang 2023-2024]

See talk by S. Van Thurenhout on Tuesday!

Computation in a nutshell

$$\overset{\mathcal{O}_{g}}{\longrightarrow} \cdots + \ldots = -\frac{a}{\epsilon} \left(\gamma_{3} + \gamma_{gg}^{(0)} \right) \overset{\mathcal{O}_{g}}{\longrightarrow} \otimes \cdots - \frac{a}{\epsilon} \eta^{(0)} \overset{\mathcal{O}_{A}'}{\longrightarrow} \otimes \cdots$$

- γ_{ij} extracted from the **poles** of 2-point functions
 - *γ_{ij}* are anomalous dimensions of gauge invariant operators
- Diagram generation QGRAF [Nogueira 1993] and processing in FORM [Vermaseren 2000;+Tentyuokov 2007;+Kuipers,Ueda,Vollinga 2012]
- Reduction to master integrals [Baikov,Chetyrkin 2010; Lee,Smirnov,Smirnov 2012] in FORCER [Ruijl,Ueda,Vermaseren 2017]
- Care required with unphysical contributions

Results - fixed moments

"Top row"
$$\gamma_{
m qq}^{(3)}$$
 and $\gamma_{
m qg}^{(3)}$

- $\gamma_{qq}^{(3)}$ (N \leq 20) 2302.07593 [GF,Herzog,Moch,Vogt]
- $\gamma_{qg}^{(3)}(\textit{N} \leq 20)$ 2307.04158 [GF,Herzog,Moch,Vogt]

"Bottom row"
$$\gamma_{
m gq}^{(3)}$$
 and $\gamma_{
m gg}^{(3)}$

- $\gamma_{gq}^{(3)}(\textit{N} \leq 20)$ 2404.09701 [GF,Herzog,Moch,Pelloni,Vogt]
- $\gamma_{gg}^{(3)}(\textit{N} \leq 20)$ 2410.08089 [GF,Herzog,Moch,Pelloni,Vogt]

$$\gamma_{\rm gg}^{(3)}(N=2) = 654.463 n_f - 245.611 n_f^2 + 0.924991 n_f^3$$

 $\gamma_{\rm gg}^{(3)}(N=20) = 90499.3 - 26132.3n_f + 1178.50n_f^2 + 25.6433n_f^3.$

. . .

Checks

- Correct limit at large-*n_f* [Gracey 1994,1998; Davies,Ruijl,Ueda,Vermaseren,Vogt 2016].
- Agreement with the known quartic Casimir contributions [Moch,Ruijl,Ueda,Vermaseren,Vogt 2018].
- ζ₄ terms predicted by the no-π² theorem
 [Jamin,Miravitllas 2018; Baikov,Chetyrkin 2018; Kotikov,Teber 2019].
- Agreement with published low-N moments, $\gamma_{qq}^{(3)}(N \le 12)$ and $\gamma_{qg,gq,gg}^{(3)}(N \le 10)$, obtained from the expansion of the DIS structure functions [Moch,Ruijl,Ueda,Vermaseren,Vogt 2021-2023]
- Agreement with the terms $\gamma_{qq}^{(3)} |_{n_f^2}$ computed exactly for *every* value of *N* [Gehrmann,Sotnikov,von Manteuffel,Yang 2023].

Beyond fixed moments

Can we extrapolate beyond the computed moments, e.g. [**GF**,Herzog,Moch,Pelloni,Vogt 2024]

$$\gamma^{(3)}_{gg}(\textit{N}=22)=6396.872080\pm0.000020$$

And for general *N*? Some analytic results can be found, e.g. $\gamma_{gq}^{(3)}|_{n_f^2}$ [**GF**,Herzog,Moch,Vermaseren,Vogt]. In general, only **approximations**.

G. Falcioni (UZH and UniTo-INFN)

Approximation setup

Construct an ansatz directly for $P_{ij}^{(3)}(x)$, i.e. in x-space, such that

- The first 10 moments match the results
- Has correct behaviour at the endpoints $P_{ij}(x
 ightarrow 0)$ and $P_{ij}(x
 ightarrow 1)$

Many important contributions to aN³LO phenomenology

- MSHT collaboration [McGowan, Cridge, Harland-Lang, Thorne 2022-2025]
- NNPDF collaboration [Ball et al. 2024]
- Work in progress by CTEQ
- Benchmarking [Cooper-Sarkar et al. 2024]
- F. Dattola, next talk!
- R. Stegeman (x2) this afternoon...

Example:
$$P_{ps} = P_{qq} - P_{ns,(+)}$$

Endpoint logarithms: $L_0 = \log x$, $L_1 = \log(1 - x)$

$$P_{\rm ps}^{(3)}(x \to 0) \simeq \underbrace{E_1 \frac{L_0^2}{x}}_{[1]} + E_2 \frac{L_0}{x} + \frac{E_3}{x} + \underbrace{F_1 L_0^6 + F_2 L_0^5 + F_3 L_0^4}_{[2]} + \dots + F_6 L_0$$

$$P_{\rm ps}^{(3)}(x \to 1) \simeq (1-x) \Big[\underbrace{G_1 L_1^4 + G_2 L_1^3}_{[3]} + G_3 L_1^2 + G_4 L_1 \Big]$$

[1] = [Catani,Hautmann 1994], [2] = [Davies,Kom,Moch,Vogt 2022],

[3] = [Soar, Moch, Vermaseren, Vogt 2009]

Construct 10-parameter ansatz including the 7 unknown coefficients $E_2, E_3, F_4, F_5, F_6, G_3, G_4 + 3$ -parameter trial functions. The envelope of the curves estimates the **uncertainties**.

Approximate quark-quark splitting: NNLO vs N³LO

Approximate $P_{gg}^{(3)}(x)$: 5 moments vs 10 moments

Uncertainties at low-x

Can we rely on the approximations for PDF evolution?

$$\mu^{2} \frac{d}{d\mu^{2}} f_{i} = P_{ij} \otimes f_{j} = \sum_{j} \int_{x}^{1} \frac{dz}{z} \underbrace{P_{ij}(z)}_{\text{approx.}} f_{j}\left(\frac{x}{z}\right), \quad j = q, g$$

 P⁽³⁾_{ij}(z) have large uncertainties for z → x ≪ 1
 PDFs f_j(x/z) suppress the contribution for x/z → 1 [Moch,Vermaseren,Vogt 2004]

$$\begin{array}{rcl} x \, g(x) &=& 1.6 \, x^{-0.3} \, (\mathbf{1} - \mathbf{x})^{\mathbf{4.5}} \, (1 - 0.6 x^{0.3}), \\ x \, q_{\rm s}(x) &=& 0.6 \, x^{-0.3} \, (\mathbf{1} - \mathbf{x})^{\mathbf{3.5}} \, (1 + 5.0 x^{0.8}) \end{array}$$

Example: $P_{gg} \otimes g$

Evolution of the singlet PDFs

Evolution of the quark (S) PDF

$$\mu^2 \frac{d}{d\mu^2} f_q = P_{qq} \otimes f_q + P_{qg} \otimes f_g$$

- N³LO effect is **small** compared to NNLO
 - subpercent for $x > 10^{-4}$
 - $\blacktriangleright \left. \frac{\dot{q}_s^{\mathrm{N}^3\mathrm{LO}}}{\dot{q}_s^{\mathrm{NNLO}}} \right|_{x=10^{-5}} \sim (2\pm1)\%$
- Uncertainties
 - Negligible for $x \gtrsim 10^{-4}$

•
$$\delta \dot{q}_s = \pm 1\%$$
 at $x = 10^{-5}$

Evolution of the singlet PDFs

Evolution of the gluon PDF

$$\mu^2 rac{d}{d\mu^2} f_g = P_{gq} \otimes f_q + P_{gg} \otimes f_g$$

- NNLO effects already small. Same picture at N³LO
 - ▶ subpercent for x > 10⁻⁴

•
$$\left. \frac{\dot{g}^{N^{3}LO}}{\dot{g}^{NNLO}} \right|_{x=10^{-5}} \sim (2\pm1)\%$$

- Uncertainties
 - Negligible for $x \gtrsim 10^{-4}$

•
$$\delta \dot{g} = \pm 1\%$$
 at $x = 10^{-5}$

- The OPE provides an efficient method to compute the moments of the DGLAP splitting functions to N³LO.
- Analytic results were obtained through the moment N = 20 for all the splitting functions.
- The computed moments were employed to **approximate** the scale evolution of the PDFs to N³LO.
- The precision of the approximation becomes worse at low-x, but it is estimated of $\mathcal{O}(1\%)$ or better for $x \gtrsim 10^{-4}$
 - High precision across the LHC kinematics

Outlook

- Validate the approximation at higher values of N.
- Investigation of the small-x region, where errors are larger
 - Higher-order BFKL logarithms are needed!

Can one get the *exact* results? Many developments by several groups

- Progress in all-N analytic calculations [Gehrmann,von Manteuffel,Sotnikov,Yang 2024]
- Insight into the structures that appear for general values of N
 - Highly constraining ansätze [Kniehl, Moch, Velizhanin, Vogt 2025]
 - Progress in understanding the all-N structure of the operators [GF,Herzog,Moch,Van Thurenhout 2024]
 See talk by S. Van Thurenhout tomorrow!

Thank you!

Backup slides

Approximate $P_{qg}^{(3)}(x)$

Approximate $P_{gq}^{(3)}(x)$

Quark evolution: gluon-to-quark contribution

Gluon evolution: quark-to-gluon contribution

Scale stability: quark PDF

Variations of the renorm. scale:

•
$$M = \max[\dot{q}_s(\mu_r^2 = \lambda \mu_f^2)],$$

 $\lambda \in \left(-\frac{1}{4}; \frac{1}{4}\right)$
• $m = \min[\dot{q}_s(\mu_r^2 = \lambda \mu_f^2)]$

$$\Delta \dot{q}_{s} = \frac{1}{2} \frac{M-m}{\text{average} \left[\dot{q}_{s} (\mu_{r}^{2} = \lambda \mu_{f}^{2}) \right]}$$

• $\Delta \dot{q}_s < 2\%$ for $x > 10^{-4}$

•
$$\Delta \dot{q}_s \sim (2.5 \pm 0.5)\%$$
 at $x = 10^{-5}$

Scale stability: gluon PDF

Same procedure for \dot{g}

- Scale stability already small at NNLO
- Moderate improvements at N³LO
 - $\Delta \dot{g} < 1\%$ for $x > 10^{-4}$

•
$$\Delta \dot{g} \sim (2.5 \pm 1)\%$$
 at $x = 10^{-5}$