

EPS-HEP CONFERENCE 07-11 JULY, 2025 PALAIS DU PHARO MARSEILLE, FRANCE

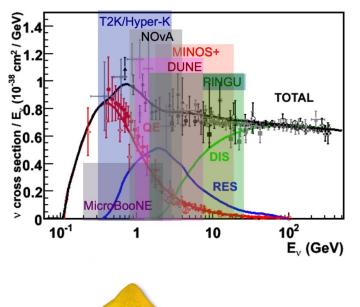
Neutrino-argon cross-section measurements from the MicroBooNE experiment

Holly Parkinson

(on behalf of the MicroBooNE Collaboration)

University of Edinburgh

9th July 2025


THE UNIVERSITY of EDINBURGH

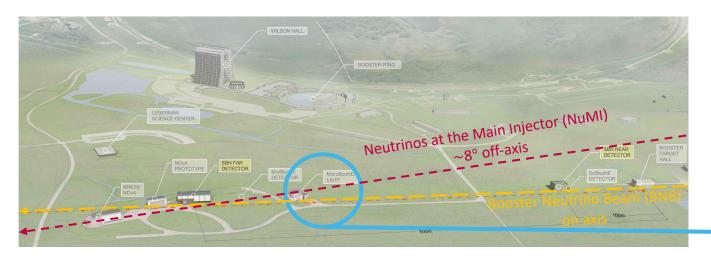
Outline

- The MicroBooNE detector
- Analysis techniques
- Cross sections at MicroBooNE
 - In-depth kinematic studies
 - Pion production
 - Neutrinos and antineutrinos

'EDINBURGH

- Rare production channels
- Low-energy regime

• Future analyses

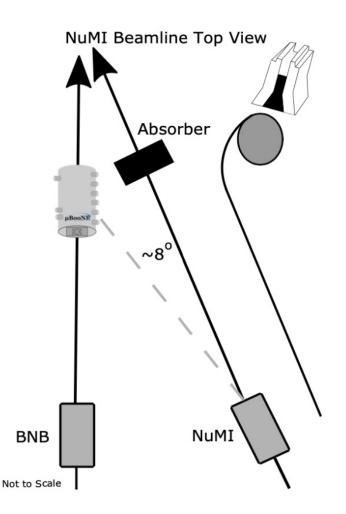


32 cm

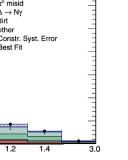
 p_n

The MicroBooNE Detector

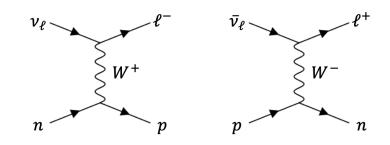
• The Micro Booster Neutrino Experiment is a short baseline neutrino experiment at Fermilab (IL, USA)


MicroBooNE 470 m from BNB target ~680 m from NuMI target

- Operated from 2015 2021
 - Large, well-understood dataset of neutrino-argon interactions


One detector, two beams

- MicroBooNE receives neutrinos from two beams:
 - Booster Neutrino Beam (BNB)
 - target 470 m from MicroBooNE, on axis
 - 8 GeV protons, Be target
 - $< E_{\nu_{\mu}} > \approx 800 \text{ MeV}$
 - 0.5% v_e and $\overline{v_e}$, 99.5% v_μ and $\overline{v_\mu}$
 - Neutrinos at the Main Injector (NuMI)
 - target ~ 680 m from MicroBooNE, off axis (8°)
 - 120 GeV protons, C target
 - $< E_{
 u_{\mu}} > \approx$ 500 MeV
 - 2.5% v_e and $\overline{v_e}$, 97.5% v_μ and $\overline{v_\mu}$

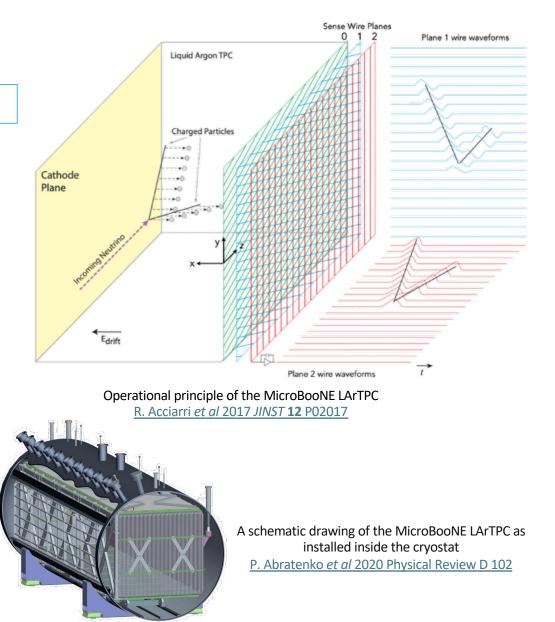

MicroBooNE's physics goals

- Advancing LArTPC technology
- Investigating MiniBooNE's 'low energy excess'
 - LArTPC has capability to address anomaly
- Beyond Standard Model searches
- Neutrino-argon cross-section measurements

uBooN

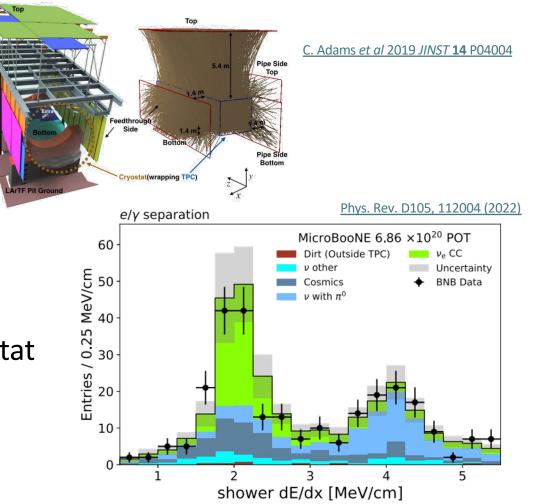
Phys. Rev. D 103, 052002

E^{QE} (GeV)


NuMI DATA: RUN 10811. EVENT 2549. APRIL 9.

LArTPCs

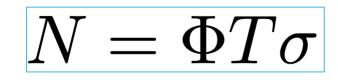
DUNE will use this technology!

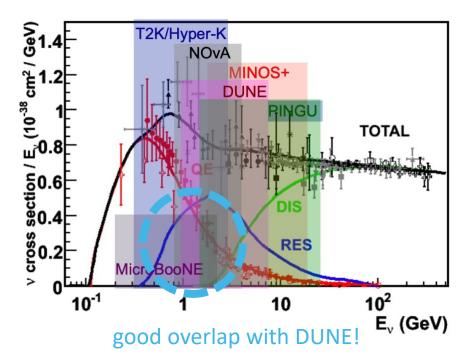

- Liquid Argon Time Projection Chambers
 - Charge drifted and collected to precisely reconstruct track positions and calorimetry
 - Light used to identify times and reject nonbeam background
- MicroBooNE has...
 - 85 tonne active volume
 - 3 planes of wires (vertical, +60°, -60°), 3 mm spacing, for charge collection
 - 32 PMTs to detect scintillation photons

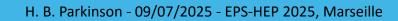
DINBURGI

MicroBooNE's LArTPC Capabilities

- mm-level spatial resolution (3 mm)
 - 3D interaction images
- Fully active tracking calorimeter: precise energy resolution
- Excellent particle identification
 - Including distinguishing electrons from photons
- Cosmic Ray Tagger (CRT) installed around cryostat to improve cosmic background rejection
- Automated reconstruction

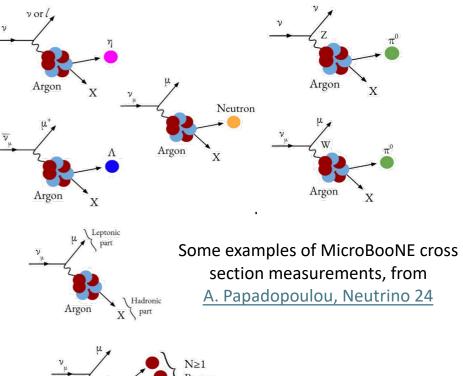


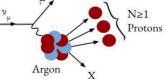

Cross-sections at MicroBooNE



Why ν -Ar cross sections ?

- Furthers understanding of how neutrinos interact with matter
- Crucial for next generation experiments, such as **DUNE**
 - Cross sections probe of nuclear effects
 - Reducing uncertainty on neutrino-nucleus interactions is crucial
 - Allows testing and improvement of nuclear and FSI modelling
- Important for **oscillation analyses**
 - Measuring expected number of events





Cross sections at MicroBooNE

- MicroBooNE possesses a large, wellunderstood neutrino-argon interaction dataset after 5 years of data taking
 - Accurate energy reconstruction for kinematics
 - State-of-the-art modelling
- over 20 ν -Ar cross sections published
 - First measurements of many v-Ar interactions

Our published cross section papers...

CC inclusive

- 1D ν_{μ} CC inclusive @ BNB, PRL 123, 131801
- 1D ν_{μ} CC E $_{\nu}$ @ BNB, PRL **128**, 151801
- 3D CC E_v @ BNB, arXiv:2307.06413
- 1D v_e CC Inclusive @ NuMI, PRD **104** 052002, PRD **105** L051102
- 2D ν_u CC0pNp inclusive @ BNB, arXiv:2402.19216, arXiv:2402.19281

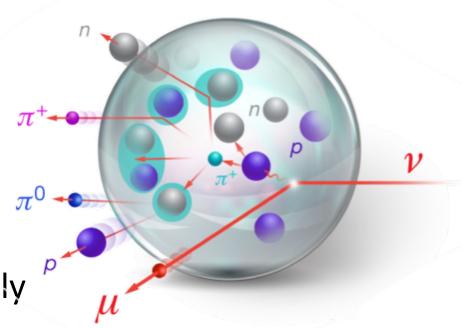
Rare channels & novel techniques

- η production @ BNB, PRL 132, 151801
- A production @ NuMI, PRL 130, 231802
- K⁺ production @ BNB, arXiv:2503.00291
- Neutron identification, arXiv:2406.10583

CC0π

- 1D ν_e CCNp0π @ BNB, PRD **106**, L051102
- 1D & 2D ν_{μ} CC1p0 π TKI @ BNB, PRL 131, 101802, PRD 108, 053002
- 1D & 2D ν_{μ} CC1p0 π GKI @ BNB, PRD 109, 092007
- 1D ν_{μ} CC1p0 π @ BNB, PRL **125**, 201803
- 1D ν_{μ} CC2p @ BNB, arXiv:2211.03734
- 1D ν_{μ} CCNp0 π @ BNB, Phys. Rev. D **102**, 112013
- 2D ν_μ CCNp0π @ BNB, arXiv:2403.19574
 1D & 2D ν_μ CC0π @ BNB, arXiv:2507.00921

Pion production


- $\nu_{\mu} NC\pi^{0}$ @ BNB, PRD **107**, 012004
- 2D ν_{μ} NC π^{0} @ BNB, arXiv:2404.10948
- $\nu_{\mu} CC\pi^{0}$ @ BNB, arXiv:2404.09949

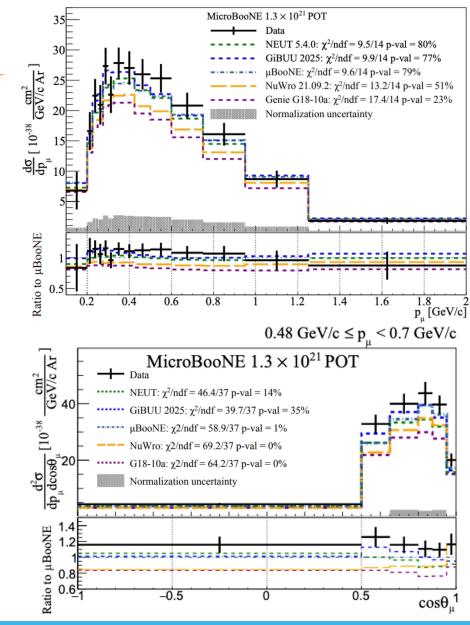
...with several more in progress, plus many technical papers!

Motivation

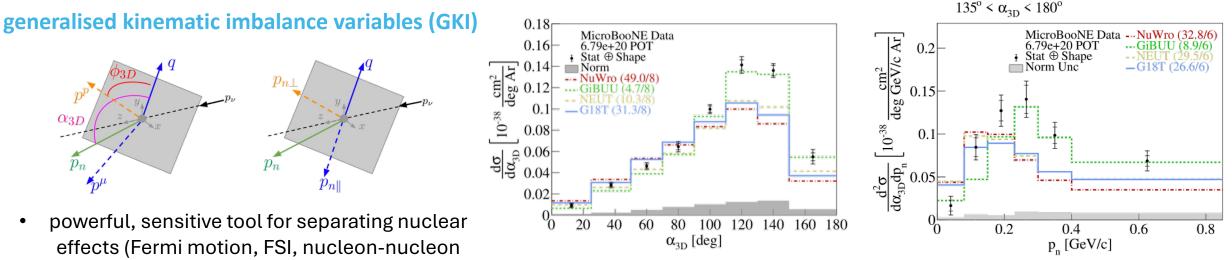
- Understanding **nuclear interactions** is a big challenge
- Pions and kinematic imbalances are of interest to the community as they are typically poorly described by models

• Modelling **backgrounds** is essential as they may obscure new physics

→ MicroBooNE's recent results provide insights into these issues

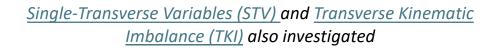

In-depth kinematic studies

- Important for model discrimination
 - Atmospheric neutrinos

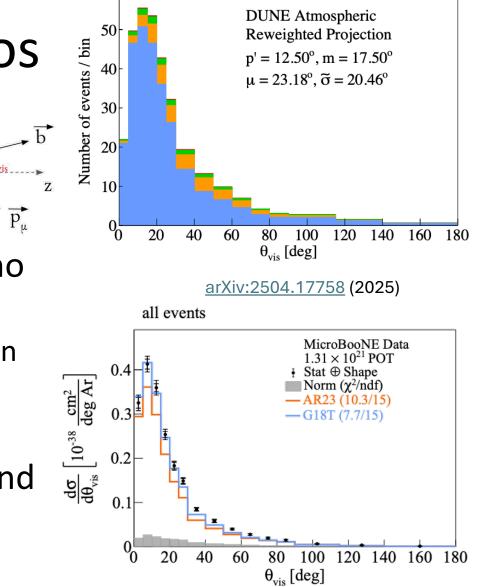

$v_{\mu} CC0\pi \quad \Leftrightarrow \text{Brand new: July 1st 2025!} \Leftrightarrow \frac{\text{https://arxiv.org/pdf/2507.00921}}{\text{https://arxiv.org/pdf/2507.00921}}$

- Signal dominated by QE-like interactions
- Good data-generator agreement for single-differential measurements
- Few generators are able to adequately describe the data in double-differential distributions
 - GiBUU 2025 performed best
- Allows comparison with Cherenkov detector experiments

CC1p cross sections using kinematic imbalance


- first flux-integrated single and double-differential cross section measurements in these variables using v_{μ} -Ar CC1p0 π interactions

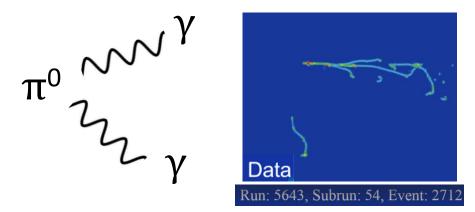
 powerful, sensitive tool for separating nuclear effects (Fermi motion, FSI, nucleon-nucleon correlation), while minimizing the correlation to the neutrino energy

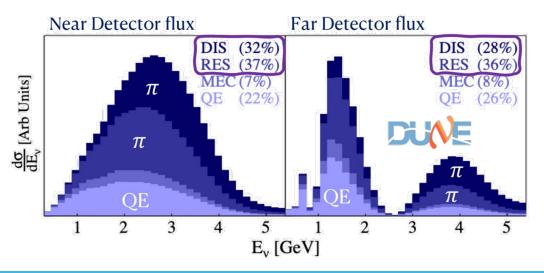

flux-integrated single-differential cross section, clear model discrimination; double-differential also presented

Phys. Rev. D 109, 092007

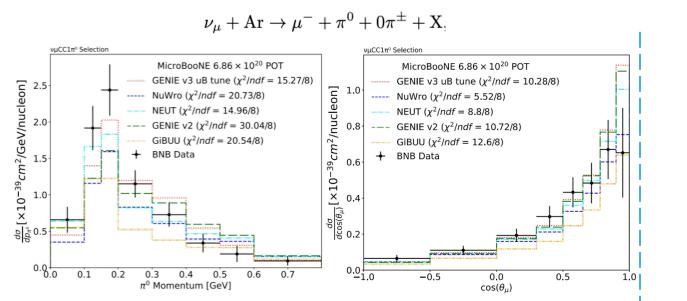
AKI for atmospheric neutrinos

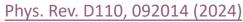
- Angular Kinematic Imbalance
- Validation for a method to infer the neutrino direction, for 1µ1p atmospheric detection
 - Used to inform sub-GeV atmospheric oscillation studies for DUNE
- Differential cross sections sensitive to FSI and hadron reinteractions

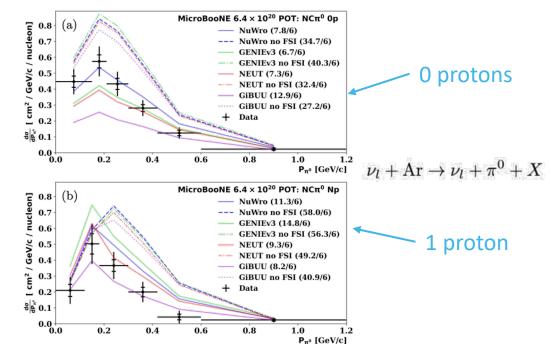

Pion production


- Poorly modelled
- Relevant for DUNE energy reconstruction
 - Background source

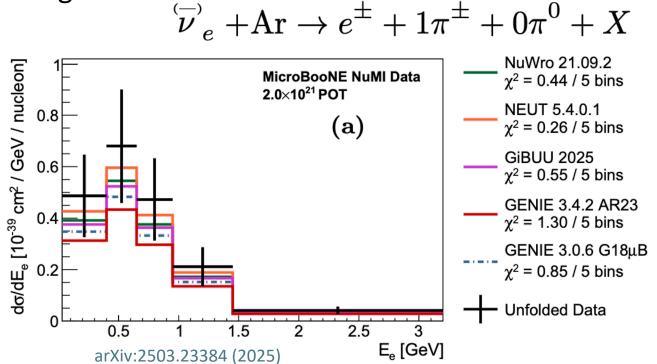
Pions at MicroBooNE


- π^0 are an important background in ν_e searches
 - A π^0 interaction produces 2 showers, but if 1 is missed, it can look like a ν_e interaction
- Resonant pion production historically underconstrained
 - Model improvement needed in QE-SIS-DIS region




First $CC\pi^0/NC\pi^0$ differential cross sections on Ar **CC**π⁰ NCπ⁰

- Differential cross sections presented in muon momentum, • neutrino-muon scattering angle, and muon-pion opening angle
- Good data-generator agreement except for forward muon angles and medium momentum ranges

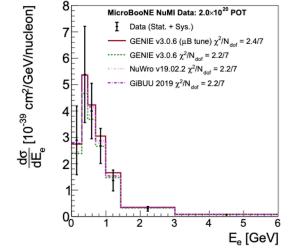


- Double-differential cross section in $\cos(\theta_{\pi^0})$, P_{π^0} also published
- FSI models favoured by data; useful study as NC π^0 often underestimated by generators Phys. Rev. Letters 134, 161802 (2025)

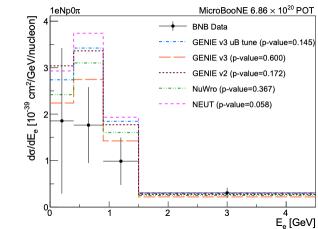
First v_e and $\overline{v_e}$ CC π^{\pm} flux-averaged cross section on Ar

- First ever differential $v_e + \overline{v_e} \ \mathbf{1}\pi^{\pm}$ cross section on argon
 - electron energy, electron and pion angles
- Total cross section (0.93 ± 0.13 (stat.) ± 0.27 (syst.)) × 10⁻³⁹ cm²/nucleon
 - Mean v_e and $\overline{v_e}$ = 730 MeV
- Good model agreement seen
 - Full dataset $v_e \ {
 m CC} \ 1\pi^+$ coming soon

Neutrinos and antineutrinos


Nuclear effects

Important for future oscillation experiments


$v_e/\overline{v_e}$ cross sections

- Due to being off-axis, NuMI provides MicroBooNE a higher flux of v_e and $\overline{v_e}$
 - Neutrino cross sections probe nuclear effects, needed for DUNE oscillation experiments
 - Antineutrinos historically less studied
 - BNB has smaller v_e content, but exclusive measurements are possible!
- Inclusive measurements of $v_e + \overline{v_e}$, performed; exclusive v_e and $\overline{v_e}$ measurements in progress
 - Machine learning techniques

Unfolded inclusive v_e and $\overline{v_e}$ charged current differential cross section

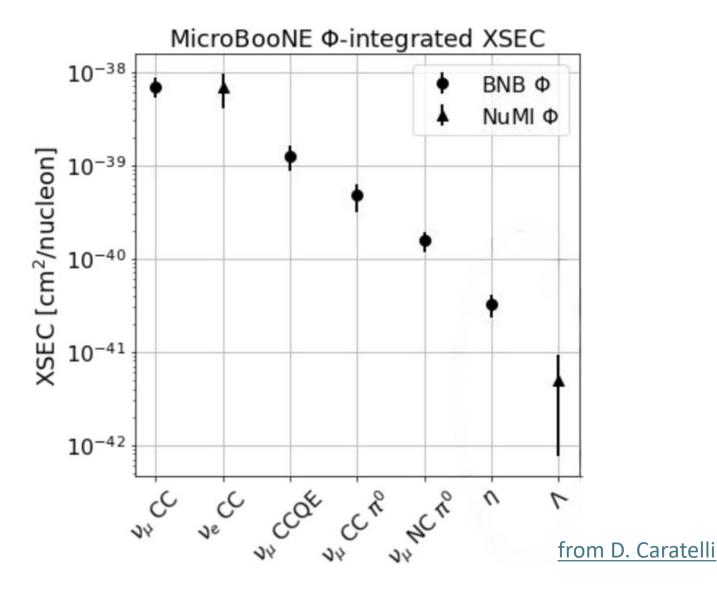
Phys. Rev. D 105, L051102 (2022)

Unfolded differential exclusive v_e cross section (1eNp0 π)

Phys. Rev. D 106, L051102 (2022)

Rare production channels

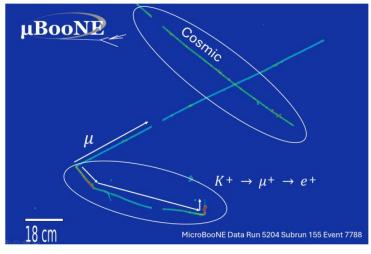
First measurements on argon

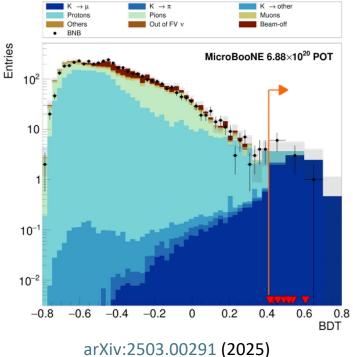

Backgrounds for DUNE nucleon decay searches

Rare channels

Plot of MicroBooNE's total cross sections across orders of magnitude

EDINBURGH

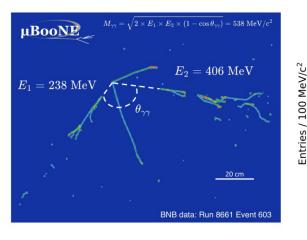


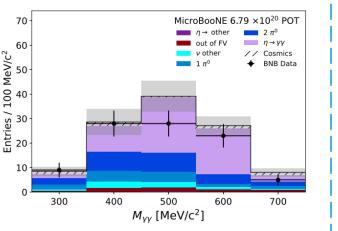

Kaon production

$$\nu_{\mu} + \operatorname{Ar} \rightarrow \mu^{-} + K^{+} + X$$

- First measurement of v_{μ} -induced K^+ production on Ar
- 10 candidate events selected using BDT
- Crucial for background mitigation for DUNE nucleon decay searches

Generator	cross section $(10^{-42} \text{cm}^2/\text{nucleon})$
GENIE v2.12.10	8.67
GENIE v3.00.06	8.42
NEUT 5.4.0.1	9.71
NuWro 19.02.1	10.87
MicroBooNE Data	$7.93 \pm 3.27 \; { m (stat.)} \pm 2.92 \; { m (syst.)}$

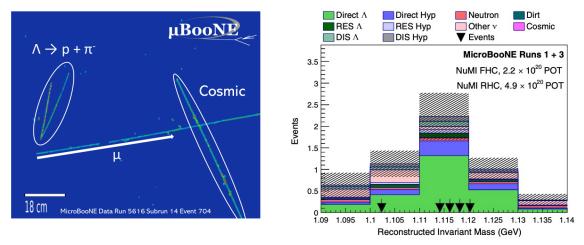




Rare channels

Important for constraining backgrounds for nucleon decay searches and investigating high order resonances

η meson production


3.22 ± 0.84 (stat) ± 0.86 (syst) $\times 10^{-41}$ cm²/nucleon

- powerful probe of higher order resonances
- novel calibration technique for EM showers in accelerator experiments

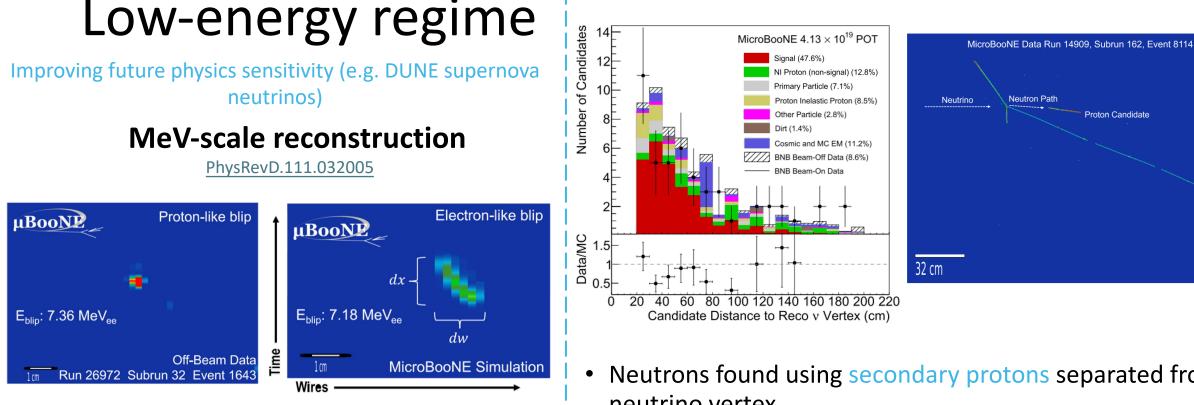
PhysRevLett.132.151801

Λ baryon production

$$\bar{\nu}_{\mu} + \mathrm{Ar} \rightarrow \mu^{+} + \Lambda + X$$

$2.0^{+2.2}$ _{-1.7} × 10⁻⁴⁰ cm²/Ar

• first measurement of this Cabibbo-suppressed process on Ar <u>PhysRevLett.130.231802</u>


Low-energy regime

- High reconstruction resolution
- Pushing the limits of LArTPC technology

Neutron identification

Eur. Phys. J. C 84, 1052 (2024)

- Using 'blips': MeV-scale energy depositions
- Verifies electron energy calibration to few percent

- Neutrons found using secondary protons separated from neutrino vertex
 - Applicable to other LArTPCs
 - Measures neutron production from neutrinos; could provide statistical separation between neutrinos and antineutrinos
- Prospects for efficiency improvements

µBooNE

Future analyses

- Several cross section measurements in progress...
- New/extended results expected using whole dataset, or NuMI + BNB
- Implementing updated NuMI flux
 - More accurate with better geometric and physics models

CC inclusive

- ν_{μ} CC inclusive @ NuMI
- v_e/v_μ ratios @ BNB, NuMI
- 3D E_{ν} , E_{μ} , E_{had} @ NuMI & BNB
- anti-ν_e @ NuMI

Pion production

- ν_{μ} CC1 π^+ @ BNB & NuMI
- $\nu_{\mu} CCN\pi @ NuMI$
- 1D ν_μ CCπ⁰ @BNB
- 2D ν_{μ} CC/NC π^0 @ BNB
- 2D $\nu_{e,\mu}$ NC π^{0} @ BNB

CC/NC 0π

- 2D ν_{μ} CC1p0 π GKI @ BNB
- 2D ν_µ CCNp0π @ BNB
- 1D ν_e CC0 π Np @ NuMI
- 1D ν_{μ} NC1p0 π @ BNB

Rare channels & novel techniques

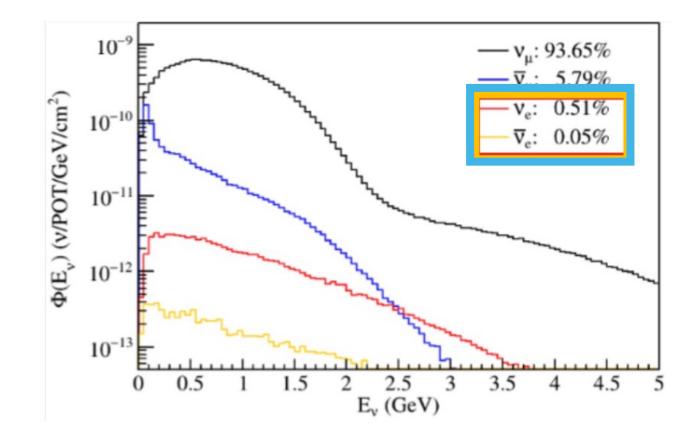
- MeV-scale physics
- Low-energy neutrons @ BNB

Summary

- MicroBooNE is a LArTPC neutrino detector based at Fermilab
 - Large, well-understood v-Ar interaction dataset, several first measurements of v-Ar interactions
- Recent results in pion production, detailed kinematics, rare channels, and MeV-scale regime
 - background constraints and model studies critical for the broader LArTPC neutrino physics program
- Still more to come!
 - Further analyses aim to utilise the full dataset, incorporate NuMI and BNB data together, and implement updated NuMI flux



Thank you!



H. B. Parkinson - 09/07/2025 - EPS-HEP 2025, Marseille

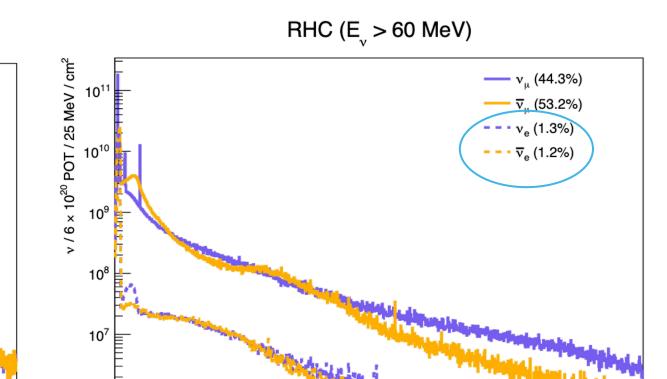
BNB flux at MicroBooNE

HBOONE THE UNIVERSIT

NuMI flux at MicroBooNE

ν_µ (63.4%)

√
 (34.0%)

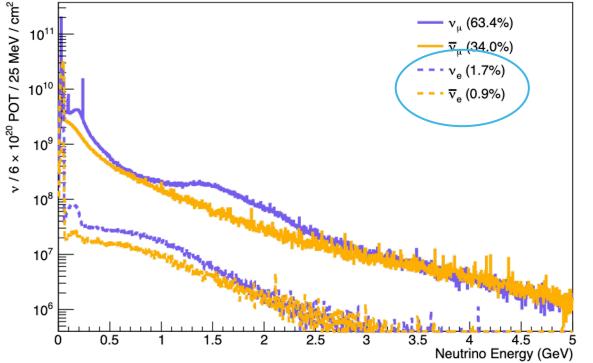

ν_e (1.7%)

FHC ($E_v > 60 \text{ MeV}$)

10¹¹

10¹⁰

µBoon


2

2.5

3.5

3

1.5

of EDINBURGH

10⁶

Ω

0.5

4.5

Neutrino Energy (GeV)

5