

collaboration

Reconstruction of Complex Particle Trajectories in the SuperNEMO Detector

SuperNEMO detector

- Powerful tool to study the physics of double beta ($\beta\beta$) decays \bullet
- Taking data since April 2025 \bullet
- $\beta\beta$ standard observable sum of the two electrons' energies
- **Unique design = calorimetry + tracking:** •
 - Full event topology reconstruction (decay angle, single e⁻ energy)
 - Allows to study **exotic** $\beta\beta$ modes and its mechanisms

Track reconstruction problems

- Magnetic field currently turned off \rightarrow straight line trajectories
- The problem is in 3D, but the difficult part is in the horizontal plane:
 - 3 exemplary tracker hits = 3 triggered anode wires (x_i, y_i) and 3 measured distances R_i = 3 circles
 - **Goal: find common tangent line**

Two-neutrino ^Ve $\beta\beta$ decay

- Main components:
 - Source foil: 6.11 kg of ⁸²Se
 - **Tracker:** multiwire chamber (2034 drift cells) \rightarrow **topology**
 - **Segmented calorimeter:** 712 optical modules → **energy**
 - ²⁰⁷Bi calibration system: 7 x 6 grid of point-like deployable sources

Tracker cell

• 44 x 44 x 3030 mm³ drift cell in Geiger mode

- field shaping wires 0 V
- Measures position of a passing charged particle:
 - Electron avalanche \rightarrow Distance to anode wire $(r) \rightarrow$ Tracker hit = circle
 - Plasma propagation \rightarrow Vertical position (z)

- Ideal situation: Mathematically precise data
- **Realistic situation:** measurement errors (no exact solution)

Full 3D problem (simple if the 2D solution is known)

Problem of ambiguity – which track is real?

- Tracker hits aligned on a line \rightarrow **mirror symmetry** = 2 equal solutions
- Impossible to decide based on tracker data only \rightarrow We need both solutions!
- Different possible orientations of the symmetry line

Problem of kinked trajectories

- Sudden change in direction of the particle \rightarrow kinked trajectory (polyline model)
- How do we distinguish between two straight tracks and one kinked track?

Cimrman Reconstruction Module

Input tracker data

Clustering phase Iteratively switching between: 1. Spatial separation of hits \rightarrow optimization

(uses local characteristics)

Legendre transform method \rightarrow 2D line fit estimates (uses global characteristics)

Clustered data

tangent to the track

- (4 clusters found 5 line fits estimated)
- Fitting phase Maximum likelihood fits of identified clusters \rightarrow Precise 3D line fits
- Detection of ambiguities \rightarrow mirroring 3D line fits
- Combining ambiguities into alternative solutions

Solution 1

20

Solution 2

Fitted linear parts

Connection phase Connecting linear segments

- into polyline trajectories based on:
- vertical distance
- horizontal distance
- kink angle
- kink position
- etc.
- Additional refinements of clustering and fitting decisions based on the trajectory shape

 \rightarrow Polyline trajectories

This contribution was supported with the grant No. 24-10180S.

Tomáš Křižák on behalf of the SuperNEMO collaboration

