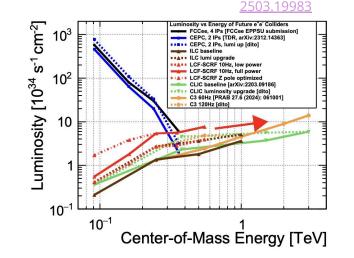
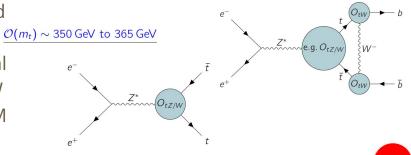


Electroweak precision physics at the FCC-ee

Leonardo Toffolin


(CERN, University of Trieste & INFN Trieste, Gruppo Collegato di Udine) on behalf of the RD-FCC Collaboration with input from A. Blondel (LPNHE Paris-Sorbonne) and M. Selvaggi (CERN)

> 7-11 July 2025 EPS-HEP 2025 Palais du Pharo, Marseille


Electroweak physics at future colliders

- Electroweak physics programme at intensity frontier
 - Z-boson lineshape:

 - $\blacksquare \quad R_{\ell} = \Gamma_{had} / \Gamma_{\ell}, R_{q} = \Gamma_{qq} / \Gamma_{had}$
 - $= A_{FB}^{\ell}, A_{FB}^{q}, \mathsf{P}_{\tau}, \mathsf{A}_{FB}^{}(\mathsf{P}_{\tau})$
 - $\alpha_{\text{QED}}(\text{m}_{\text{Z}}), \alpha_{\text{s}}(\text{m}_{\text{Z}}) \rightarrow \text{direct measurement vs.}$ lattice calculations \rightarrow interpret data without having to trust lattice and test lattice calculations themselves
 - WW, ZH, tt thresholds, and above:
 - $m_W, \Gamma_W, BR(W \rightarrow \ell \nu), \alpha_S(m_Z), m_t$, triple and quartic gauge couplings
- Great precision needed to interpret potential deviations in terms of new physics → many EW precision observables to explore nature of BSM candidate signals

FCC-ee: features and operations

Circular: (e.g. FCC-ee)

- huge luminosity Ο
- 4 interaction points (IPs) Ο
- absolute beam energy Ο calibration by continuous resonant depolarization of pilot bunches up to 160 GeV

vs. linear:

- luminosity/1000 Ο
- 1 or 2 IP 0
- longitudinally polarised 0 beams

FCC-ee						
Energy	Physics case	Years of operation	lnt. luminosity			
91.2 GeV	Z pole	4	205 ab ⁻¹			
160 GeV	WW threshold	2	19 ab ⁻¹			
230-250 GeV	Higgs production at ZH threshold	3	11 ab ⁻¹			
365 GeV	tt threshold	5	3 ab ⁻¹			
	FSR, <u>2505.00272</u>					
• $6 \times 10^{12} 7 (run-in + 3 vears)$						

- 5 x 10⁹ Z (2 years)
- 5 x 10⁷ WW (8 years)

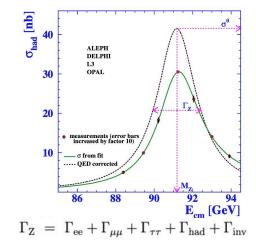
- 6 x 10¹² Z (run-in + 3 years) 2.4 x 10⁸ WW (2 years)

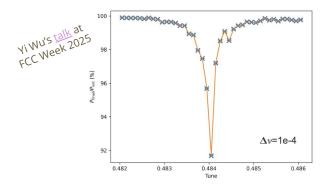
FCC-ee: EW flagship measurements

- FCC-ee is an excellent machine for a wide physics programme
 - *tt* production at threshold
 - Higgs and di-Higgs production
 - EW and *Z*-pole measurements
 - investigation on new physics
- Possible anomalies translate over a range of energy scales: from Z pole to top threshold
- Heavy-quark EW measurements as a probe for new physics
 - measurements will be dominated by the systematic uncertainty at FCC-ee (Z pole)
 - motivates novel ideas to make use of the Z pole statistics to bring down systematic uncertainty

value ± uncertainty Stat. Syst. leading uncertainty m_Z (keV) 91 187 600 ± 2000 4 100 From Z line shape sca Γ_Z (keV) 2495 500 ± 2300 4 12 From Z line shape sca $\sin^2 \theta_W^{\text{eff}}$ (×10 ⁶) 231,480 ± 160 1.2 1.2 From $A_{\text{Peff}}^{\text{ps}}$ at Z pea Beam energy calibratio $1/\alpha_{\text{QED}}(m_Z^2)$ (×10 ³) 128 952 ± 14 3.9 small From $A_{\text{Peff}}^{\text{ps}}$ at Z pea QED&EW uncert. dominat R_ℓ^Z (×10 ³) 20 767 ± 25 0.05 Ratio of hadrons to lepton $A_{\text{cceptance}}$ for lepton $\alpha_{\text{sc}}(m_d^2)$ (×10 ³) 196 ± 30 0.1 1 Combined R_ℓ^Z , Γ_{cot}^Z , σ_{haf}^Z f σ_{had}^0 (×10 ³) 2996.3 ± 7.4 0.09 0.12 Z peak cross section Luminosity measuremet $N_v (\times 10^3)$ 2996.3 ± 7.4 0.09 0.12 Z peak cross section Luminosity measuremet $R_{\rm P}^{\rm p,\tau} (\times 10^4)$ 1498 ± 49 0.07							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Observable	value					Comment and leading uncertainty
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$m_{\rm Z}$ (keV)	91 187 600	±	2000	4	100	From Z line shape scan Beam energy calibration
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Gamma_{\rm Z}$ (keV)	2 495 500	±	2300	4	12	From Z line shape scan Beam energy calibration
0.8 tbc From $A_{\rm FP}^{\rm pi}$ on pea QED&EW uncert. dominat R_{ℓ}^Z (×10 ³) 20767 ± 25 0.05 0.05 Ratio of hadrons to lepton Acceptance for lepton $\alpha_{\rm S}(m_Z^2)$ (×10 ⁴) 1196 ± 30 0.1 1 Combined R_{ℓ}^Z , $\Gamma_{\rm ebs}^Z$, $\sigma_{\rm had}^Z$, $\sigma_{\rm ebs}^Z$, $\sigma_{\rm ebs}^Z$, $\sigma_{\rm had}^Z$, $\sigma_{\rm ebs}^Z$, $\sigma_{\rm eb$	$\sin^2 \theta_{\rm W}^{\rm eff} (imes 10^6)$	231,480	±	160	1.2	1.2	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
Acceptance for lepton $\alpha_S(m_Z^2)$ (×10 ⁴) 1 196 \pm 30 0.1 1 Combined R_ℓ^Z , Γ_{Lor}^Z , σ_{had}^2 , Γ_{dor}^Z ,	$1/lpha_{ m QED}(m_{ m Z}^2)~(imes 10^3)$	128952	±	14			From $A_{FB}^{\mu\mu}$ off peak From $A_{FB}^{\mu\mu}$ on peak QED&EW uncert. dominate
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R^{\rm Z}_\ell~(\times 10^3)$	20767	±	25	0.05	0.05	Ratio of hadrons to leptons Acceptance for leptons
Luminosity measurement $N_v(\times 10^3)$ 2 996.3 \pm 7.4 0.09 0.12 Z peak cross section $R_b(\times 10^6)$ 216290 \pm 660 0.25 0.3 Ratio of bb to hadron $A_{PB}^{0,\tau}(\times 10^4)$ 216290 \pm 660 0.04 0.04 b-quark asymmetry at Z pol From jet charg $A_{PB}^{0,\tau}(\times 10^4)$ 1498 \pm 49 0.07 0.2 τ polarisation asymmetry at decay physic τ lifetime (fis) 290.3 \pm 0.5 0.001 0.005 ISR, τ mas τ mass (MeV) 1776.93 \pm 0.04 0.00007 0.03 PID, π^0 efficienc m_W (MeV) 80 360.2 \pm 9.9 0.18 0.16 From WW threshold sca Beam energy calibratio Γ_W (MeV) 2085 \pm 42 0.27 0.2 From WW threshold sca Beam energy calibratio m_W (MeV) 1010 \pm 270 2 2 Combined R_{ℓ}^W , Γ_{M}^W N_v (×10 ³) 2920 50 </td <td>$lpha_{ m S}(m_{ m Z}^2)~(imes 10^4)$</td> <td>1 196</td> <td>±</td> <td>30</td> <td>0.1</td> <td>1</td> <td>Combined $R^{\rm Z}_\ell,\Gamma^{\rm Z}_{\rm tot},\sigma^0_{\rm had}$ fit</td>	$lpha_{ m S}(m_{ m Z}^2)~(imes 10^4)$	1 196	±	30	0.1	1	Combined $R^{\rm Z}_\ell,\Gamma^{\rm Z}_{\rm tot},\sigma^0_{\rm had}$ fit
Luminosity measurement R_b (×10 ⁶) 216290 \pm 660 0.25 0.3 Ratio of bb to hadron $A_{FB}^{P,0}$ (×10 ⁴) 992 \pm 16 0.04 0.04 b-quark asymmetry at Z pol From jet charge τ [decay physic τ [decay physic τ [decay physic τ decay physic τ lifetime (fs) 290.3 \pm 0.5 0.001 0.005 ISR, τ mas τ mass (MeV) 1776.93 \pm 0.09 0.002 0.02 estimator bias, ISR, FSI τ leptonic ($\mu_{Y_{\mu}}v_{\nu}$) BR (%) 17.38 \pm 0.04 0.00007 0.03 PID, π^0 efficience m_W (MeV) 80360.2 \pm 9.9 0.18 0.16 Brom with treshold sca $G_m(m_W^2)$ (×10 ⁴) 1010 \pm 270 2 Combined R_ℓ^W , Γ_{vor}^W , Γ_{vor}^W , Γ_{vor}^W N_v (×10 ³) 2920 \pm 50 0.5 small Ratio of invis. to leptoni in radiative Z return m_{top} (MeV) 172.570 \pm 290	$\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	41 480.2	±	32.5	0.03	0.8	Peak hadronic cross section Luminosity measurement
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{ m v}(imes 10^3)$	2 996.3	±	7.4	0.09	0.12	Z peak cross sections Luminosity measurement
$\tau_{\rm FB}^{\rm pl,\tau}$ (×10 ⁴) 1498 ± 49 0.07 0.2 τ polarisation asymmetr τ decay physic τ lifetime (fs) 290.3 ± 0.5 0.001 0.005 ISR, τ mas τ mass (MeV) 1776.93 ± 0.09 0.002 0.02 estimator bias, ISR, FSI τ leptonic ($\mu_{V_{\mu}V_{\nu}}$) BR (%) 17.38 ± 0.04 0.00007 0.003 PID, π^0 efficienc m_W (MeV) 80360.2 ± 9.9 0.18 0.16 Beam energy calibratio Γ_W (MeV) 2085 ± 42 0.27 0.2 From WW threshold sca $\alpha_{\rm S}(m_{W}^2)$ (×10 ⁴) 1010 ± 270 2 2 Combined R_ℓ^w , $\Gamma_{\rm tox}^W$ f N_v (×10 ³) 2920 ± 50 0.5 small Ratio of invis. to leptoni in radiative Z return m_{top} (MeV) 172.570 ± 290 4.2 4.9 From ti threshold sca QCD uncert. dominat τ_{top} (MeV) 1420 ± 190 10 6	$R_{ m b}~(imes 10^{6})$	216 290	±	660	0.25	0.3	Ratio of $b\overline{b}$ to hadrons
τ lifetime (fs) 290.3 \pm 0.5 0.001 0.005 ISR, τ mas τ mass (MeV) 1776.93 \pm 0.09 0.002 0.02 estimator bias, ISR, FSR τ mass (MeV) 1776.93 \pm 0.09 0.002 0.02 estimator bias, ISR, FSR τ leptonic ($\mu_{\mu}\chi_{i}$) BR (%) 17.38 \pm 0.04 0.00007 0.003 PID, π^{0} efficienc m_{W} (MeV) 80360.2 \pm 9.9 0.18 0.16 From WW threshold sca Beam energy calibratio Γ_{W} (MeV) 2085 \pm 42 0.27 0.2 From WW threshold sca Beam energy calibratio $\alpha_{S}(m_W^2)$ (×10 ⁴) 1010 \pm 270 2 2 Combined R_{ℓ}^{W} , Γ_{vot}^{W} f N_{v} (×10 ³) 2.920 \pm 50 0.5 small Ratio of invis. to leptoni in radiative Z return m_{top} (MeV) 172.570 \pm 290 4.2 4.9 From tit threshold sca QCD uncert. dominat Γ_{top} (MeV) 1420 \pm 190 10 6 From tit threshold sca QCD uncert. dominat	$\vec{A}_{\rm FB}^{ m b, 0}$ (×10 ⁴)	992	±	16	0.04	0.04	b-quark asymmetry at Z pole From jet charge
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{\rm FB}^{{\rm pol},\tau}~(\times 10^4)$	1 498	±	49	0.07	0.2	au polarisation asymmetry au decay physics
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	τ lifetime (fs)	290.3	±	0.5	0.001	0.005	ISR, τ mass
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	τ mass (MeV)	1 776.93	±	0.09	0.002	0.02	estimator bias, ISR, FSR
Beam energy calibratio Γ_W (MeV)2085 \pm 420.270.2From WW threshold sca Beam energy calibratio $\alpha_S(m_W^2)$ (×10 ⁴)1010 \pm 27022Combined R_ℓ^W , Γ_W^W f N_v (×10 ³)2920 \pm 500.5smallRatio of invis. to leptoni in radiative Z return m_{top} (MeV)172570 \pm 2904.24.9From tīt threshold sca QCD uncert. dominat Γ_{top} (MeV)1420 \pm 190106From tīt threshold sca QCD uncert. dominat $\lambda_{top}/\lambda_{top}^{SM}$ 1.2 \pm 0.30.0150.015From tīt threshold sca QCD uncert. dominat	τ leptonic ($\mu v_{\mu} v_{\tau}$) BR (%)	17.38	±	0.04	0.00007	0.003	PID, π^0 efficiency
Beam energy calibratio $\alpha_{\rm S}(m_{\rm W}^2)~(\times 10^4)$ 1010 \pm 27022Combined $R_\ell^{\rm W}$, $\Gamma_{\rm tot}^{\rm W}$ $N_{\rm v}~(\times 10^3)$ 2920 \pm 500.5smallRatio of invis. to lepton in radiative Z return $m_{\rm top}~({\rm MeV})$ 172 570 \pm 2904.24.9From ti threshold sca QCD uncert. dominat $\Gamma_{\rm top}~({\rm MeV})$ 1420 \pm 190106From ti threshold sca QCD uncert. dominat $\lambda_{\rm top}/\lambda_{\rm top}^{\rm SM}$ 1.2 \pm 0.30.0150.015From ti threshold sca QCD uncert. dominat	m _W (MeV)	80 360.2	±	9.9	0.18	0.16	From WW threshold scan Beam energy calibration
$ \begin{array}{c cccc} N_{\rm v}~(\times 10^3) & 2920~\pm~50 & \textbf{0.5} & {\rm small} & {\rm Ratio~of~invis.~to~leptoni}\\ \hline m_{\rm top}~({\rm MeV}) & 172570~\pm~290 & \textbf{4.2} & 4.9 & {\rm From~t\bar{t}~threshold~sca}\\ QCD~uncert.~dominat\\ \hline r_{\rm top}~({\rm MeV}) & 1420~\pm~190 & \textbf{10} & 6 & {\rm From~t\bar{t}~threshold~sca}\\ QCD~uncert.~dominat\\ \hline \lambda_{\rm top}/\lambda_{\rm top}^{\rm SM} & 1.2~\pm~0.3 & \textbf{0.015} & 0.015 & {\rm From~t\bar{t}~threshold~sca}\\ QCD~uncert.~dominat & {\rm QCD}~uncert.~dominat \\ \hline \lambda_{\rm top}/\lambda_{\rm top}^{\rm SM} & 1.2~\pm~0.3 & \textbf{0.015} & 0.015 & {\rm From~t\bar{t}~threshold~sca}\\ QCD~uncert.~dominat & {\rm QCD}~uncert.~dominat \\ \hline \lambda_{\rm top}/\lambda_{\rm top}^{\rm SM} & 1.2~\pm~0.3 & {\rm 0.015} & 0.015 & {\rm From~t\bar{t}~threshold~sca}\\ \hline \end{array} $	$\Gamma_{\rm W}$ (MeV)	2 085	±	42	0.27	0.2	From WW threshold scan Beam energy calibration
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\overline{\alpha_{ m S}(m_{ m W}^2)}$ (×10 ⁴)	1 010	±	270	2	2	Combined R_{ℓ}^{W} , Γ_{tot}^{W} fit
QCD uncert. dominat Γ_{top} (MeV) 1420 \pm 190 10 6 Prom tit hreshold sca QCD uncert. dominat $\lambda_{top}/\lambda_{top}^{SM}$ 1.2 \pm 0.3 0.015 O.015 From tit hreshold sca QCD uncert. dominat	$N_{\rm v}~(imes 10^3)$	2 920	±	50	0.5	small	Ratio of invis. to leptonic in radiative Z returns
$\frac{QCD \text{ uncert. dominat}}{\lambda_{top}/\lambda_{top}^{SM}} \qquad 1.2 \pm 0.3 \qquad \textbf{0.015} \qquad \textbf{0.015} \qquad \textbf{0.015} \qquad From t\bar{t} \text{ threshold sca} \\ QCD \text{ uncert. dominat} \end{cases}$	m _{top} (MeV)	172 570	±	290	4.2	4.9	From $t\bar{t}$ threshold scan QCD uncert. dominate
QCD uncert. dominat	Γ_{top} (MeV)	1 420	±	190	10	6	From tt threshold scan QCD uncert. dominate
ttZ couplings \pm 30% 0.5–1.5 % small From $\sqrt{s} = 365$ GeV ru	$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2	±	0.3	0.015	0.015	From $t\bar{t}$ threshold scan QCD uncert. dominate
	ttZ couplings		±	30%	0.5-1.5 %	small	From $\sqrt{s} = 365 \text{GeV}$ run

FSR, 2505.00272


Z-boson lineshape


- feasibility studies at the Z-boson pole included in the FSR
 - Z-boson mass and width
 - asymmetries
 - focus on a few selected examples: inclusive *b*-quark A_{FB} and R_b measurements in $Z \rightarrow b\overline{b}$ events

Z boson features

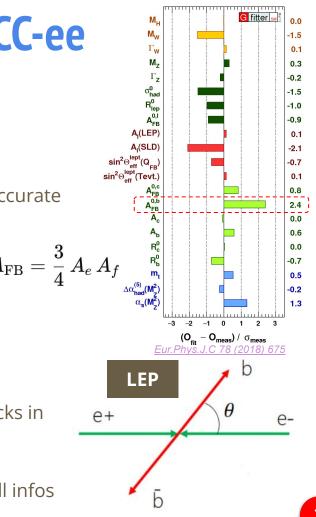
- $m_z \rightarrow input$ to cross sections, width, branching ratios of the Z boson
 - current uncertainty $\Delta m_{7} \sim 2$ MeV (LEP)
 - $\circ \quad \sigma_{stat} \sim \Gamma Z \ / \ 2 \sqrt{(N_Z^{\text{off-peak}})}$
 - 4 keV at FCC-ee
 - dominant systematic uncertainty: absolute point-to-point
 (p.t.p.) beam energy calibration
 - resonant depolarisation $\Delta \sqrt{s} \sim \Delta m_z \sim 100 \text{ keV}$
- $\Gamma_z \rightarrow$ sensitive to fermion couplings and to BSM
 - \circ current uncertainty $\Delta\Gamma_{z} \sim 2 \text{ MeV}$
 - dominant systematic uncertainty: relative absolute beam energy calibration
 - point-to-point $\Delta \sqrt{s_{p.t.p.}} \rightarrow can be$ **verified in-situ** $with <math>\mu \mu$ events
 - $\Delta \Gamma_{z} \sim 12 \text{ keV}$ at FCC-ee

spin tune v_s using res. depolarization at FCC-ee

Asymmetries at the FCC-ee

• Forward-backward asymmetry in $e^+e^- \rightarrow Z \rightarrow b\overline{b}$ events:

$$A_{FB}^{b} \equiv \frac{N_{F} - N_{B}}{N_{F} + N_{B}} \quad \text{with} \quad N_{F} = \int_{0}^{1} \frac{d\sigma}{d\cos\theta} d\cos\theta$$
$$N_{B} = \int_{-1}^{0} \frac{d\sigma}{d\cos\theta} d\cos\theta$$


→ >2 σ deviation with respect to global EW fits → most accurate measurement of sin² $\vartheta_{W, eff}$ at the Z pole

$$\frac{\theta_{b} \operatorname{distribution} (at \ LO)}{d \cos \theta_{b}} = \sigma_{b\bar{b}} \frac{3}{8} \left(1 + \cos^{2} \theta_{b} + \frac{8}{3} A^{b}_{\mathrm{FB}} \cos \theta_{b} \right) \quad A_{\mathrm{FB}} = 0$$

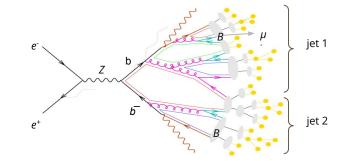
• Measurement:

Ο

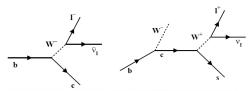
- *A^b_{FB}* extracted from **cosθ(b)** distribution
- experimental distinction between b and \overline{b} needed
 - ⇒ quark **charge** determination crucial
 - via "jet charge" (e.g. weighted sum of charged tracks in jet, or vertex charge of <u>MVA tagger</u>)
 - with soft-lepton-tagging
 - using machine-learning techniques to combine all infos

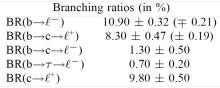
b-quark charge determination

• Two classes of **methods**:


1. Jet charge:

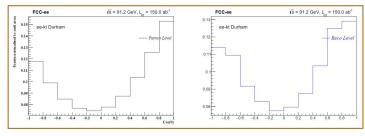
many possible variations exist, e.g. based on exclusive final states from B-hadron decays, secondary vertex reconstruction...


- weighted **sum** of charges of constituent **tracks**
- can be applied to all jets ⇒ maximal efficiency
- relatively low purity
- strong dependence on jet shape and hadronization
- "self-calibrating" à la LEP

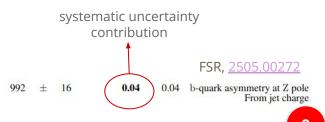

2. Soft lepton tagging:

- charge of *b* inferred from charge of *e* or *µ* in *B*-hadron semileptonic decay
 - crucial to minimize $b \rightarrow c \rightarrow \mu$ contribution that "fakes" charge
- relatively low efficiency (restricted to semileptonic decays)
- better purity
- highly sensitive to B-hadron decay modelling

DOI: 10.17181/dpvb5-vnc32







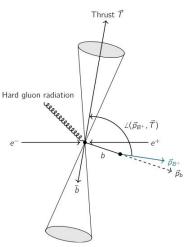
A_{FB}^b: results

- Event generation and selection:
 - beam energy: 45.5348 GeV (Z-pole)
 - signal: 2 *b*-tagged jets
 - 1 jet with charge > 0
 - 1 jet with charge < 0
- Building truth-level and reco-level cosθ distributions for b-quarks and b-quark-jets
- **Response matrix** and efficiency correction vector built from 1.10⁶ events
 - re-scaling the event number to match expected luminosity at Z-pole: \mathscr{L}_{Z-pole} = 140 ab⁻¹
- Unfolding with simple matrix inversion, 10x10 matrix used
- Statistical uncertainty extracted from pseudo-experiments
- Different sources of systematic uncertainty investigated:
 - modelling of heavy-quark fragmentation
 - emission of final-state QCD radiation
 - **Pythia** versus **Dire** parton shower $\longrightarrow A_{FB}^{b,0}(\times 10^4)$
 - *b*-tagging and *c*-mistagging rates

DOI: <u>10.17181/dpyb5-vnc32</u>

A_{FB}^{b} : systematic uncertainties and interplays with R_{b}

- No limitation from statistical uncertainty
 - LEP combination has nearly equal statistical and systematics contributions
 - expected ~10⁵ times more statistics at FCC-ee \Rightarrow ~300 times smaller than statistical uncertainty
- **Systematic uncertainties** expected to be **dominant**, but many handles in data to constrain them, in particular extra radiation and gluon splitting affecting hemisphere correlations → to be measured in situ
- Special focus on **QCD corrections to** A_{FB}^{b} :
 - \circ perturbative regime \rightarrow emission of gluon final state radiation
 - \circ non-perturbative regime \rightarrow *b*-quark fragmentation modelling
- Considering **hemisphere correlations**:
 - two different approaches:
 - **inclusive measurement** → centrally generated events + IDEA fast-sim Delphes outputs
 - exclusive *B*-hadron decays → private simulation + tests on CLD full-sim outputs



 <u>*R_b* note</u>
 <u>Lars</u> <u>Röhrig's</u>
 <u>presentation</u>

R_b in exclusive b-hadron decays: motivation

- LEP: *σ*_{syst} dominated by *udsc*-physics and hemisphere correlations
- With **Tera-Z**: σ_{syst} in reach \rightarrow measurement limited by systematic uncertainties
- Reconstruct exclusive *b*-hadron: determine quark-flavour with 100 % purity \rightarrow stick to ultra-pure mass region to assess remaining systematic uncertainties $\rightarrow \varepsilon_b = 1$
- C_b and QCD corrections evaluated on full simulation sample of 83200 Z \rightarrow [B⁺ \rightarrow D⁰ π +]_b [B⁻ \rightarrow D⁰ π ⁻]_b events and forced decays (B[±] \rightarrow [K⁺ π ⁻]_{D0} π ⁺)

Observable	R_b	A ^b _{FB}
<i>b</i> -hadrons	B^+ , B^0_d , B^0_s , Λ^0_b	B^+ , Λ_b
Knowledge of	Flavour	Flavour, $\vec{p} \& Q$
	Remove udsc-ph	ysics contribution
Advantages		Overcome mixing dilutions and hemisphere confusion
Remaining $\sigma_{ m syst.}$	Hemisphere correlation <i>C</i> _b	QCD corrections

DOI: 10.17181/zni58-zvx36

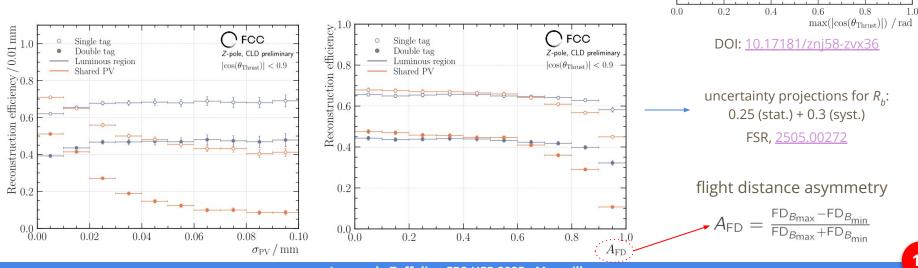
Leonardo Toffolin - <u>EPS-HEP 2025</u> - Marseille

R_b in exclusive b-hadron decays: results

õ¹

Inclusive O

1.04


1.02

1.00

0.98

• Goal: find regions of the phase-space which increase C_b (kinematically + event-variables) \rightarrow at LEP: mainly driven by PV measurement uncertainty

$$\sigma_{\mathsf{PV}} = \sqrt{\sum_{i \in [x, y, z]} \left(\mathsf{PV}_i^{\mathsf{Object-level}} - \mathsf{PV}_i^{\mathsf{Particle-level}}\right)}$$

Leonardo Toffolin - EPS-HEP 2025 - Marseille

FCC

Z-pole, CLD preliminary

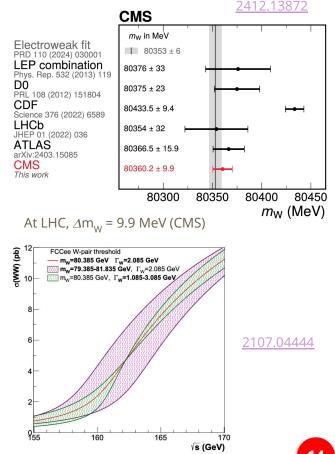
Normalisation value $C_b^{\text{norm}} = \min(C_b)$

Inclusive C_h

Inclusive $\frac{C_b}{C^{\text{norm}}}$

Luminous region Shared PV

Above WW threshold

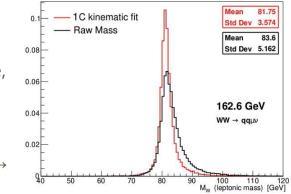

- W boson properties
- Triple/quadruple gauge couplings

W mass via threshold scan

• At lepton colliders, direct measurement possible via W-pair threshold scans (cross section vs. beam energy), simultaneous extraction of m_w and Γ_w

$$\Delta m_{\rm W}({\rm stat}) = \left(\frac{d\sigma_{\rm WW}}{dm_{\rm W}}\right)^{-1} \frac{\sqrt{\sigma_{\rm WW}}}{\sqrt{\mathcal{L}}}$$

- dominant role of systematic uncertainties
 - a) absolute energy calibration:
 - i) Δm_W (syst) ~ 150 keV (FCC-ee) (300 keV on \sqrt{s}) \rightarrow via resonant depolarisation (only at FCC-ee)
 - ii) Δm_W (syst) ~ 700 keV (LEP3) \rightarrow via radiative return Z (at LEP3)

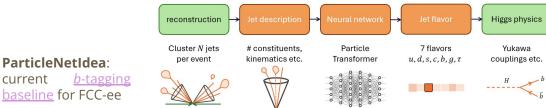


W mass via kinematic fit

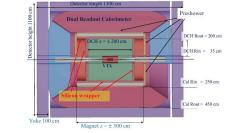
- Alternative for the W mass reconstruction: kinematic fit
 - direct reconstruction of decay products, à la LEP2
 - WW threshold (160 GeV) → FCC-ee, LEP3
 - boosted regime (~ 240 GeV) \rightarrow linear colliders, FCC-ee, LEP3
- Large *W* production rate to constrain leptonic branching ratios (BRs)
 - absolute measurement limited by luminosity determination \rightarrow from $\gamma\gamma$ /Bhabha scattering at FCC-ee: $\delta \mathscr{L}/\mathscr{L} \sim 10^{-4}$
- Bonus: triple/quartic gauge couplings
 - through WW/VBS production
 - full 5D angular information of WW decays in the semileptonic channel $\overline{\mathcal{B}(W \to ev_e) \times 10^4 1071}$

M. Beguin's thesis

15


${\cal B}(W\to e {\rm v}_e)\times 10^4$	1071	±	16	0.13	0.10	From WW and ZH threshold luminosity
${\cal B}(W\to\mu\nu_{\!\mu})\times 10^4$	1063	±	15	0.13	0.10	From WW and ZH threshold luminosity
$\mathcal{B}(W o au v_{\tau}) imes 10^4$	1138	±	21	0.13	0.15	From WW scan ZH threshold luminosity

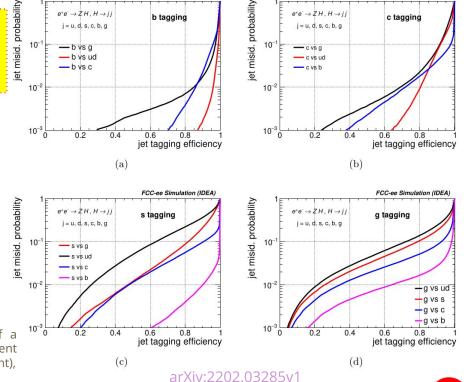
Jet flavour tagging improvements


• Jet flavour tagging improvements for EWK measurements at FCC-ee

Jet flavor tagging performance at FCC-ee - I

- All the **EW precision measurements** in general require good **jet flavour tagging** performance
 - need to minimize contribution from light-jets and charm-jets
 - in addition, **b** to **b discrimination** would be beneficial
- Process used for training: $e^+ e^- \rightarrow ZH$ at 240 GeV, with $H \rightarrow jj$ and $Z \rightarrow v\bar{v} \rightarrow two$ jets as event signature, done jet by jet

- Preliminary projections with IDEA detector concept:
 - drift chamber tracker (*dE/dx*)
 - silicon vertex detector and wrapper
 - uses the vertex detector and wrapper as TOF with resolution O(30ps)
 - *coupling* with small beam size and beam pipe
 - fully tested on fast simulation outputs


Jet flavor tagging performance at FCC-ee - II

full list in doi:10.17181/0zn0c-3xe20

Preliminary projections:Tull list in doi:10.17181/02000-3xachieve e.g.b tagging with 75% efficiency for 10-3 charm contamination (single jet)c60%2 10-3 bs10% efficiency 2 10-3 u,dcontamination

- Possibility to achieve high purity (99%) for *s* quarks with an efficiency of more than 10%
- Given such tagging performance, at m_z :
 - $R_b \rightarrow$ [±1.2 (stat.) ± 1.6 (syst.)]·10⁻⁶
 - $A^{\bar{b}}_{FB}$ → [±7.8(stat.) ± 1.8 (syst.)]·10⁻⁶
 - see full table in spares
- Complete information in A. Blondel's report at <u>FCC Performance Meeting</u> on 13 May 2025

ParticleNetIdea performance in terms of a ROC curve for the identification of different *b*-quarks (upper left), *c* quarks (upper right), *s*-quarks (lower left), and *g* (lower right) jets

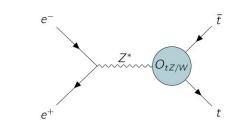
FCC-ee Simulation (IDEA)

FCC-ee Simulation (IDEA)

- FCC-ee is an excellent machine for EW precision measurements
 - **linear colliders**: advantage of chiral observables (asymmetries) per unit of luminosity \rightarrow possibility of longitudinal polarisation
 - circular colliders: 300 (LEP3) 1000 (FCC-ee) advantage of luminosity → better precision in overall measurements with respect to linear collider facilities, factors of:
 - $\sin^2 \theta_W$, leptonic asymmetries $\rightarrow 5:1$
 - lepton couplings, $\alpha_{OED}(m_Z)$, $\alpha_s(m_Z) \rightarrow 30:1$
 - electromagnetic and strong coupling: only at FCC-ee (or circular machines)
 - $m_W \rightarrow 4:1$ (resonant depolarisation helps with FCC-ee)
 - di-fermion and multi-boson production \rightarrow uniquely probed by:
 - linear colliders (ILC, CLIC, ...) up to 500 GeV 3 TeV
 - muon collider up to 10 TeV
 - FCC-hh up to 40-50 TeV
- Improvements in **Monte Carlo generators** and **flavour tagging performance** can help a lot
 - possibility to go **beyond pure** *b*-tagging

checkout <u>Electroweak inputs</u> at the Open Symposium on the EU Strategy (Venice, 2025) for complete information

THANK YOU FOR YOUR ATTENTION!



FCC-ee as a precision machine

- FCC-ee is an excellent machine for **Standard Model precision** measurements
 - ttbar production at threshold
 - Higgs and di-Higgs production
 - Z-pole measurements: Z-boson mass and width, asymmetries
- Possible anomalies translate over a range of energy scales: from Z pole to top threshold
- Heavy-quark EW measurements as a probe for new physics with a common set of dimension-6 operators
 - heavy-quark electroweak observables under study: $A_{FB}^{\ b}$ and R_{b}
 - measurements will be dominated by the systematic uncertainty at FCC-ee (Z pole) \rightarrow dominant contribution to uncertainty from light- and *c*-quark physics
 - motivates novel ideas to make use of the Z pole statistics to bring down systematic uncertainty

 $\mathcal{O}(m_Z) \sim 90 \, \text{GeV}$

FCC-ee EWK projections at the Z pole

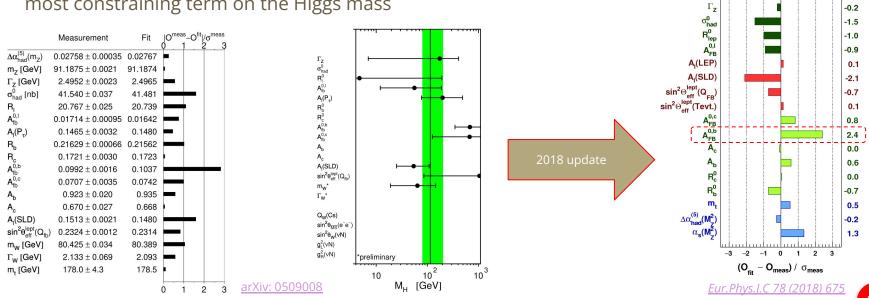
Table 6: Projected ABSOLUTE uncertainties on value of $\sin^2 \theta_{\rm W}^{\rm eff}$ obtained at the Z-pole from FCC-ee, LCvision, and LEP3. When two numbers are given, the first [second] corresponds to the projected statistical [systematic]; total uncertainty.

FCC		
quantity	uncertainty	$\sin^2 heta_{ m W}^{ m eff}$
$A_{FB}^{0,\ell} (10^{-6})$	1.4 [2.7]	0.75 [1.44]; 1.6
\mathcal{A}_e from $A_{\mathrm{FB}}^{\mathrm{pol}(\tau)}$	7 [20]	0.9 [2.5]; 2.8
$A_{EB}^{0,b} (10^{-6})$		0.74 [0.74]; 1.03
$A_{FB}^{0,c}$ (10 ⁻⁶)	5 [5]	1.3 [1.3]; 1.8
${\cal A}_{FB}^{0} (10^{-6}) \ {\cal A}_{FB}^{0,b} (10^{-6}) \ {\cal A}_{FB}^{0,c} (10^{-6}) \ {\cal A}_{FB}^{0,c} (10^{-6}) \ {\cal A}_{FB}^{0,c} (10^{-6}) \ {\cal A}_{FB}^{0,c} (10^{-6})$	7.4 [7.4]	$1.4\ [1.4]\ ;\ 1.9$
FCC combination of $\sin^2\theta_{\rm W}^{\rm eff}$		$0.4\ [0.5]\ ;\ 0.7$
LEP3		
quantity	uncertainty	$\sin^2 \theta_{\rm W}^{\rm eff}$
$A_{FB}^{0,\ell} (10^{-6})$	2.6 [4.6]	1.4 [2.7]; 3.0
\mathcal{A}_e from $A_{\mathrm{FB}}^{\mathrm{pol}(\tau)}$	13 [39]	$1.7 \ [4.7]$; 5.2
${ m A_{FB}^{0,b}}~(10^{-6})$	7.8 [7.8]	$1.4\;[1.4];2$
$A_{FB}^{0,c}(10^{-6})$	9.5 [9.5]	2.4 [2.4]; 3.4
$\mathcal{A}_{ m FB} ({ m M}_{ m FB}^{ m pol(au)} $	$14 \ [14]$	$2.6 \ [2.6] \ ; \ 3.6$
LEP3 combination of $\sin^2\theta_{\rm W}^{\rm eff}$		0.75 [0.95] ; 1.35
LCvision		
quantity	uncertainty	$\sin^2 \theta_{\rm W}^{\rm eff}$
\mathcal{A}_e from $A_{\rm LR}(10^{-6})$	23 [19]	2.9[2.4];4

23 [19]	2.9 [2.4]; 4
100 [50]	$12.6 \ [6.3] ; 14$
100 [50]	$12.6 \ [6.3] ; 14$
	2.75 [2.4]; 3.7
	100 [50]

M. Selvaggi, *Electroweak inputs*, Open Symposium on the EU Strategy for Particle Physics, Venice, 2025

Table 5: Projected RELATIVE uncertainties on partial-width ratios obtained on peak at the Z-pole from


 FCC-ee, LCvision, and LEP3. When two numbers are given, the first [second] corresponds to the projected

 statistical [systematic] uncertainty.

Observable	present	FCC-ee	LCF	LEP3	Comment and
(value)	uncertainty	Stat. [Syst.]	Stat. [Syst.]	Stat. [Syst.]	leading uncertainty
$R_{\ell} \equiv \frac{\Gamma_{had}}{\Gamma_{\ell}}$	20.767 ± 0.025				
relative uncertainty (10^{-6})	1200	1.5 [2.3]		2.8 [2.3]	Low angle acceptance
$R_e \equiv \frac{\Gamma_{had}}{\Gamma_e}$	20.804 ± 0.050				
relative uncertainty (10^{-6})	2400	3.4[2.3]	200[500]	6.4 [2.3]	Low angle acceptance
$R_{\mu} \equiv \frac{\Gamma_{had}}{\Gamma_{\mu}}$	20.785 ± 0.033				
relative uncertainty (10^{-6})	1600	2.4 [2.3]	200 [200]	4.5 [2.3]	Low angle acceptance
$R_{\tau} \equiv \frac{\Gamma_{had}}{\Gamma_{\tau}}$	20.764 ± 0.045				
relative uncertainty (10^{-6})	2100	2.7 [2.3]	200 [200]	5.1 [2.3]	Low angle acceptance
LEPTON UNIVERSALITY					
Axial vector couplings					
R_e/R_ℓ	rel. (10^{-6})	3.1	600	5.8	
R_{μ}/R_{ℓ}	rel. (10^{-6})	2.8	300	5.3	
$\mathrm{R}_{ au}/\mathrm{R}_{\ell}$	rel. (10^{-6})	3.6	300	6.8	
Vector couplings					
$A_{FB}^{0,e}$ / $A_{FB}^{0,\ell}$	rel. (10^{-6})	210	N.A.	390	
$A_{FB}^{0,\mu}$ / $A_{FB}^{0,\ell}$ or $\mathcal{A}_{\mu}/\mathcal{A}_{e}$	rel. (10^{-6})	157	700	295	
$egin{array}{c} \mathrm{A}_{\mathrm{FB}}^{0,e} \mid \mathrm{A}_{\mathrm{FB}}^{0,\ell} \ \mathrm{A}_{\mathrm{FB}}^{0,\mu} \mid \mathrm{A}_{\mathrm{FB}}^{0,\ell} \ \mathrm{or} \ \mathcal{A}_{\mu}/\mathcal{A}_{e} \ \mathrm{A}_{\mathrm{FB}}^{0, au} \mid \mathrm{A}_{\mathrm{FB}}^{0, au} \ \mathrm{or} \ \mathcal{A}_{ au}/\mathcal{A}_{e} \end{array}$	rel. (10^{-6})	183	700	345	
QUARK FLAVOURS					
QUARK FLAVOURS					
$R_b \equiv \frac{\Gamma_b}{\Gamma_{\rm had}}$	0.21629 ± 0.00066				
relative uncertainty (10^{-6})	3300	1.2 [1.6]	20 [60]	2.2 [3.0]	multiple flavour tag
$R_c \equiv \frac{\Gamma_c}{\Gamma_{\rm had}}$ relative (10^{-6})	0.1721 ± 0.0030				
relative uncertainty (10^{-6})	17000	1.4 [2.2]	100[250]	2.6 [4.2]	multiple flavour tag
IEW! $R_s \equiv \frac{\Gamma_s}{\Gamma_{had}}$ relative (10 ⁻⁶)	N.A.				
relative uncertainty (10^{-6})	N.A.	2.5[11]	-	4.7[21]	multiple flavour tag

Z pole asymmetries at the FCC-ee

- A^{b}_{FB} : forward-backward asymmetry in $e^{+}e^{-} \rightarrow Z \rightarrow b\overline{b}$ events
 - $A_{FB}^{b} \equiv \frac{N_{F} N_{B}}{N_{F} + N_{B}} \quad \text{with} \quad N_{F} = \int_{0}^{1} \frac{d\sigma}{d\cos\theta} d\cos\theta$ $N_{B} = \int_{0}^{0} \frac{d\sigma}{d\cos\theta} d\cos\theta$
- most statistically accurate measurement of $\sin^2 \vartheta_{W, eff}$ at the Z pole
- most constraining term on the Higgs mass

G fitter м

0.0

-1.5

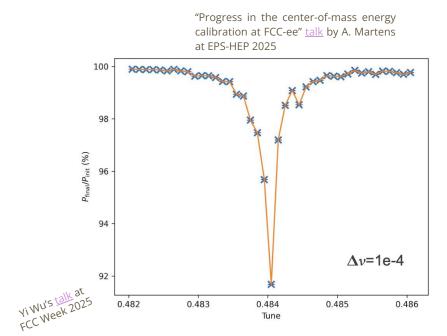
0.1

0.3

Μ,

Mw

Γw


Mz

v_s via resonant depolarization

- FCC-ee simulation of a determination of the **spin tune** v_s = E_{beam} (GeV)/0.440648 using **resonant depolarization**
 - *y*-axis: polarization level (after/before)
 - *x*-axis: spin tune v_s around which a RF kicker is applied on the beam.
 - precision of $\Delta v_s = 0.0001$

 \rightarrow corresponds to an interval of 44 keV in which the resonance is equivalent to a RMS of:

± 44.0648 keV/√(12) = ±13 keV

spin tune v_s using res. depolarization at FCC-ee

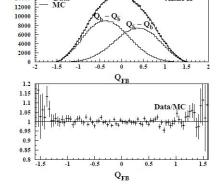
Hemisphere analysis principles

- Important principles of e^+e^- : (none of them true in *pp* collisions)
 - event-by-event conservation of
 - 4-momentum
 - all 0 charges electric, color, flavour and baryon number
 - little and identifiable pile-up (0.002 at most)
- Analysis based on full event \rightarrow no jet algorithm
 - thrust axis defines forward and backward hemispheres
 - hemisphere charges $Q_{F'} Q_B$

 $\rightarrow Q_F - Q_B = Q_{FB}$ and $Q_F + Q_B = Q_{tot}$

hemisphere charge separation

$$\begin{split} \langle Q_{\mathrm{F}B}^{f} \rangle &= \langle Q_{\mathrm{F}}^{f} - Q_{\mathrm{B}}^{f} \rangle \\ &= \frac{1}{n_{\mathrm{tot}}^{f}} \left(n_{\mathrm{F}}^{f} \langle Q_{f} - Q_{\bar{f}} \rangle + n_{\mathrm{B}}^{f} \langle Q_{\bar{f}} - Q_{f} \rangle \right) \\ &= \delta_{f} \, A_{\mathrm{F}B}^{f} \, \frac{8}{3} \frac{\cos \theta}{1 + \cos^{2} \theta} \,, \end{split}$$


hemisphere charge separation from data:

16000

14000

• Data

$$\begin{split} \bar{\delta}_{f}^{2} &= \sigma^{2}(Q_{\mathrm{F}B}^{f}) - \sigma^{2}(Q_{\mathrm{tot}}^{f}) \\ &= \delta_{f}^{2} - 4 \left\langle \mathcal{R}_{f} \mathcal{R}_{\bar{f}} \right\rangle - \left\langle Q_{\mathrm{F}B}^{f} \right\rangle^{2} + \left\langle Q_{\mathrm{tot}}^{f} \right\rangle^{2} \\ &= \left[\delta_{f} \left(1 + k_{f} \right) \right]^{2} \,, \end{split}$$

ALEPH

Fig. 2. The charge difference between forward and backward hemispheres measured in the selected event sample labelled E in Fig.3. The MC distribution corresponds to an asymmetry of $A_{\rm FB}^{\rm e} = 0.0967$

<u>Alain Blondel's presentation</u> at FCC Physics Performance meeting

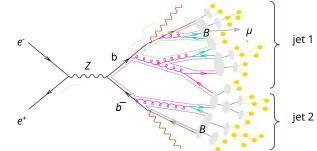
1)

• Jet charge and soft lepton tagging methods for the A^b_{FB} measurement already implemented at LEP

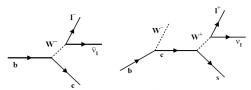
	Measurement:	$(A^{0,b}_{_{\mathrm{FB}}}) \pm \delta(\mathrm{stat}) \pm \delta(\mathrm{syst})$	re	lative uncerta	ainties
	Experiment		stat.	QCD syst.	total syst.
	Lepton-charge based:				
Eur.Phys.J.C24	ALEPH (2002)	$0.1003 \pm 0.0038 \pm 0.0017$	3.8%	0.7%	1.7%
Eur.Phys.J.C34	DELPHI (2004–05)	$0.1025 \pm 0.0051 \pm 0.0024$	5.0%	1.2%	2.3%
Phys.Lett.B448	L3 $(1992-99)$	$0.1001 \pm 0.0060 \pm 0.0035$	6.0%	1.8%	3.5%
Phys.Lett.B577	OPAL (2003)	$0.0977 \pm 0.0038 \pm 0.0018$	3.9%	1.1%	1.8%
	Jet-charge based:				
Eur.Phys.J.C22	ALEPH (2001)	$0.1010 \pm 0.0025 \pm 0.0012$	2.5%	0.7%	1.2%
Eur.Phys.J.C40	DELPHI (2005)	$0.0978 \pm 0.0030 \pm 0.0015$	3.1%	0.7%	1.5%
Phys.Lett.B439	L3 (1998)	$0.0948 \pm 0.0101 \pm 0.0056$	10.6%	4.3%	5.9%
Phys.Lett.B546	OPAL (1997,2002)	$0.0994 \pm 0.0034 \pm 0.0018$	3.4%	0.7%	1.8%
	Combination	$0.0992 \pm 0.0015 \pm 0.0007$	1.5%	0.5%	0.7%
		stat syst			

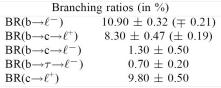
b-quark charge determination

• Two classes of **methods**:

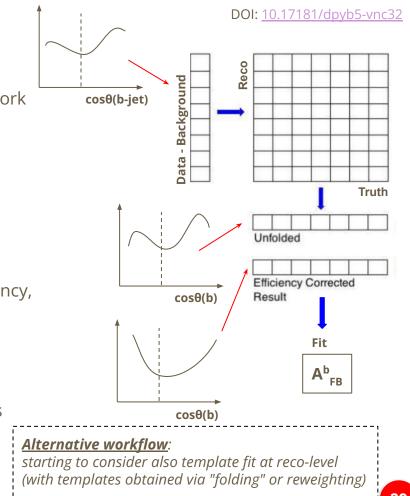

1. Jet charge:

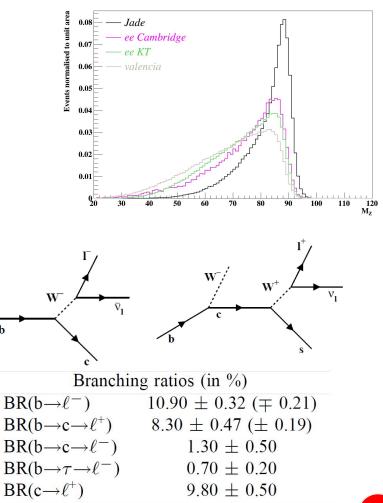
many possible variations exist, e.g. based on exclusive final states from B-hadron decays, secondary vertex reconstruction...


- charge of jet obtained as weighted sum of charges of constituent tracks
- can be applied to all jets ⇒ maximal efficiency
- relatively low purity
- strong dependence on jet shape and hadronization


2. Soft lepton tagging:

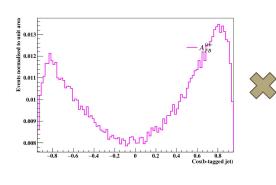
- charge of *b* inferred from charge of *e* or *µ* in *B*-hadron semileptonic decay
 - crucial to minimize $b \rightarrow c \rightarrow \mu$ contribution that "fakes" charge
- relatively low efficiency (restricted to semileptonic decays)
- better purity
- highly sensitive to B-hadron decay modelling


DOI: 10.17181/dpvb5-vnc32


Analysis strategy

- Analysis framework:
 - 1. **feasibility study** with **Key4hep-FCCAnalyses** framework and **standalone Madgraph private** simulation
 - **EDM4hep** for event generation
 - Pythia8 for parton shower simulation
 - Delphes for detector fast-simulation
 - 2. Software features:
 - IDEA detector concept
 - Durham ee-kT jet algorithm used, R=0.4
 - simplified Delphes *b*-tagging (flat 80% efficiency, 10%/1% *c*/light-mistagging)
- Investigated workflow:
 - 1. build **reco-level observable** using:
 - jet direction
 - charge determined with one of the two methods (studies in parallel)
 - 2. perform **unfolding** from reco-level to parton-level
 - 3. extract A_{FB}^{b} from **fit** to unfolded distribution

Soft muon based studies - I


- Using **central FCC analysis software** and centrally produced samples
- Jets reconstructed by Durham ee-kT algorithm
- Focusing on **soft muon tagging** method
- Investigating optimal **selection** to minimize contribution from "charge flips" due to $b \rightarrow c \rightarrow \mu$ decays:
 - μ with ΔR (jet) < 0.4 (non-isolate) used to *tag* jets
 - $p(\mu) > 10$ GeV cut applied
 - investigating cuts on other quantities (e.g. $p_T^{rel}(\mu, jet)$)

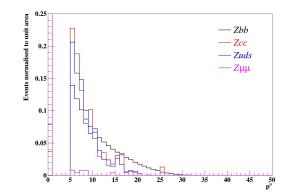
Soft muon based studies - II

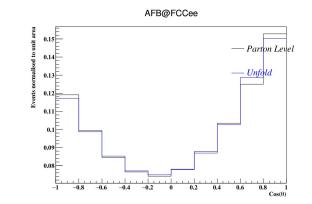
DOI: 10.17181/dpyb5-vnc32

- Background studies:
 - $\circ \quad Z \to c \overline{c}$
 - $\circ \quad Z \rightarrow light$
 - $\circ \quad Z \to \mu \mu$
- Jet selection rejects most of $Z \rightarrow \mu\mu$
- Unfolding implemented:

- *b*-tagging cut will reduce the rest
 - cut on p_{μ} > 10 GeV will further

reduce them


0.15


0.1

0.05

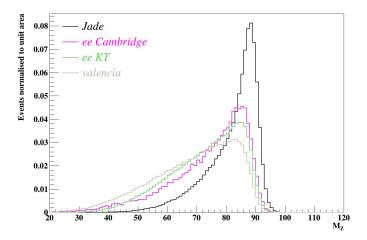
-0.05

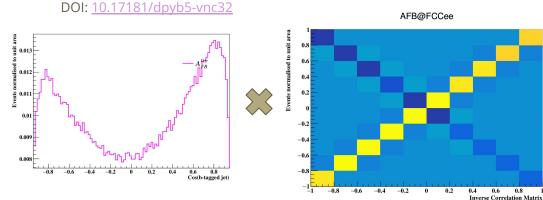
AFB@FCCee

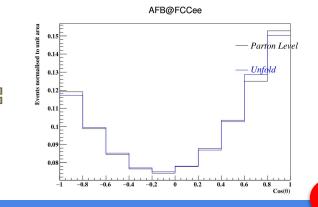
• Extraction of statistical and systematic uncertainty

-0.4

-0.6


-0.8 -0.6 -0.4 -0.2


0.4 0.6 0.8

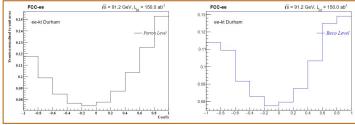

Inverse Correlation Matrix

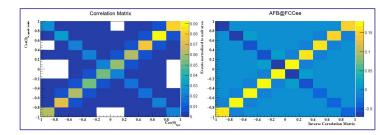
Soft muon tagging optimisation and unfolding

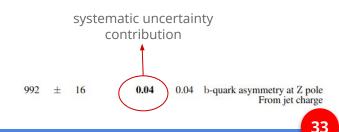
- Backgrounds: $Z \rightarrow c\overline{c}, Z \rightarrow light, Z \rightarrow \mu\mu$
- Optimal **selection** to minimize contribution from "charge flips" due to $b \rightarrow c \rightarrow \mu$ decays:
 - μ with ΔR (jet) < 0.4 (non-isolate) Ο used to *tag* jets
 - $p(\mu) > 10 \text{ GeV cut}$ 0
- Unfolding implemented

Leonardo Toffolin - EPS-HEP 2025 - Marseille

0.8


0.1


0.05


-0.05

Results on the A_{FB}^{b} feasibility study

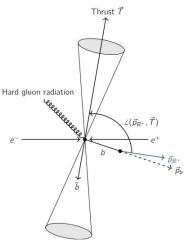
- Event generation and selection:
 - beam energy: 45.5348 GeV (Z-pole) from "Spring2021"
 - signal: 2 *b*-tagged jets
 - 1 jet with charge > 0
 - 1 jet with charge < 0
- Building truth-level and reco-level cosθ distributions for b-quarks and b-quark-jets
- Response matrix and efficiency correction vector built from 1.10⁶ events
 - re-scaling the event number to match expected luminosity at Z-pole: $L_{Z-pole} = 140 \text{ ab}^{-1}$
- Unfolding with simple matrix inversion, 10x10 matrix used
- Statistical uncertainty extracted from pseudo-experiments
- Different sources of systematic uncertainty investigated:
 - modelling of heavy-quark fragmentation
 - emission of final-state QCD radiation
 - **Pythia** versus **Dire** parton shower $\longrightarrow A_{FB}^{b,0}(\times 10^4)$
 - *b*-tagging and *c*-mistagging rates

DOI: <u>10.17181/dpyb5-vnc32</u>

A_{FB}^{b} : systematic uncertainties and interplays with R_{b}

- Statistical uncertainty will not be an issue:
 - LEP combination has ~equal stat and syst contributions
 - expected ~10⁵ times more statistics at FCC-ee ⇒ ~300 times smaller than statistical uncertainty
- **Systematic uncertainties** expected to be **dominant**, but many handles in data to constrain them, in particular extra radiation and gluon splitting affecting hemisphere correlations → to be measured in situ
- Special focus on **QCD corrections to** A_{FB}^{b} :
 - \circ perturbative regime \rightarrow emission of gluon final state radiation
 - \circ non-perturbative regime \rightarrow *b*-quark fragmentation modelling
- Considering hemisphere correlations → effort held by LPC (Clermont-Ferrand)-TU Dortmund FCC group
 - two different approaches:
 - **inclusive measurement** → centrally generated events + IDEA fast-sim Delphes outputs
 - **exclusive** *B***-hadron decays** → private simulation + tests on CLD full-sim outputs

DOI: 10.17181/dpyb5-vnc32

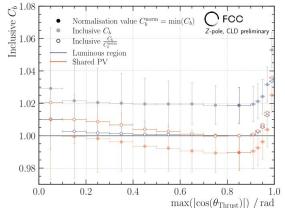


<u>R_b (inclusive)</u>
 <u>note</u>
 <u>Lars Röhrig's</u>
 <u>presentation</u>

R_b in exclusive b-hadron decays: motivation

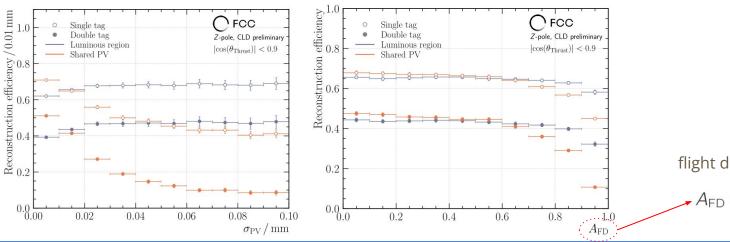
- LEP: σ_{syst} dominated by *udsc*-physics and hemisphere correlations
- With Tera-Z: σ_{syst} in reach \rightarrow measurement limited by systematic uncertainties
- Reconstruct exclusive *b*-hadron: determine quark-flavour with 100 % purity \rightarrow stick to ultra-pure mass region to assess remaining systematic uncertainties $\rightarrow \varepsilon_b = 1$
- C_b and QCD corrections evaluated on full simulation sample of 83200 $Z \rightarrow [B^+ \rightarrow D^0 \pi^+]_b [B^- \rightarrow D^0 \pi^-]_b$ events and forced decays $(B^{\pm} \rightarrow [K^+ \pi^-]_{D0} \pi^+)$

Observable	R_b	A^{b}_{FB}
<i>b</i> -hadrons	B^+ , B^0_d , B^0_s , Λ^0_b	B^+ , Λ_b
Knowledge of	Flavour	Flavour, $\vec{p} \& Q$
	Remove udsc-pl	nysics contribution
Advantages		Overcome mixing dilutions and hemisphere confusion
Remaining $\sigma_{\rm syst.}$	Hemisphere correlation C_b	QCD corrections



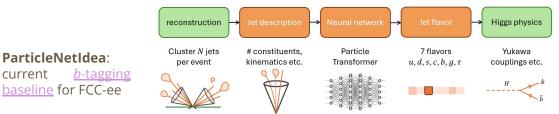
DOI: 10.17181/zni58-zvx36

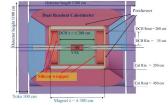
R_b in exclusive b-hadron decays: results


• Goal: find regions of the phase-space which increase C_b (kinematically + event-variables) \rightarrow at LEP: mainly driven by PV measurement uncertainty

$$\sigma_{\mathsf{PV}} = \sqrt{\sum_{i \in [x, y, z]} \left(\mathsf{PV}_i^{\mathsf{Object-level}} - \mathsf{PV}_i^{\mathsf{Particle-level}}\right)}$$

DOI: <u>10.17181/znj58-zvx36</u>

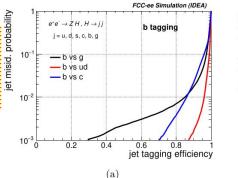


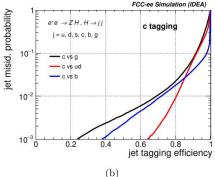

Leonardo Toffolin - EPS-HEP 2025 - Marseille

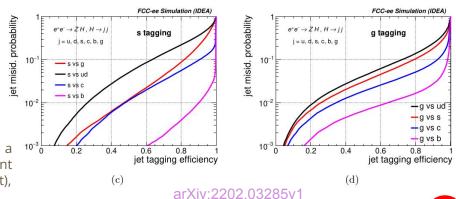
Jet flavor tagging performance at FCC-ee - I

- *A_{FB}^b* and *R_b* measurements (as well as **EW precision measurements** in general) require good **jet flavour tagging** performance
 - need to minimize contribution from light-jets and charm-jets
 - in addition, **b** to **b discrimination** would be beneficial
- Process used for training: $e^+ e^- \rightarrow ZH$ at 240 GeV, with $H \rightarrow jj$ and $Z \rightarrow v\bar{v} \rightarrow two$ jets as event signature, done jet by jet

- <u>Preliminary projections</u> with <u>IDEA detector concept</u>:
 - drift chamber tracker (*dE/dx*)
 - silicon vertex detector and wrapper
 - uses the vertex detector and wrapper as TOF with resolution O(30ps)
 - *coupling* with small beam size and beam pipe

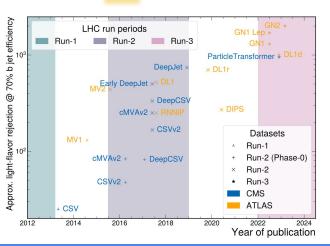

Jet flavor tagging performance at FCC-ee - II

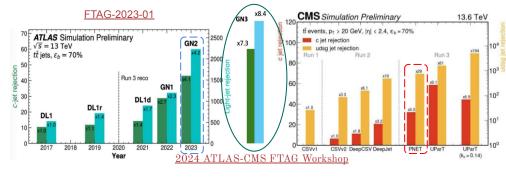

Preliminary projections:


achieve e.g. b tagging with	75% efficiency f	or 10 ⁻³ charm	contamination (single jet)
с	60%	2 10 ⁻³ b	contamination
S	10% efficiency	2 10 ⁻³ u,d	contamination

- Possibility to achieve high purity (99%) for s quarks with an efficiency of more than 10%
- More information available in:
 - A. Blondel's report at <u>FCC</u> <u>Performance Meeting</u> on 13 May 2025
 - F. Bedeschi, L. Gouskos, M. Selvaggi, arXiv:2202.03285v1

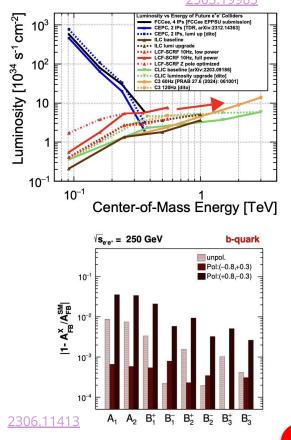
ParticleNetIdea performance in terms of a ROC curve for the identification of different *b*-quarks (upper left), *c* quarks (upper right), *s*-quarks (lower left), and *g* (lower right) jets





Jet flavor tagging: a look at ATLAS & CMS

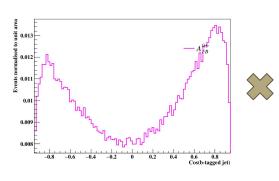
- EW precision tests at FCC-ee can benefit from the long story of improvement in jet flavour identification at the LHC
 - ATLAS and CMS share very similar directions, however with different approaches
- combination of output probabilities of the tagger (i.e. GN2 or its ancestor <u>GN1</u>) into a 1D discriminant defined as likelihood ratio:
- regress the energy correction and resolution of the jet with the same algorithm to define a per-jet flavour aware jet energy regression and resolution estimation



moving to **GNN-based approaches** and transformers architecture!

arXiv:2404.0107

Electroweak physics at future colliders


- Electroweak physics programme at intensity frontier
 - *Z*-boson lineshape:
 - $\blacksquare \quad m_{Z'} \ \Gamma_{Z'} \ \sigma_0^{\text{had}} \ (\to N_v),$
 - $\blacksquare \quad R_{\ell} = \Gamma_{had} / \Gamma_{\ell'} R_{q} = \Gamma_{qq} / \Gamma_{had}$
 - $\blacksquare \quad A_{FB}^{\ \ell}, q, P_{\tau}, A_{FB}(P_{\tau})$
 - $\alpha_{QED}(m_Z)$, $\alpha_s(m_Z) \rightarrow$ direct measurement vs. lattice calculations \rightarrow interpret data without having to trust lattice and test lattice calculations themselves
 - *WW*, *ZH*, *tt* thresholds, and above:
 - $m_{W'}$, $\Gamma_{W'}$, BR(W $\rightarrow \ell v$), $\alpha_s(m_z)$, m_t , triple and quartic gauge couplings
- Great precision needed to interpret potential deviations in terms of new physics → many EW precision observables to explore nature of BSM candidate signals

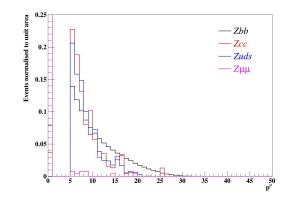
Soft muon based studies

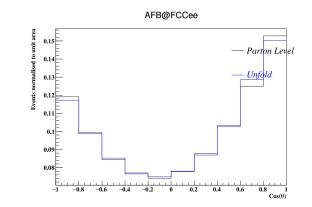
DOI: <u>10.17181/dpyb5-vnc32</u>

- Background studies:
 - $\circ \quad Z \to c \overline{c}$
 - $\circ \quad Z \rightarrow light$
 - $\circ \quad Z \to \mu \mu$
- Jet selection rejects most of $Z \rightarrow \mu\mu$
- Unfolding implemented:

- *b*-tagging cut will reduce the rest
 - cut on p_{μ} > 10 GeV will further

reduce them


0.15


0.1

0.05

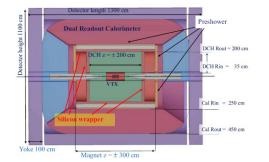
-0.05

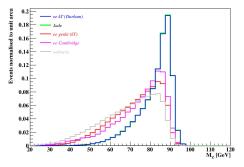
AFB@FCCee

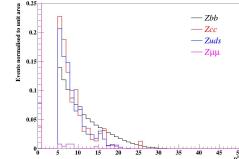
• Extraction of statistical and systematic uncertainty

-0.4

-0.6


-0.8 -0.6 -0.4 -0.2


0.4 0.6 0.8


Inverse Correlation Matrix

^b measurement at FCC-ee

- $A_{_{CR}}^{_{b}}$ measurement may be performed at the **FCC-ee**
 - 91.8 km circumference 0
 - 2045-2060 as e⁺e⁻, 2070-2090 as *pp* collider 0
 - feasibility study phase ongoing until 2027 0
- **Feasibility study on** *A_p* **at FCC-ee** based on **HEP-FCC/FCCAnalyses** framework
 - **EDM4HEP** for event generation 0
 - **Pythia8** for parton shower simulation Ο
 - **Delphes** for detector fast-simulation 0
- Software features:
 - **IDEA detector** concept Ο
 - **Durham ee-kT** jet algorithm used, Dire parton shower Ο
 - Simplified Delphes *b***-tagging** (flat 80% efficiency, 10%/1% 0 c/light-mistagging)
 - **b-quark charge** determined with: 0
 - jet charge built with weighted sum of charges of tracks (as saved by Delphes)
 - soft lepton (muon) tagging

Conclusions

- FCC-ee is not just a Higgs factory, but also an EW and Top laboratory
- Measurements of $A_{FB}^{\ b}$ (inclusive) and R_b (and $A_{FB}^{\ b}$) in exclusive *b*-hadron decays show encouraging results
 - negligible contribution from statistical uncertainty
 - systematic uncertainties dominating
 - discrimination between **b** and **b** would be of high importance
- Improvements in **Monte Carlo generators** and **flavour tagging performance** can help a lot
 - first look at jet tagger performance is promising
 - ParticleNet-based (by CMS)
 - IDEA detector concept
 - possibility to go **beyond pure** *b*-tagging
 - prospect of high purity (99%) in *s*-tagging for $\varepsilon_b = 0.1$