Measurements of top quark properties in CMS

tī spin density matrix, quantum entanglement & magic

Efe Yazgan (NTU) On behalf of the CMS Collaboration

National Taiwan University

Dink

EPS-HEP CONFERENCE 07-11 JULY, 2025 PALAIS DU PHARO **MARSEILLE, FRANCE**

J.S. Bell, CERN-TH-2926

Fig 1

Les chaussettes de M. Bertlmann et la nature de la réalité

Fondation Hugot juin 17 1980

* Most massive elementary particle known to date — very short lifetime.

distributions.

* But also, new ways to test Quantum Theory with unstable particles (quarks) at high energies in specific phase regions.

spin de-correlation

* Top-antitop spins stay correlated — could be inferred from the decay products' angular

* Polarization and spin correlation measurements provide tests of the Standard Model.

Full Spin density matrix measurement in the elutiets events

 Ω : unit vector in helicity basis. P: polarization vector. C: 3x3 spin correlation matrix κ: spin analyzing power

Lepton and d-type quark (from W) for max top quark spin transfer to decay products: $\kappa \rightarrow 1$.

$Q_m = \{P_n, P_r, P_k, \overline{P}_n, \dots, C_{nn}, C_{nr}, \dots, C_{kk}\}$ all probed by angular distributions

Spin density matrix measurement in the e/μ +jets events

* Machine learning for top reconstruction including d-type quark id.

* Inputs: lepton kinematics, missing energy, jet kinematics, b-tagging scores.

4

- * tt signal: POWHEG+Pythia8+EWK corrections from HATHOR & uncertainties for higher order QCD from POWHEG MINNLO. Decays and correlations simulated at leading order.

 - Event categories: lepton flavor, number of b-tags, S_{NN} score
 - Reject low fraction of correctly reconstructed events for $S_{NN} < 0.1$
 - $S_{high}(1b): S_{NN} > 0.30$ optimized to minimize uncertainties in spin $S_{high}(2b): S_{NN} > 0.36$ density matrix.
 - Fraction of correctly assigned jets (including d-type id): $\sim 40 - 50 \%$ for $S_{high}(2b)$

Full matrix measurement in bins of $m(t\bar{t})$ vs $|\cos\theta|$

PhysRevD 110 (2024) 112016

7

between two decay products in the helicity basis, $\cos \chi = \Omega \cdot \overline{\Omega}$

 $\tilde{\chi} = -\Omega_n \bar{\Omega}_n + \Omega_r \bar{\Omega}_r + \Omega_k \bar{\Omega}_k$

Quantum entanglement from tī spin density matrix

8

Quantum entanglement from tt spin density matrix

p₋(t) < 50 GeV

 $m(t\bar{t}) > 800 \text{ GeV}$ $|\cos(\theta)| < 0.4$

PhysRevD 110 (2024) 112016

* First observation of entanglement at high $m(t\bar{t})$ where $\sim 90\%$ of observed $t\bar{t}$ are space-like separated.

Quantum « magic »

* Quantum Magic quantifies computational advantage of quantum over classical states. * Entanglement by itself doesn't guarantee this.

For mixed states le.g. two-qubit tt system):

* Zero magic \leftrightarrow classical computer. * \tilde{M}_2 is nonlinear and phase-space dependent: nonzero magic from $pp \rightarrow t\bar{t}$ doesn't mean the same thing for individual processes $qq \rightarrow t\bar{t}$ and $gg \rightarrow t\bar{t}$ b/c.

 $\tilde{M}_{2} = -\log_{2}\left(\frac{1 + \sum_{i \in n,k,r} [(P_{i}^{4} + \bar{P}_{i}^{4})] + \sum_{i,j \in n,k,r} C_{ij}^{4}}{1 + \sum_{i \in n,k,r} [(P_{i}^{2} + \bar{P}_{i}^{2})] + \sum_{i,j \in n,k,r} C_{ij}^{2}}\right)$

<u>CMS-PAS-TOP-25-001</u>

- * Calculation uses the spin density matrix measurement from the lepton+jets channel [PhysRevD 110 (2024) 112016]
- * First magic measurement from $t\bar{t}$ spin density matrix $\rightarrow \tilde{M}_2 > 0$
- * Depends on phase space region.
- * Good agreement with predictions.
- * Statistical uncertainties dominant.

Spin correlation in dilepton channel

* Top reconstruction

- * D variations from samples w/ different degrees of SM and no-spin correlation assumptions.
- * D measurement from binned-profile likelihood fit of $\cos \varphi$.
- * Fits including (and not) a ground state « toponium » (η_{t}):

* Non-relativistic QCD quasi-bound sta model at 343 GeV, cross section=6.4 pb.

> Petails in the next two contributions in this session by C. Schwanenberger & H. Li.

Quantum entanglement: dilepton channel

* > 5σ observation of entanglement irrespective of η_{t} .

* Including η_t improves the data/ simulation agreement.

Rep. Prog. Phys. 87 (2024) 117801

- * tt spin correlation measurements in dilepton and lepton+jets channels in agreement with SM expectations.
 - * Full spin-density matrix in the lepton+jets channel.
 - * First observations of entanglement between top quarks in top pair production.
 - * At production threshold in dilepton and high $m(t\bar{t})$ in lepton+jets channel.
 - * Quantum Magic measurement
 - * one of the first connections between quantum information science and particle physics.
 - * shows the potential of collider experiments for investigating foundations of quantum mechanics.

Summary

Reconstruction efficiency of the NN

Spin density matrix measurement in the e/μ +jets events

Fraction of correctly reconstructed events

Quantum entanglement (l+jets)

m(tīt) < 400 GeV

 $m(t\bar{t}) > 800 \text{ GeV}$ $|\cos(\theta)| < 0.4$

$$\Delta$$
 E crit = $f\Delta$ E sep + $(1 - f)\Delta$ E max

Quantum entanglement: dilepton channel

* Systematic uncertainties: toponium

 cross section variation +/-50% to account for missing octet contributions.

* binding energy variation +/-0.5 GeV.

Rep. Prog. Phys. 87 (2024) 117801

