2025 European Physical Society Conference on High Energy Physics Palais du Pharo, Marseille, France

Physics results and $0v\beta\beta$ prospects

Ana Sofia Inácio, on behalf of the SNO+ collaboration

The SNO+ Detector

Multi-purpose neutrino detector located at SNOLAB in Sudbury, Ontario, Canada

SNO+ Timeline

905t ultra-pure water

soot ultiu puie water

detector calibration and external background measurements

<u>Phys. Rev. D 110, 122003</u> <u>Phys. Rev. D 99, 032008</u> Phys. Rev. Lett. 130, 091801

Partial-fill phase

paused filling due to COVID-19 at 370 t LS with 0.6 g/L PPO

measurement of scintillator backgrounds

<u>Eur. Phys. J. C 85, 17</u> Phys. Rev. D 109, 072002

Scintillator phase

780 t LS 0.6 - 2.2 g/L PPO, 2.2 mg/L bisMSB

characterisation of scintillator and backgrounds solar, supernova, reactor and geo neutrinos...

Te-loaded phase

Initial Te loading: 0.5% by mass

 $0\nu\beta\beta$ search

Loading to begin early 2026

Physics results with Scintillator

• ⁸B solar neutrino measurements via neutrino-electron elastic scattering

• ⁸B solar neutrino measurements via neutrino-electron elastic scattering

Scintillator phase

- Parallel flux and oscillation analyses
- External backgrounds become negligible in stricter fiducial volume possible future sensitivity < 3 MeV!
- Analyses techniques to reduce ²⁰⁸Tl contributions: tagging, multisite discrimination

• CC interaction on ¹³C is possible, but not yet observed with solar neutrinos

- 1.1% isotopic abundance of ¹³C
- 17 events/year expected in SNO+
- Long half-life of 10 minutes

13**C**

• Low cosmogenic backgrounds due to SNO+'s depth (0.001 ev/year after cuts)

• CC interaction on ¹³C is possible, but not yet observed with solar neutrinos

13**C**

• CC interaction on ¹³C is possible, but not yet observed with solar neutrinos

Measured cross section $\langle \sigma(E_{\nu}) \rangle = (1.7 \pm 0.8) \times 10^{-42} \text{ cm}^2$

4 signal-like events detected in 225 days of data giving 3.80 significance

13C

First ever measurement of ⁸B solar neutrino CC interactions on ¹³C!

Antineutrinos in SNO+

• Antineutrinos from earth and reactors detected via Inverse Beta Decay

- Majority of antineutrinos from reactors at 240 km and 350-355 km
 - + antineutrinos from reactors at varying distances
 - + geoneutrinos
- (α, n) reactions are main background
 - Major source of α is ²¹⁰Po
 - Factor ~5 smaller from partial fill to full fill phase

Approximately 100 reactor- $\bar{\nu}$ IBDs are expected within the AV per year. And about 25 geo- $\bar{\nu}$ IBDs per year (after oscillations)

Antineutrinos in SNO+

• With 134.4 days of data of the full fill phase

	Expectation	Fit (Uncon.)	Fit (Con.)
Reactor- $\overline{\nu}$ IBD (α, n) Geo- $\overline{\nu}$ IBD ²¹⁴ BiPo-like Accidental	27.9 ± 0.8 18.2 ± 5.2 7.2 1.1 ± 1.1 0.3 ± 0.0	$\begin{array}{c} 25.1^{+6.4}_{-2.1} \\ 17.2^{+4.5}_{-4.4} \\ 12.0^{+7.4}_{-6.8} \\ 1.2\pm1.1 \\ 0.3\pm0.0 \end{array}$	$\begin{array}{c} 27.5{\pm}0.9\\ 17.2{}^{+4.5}_{-4.4}\\ 11.1{}^{+7.1}_{-6.6}\\ 1.2{\pm}1.1\\ 0.3{\pm}0.0 \end{array}$
Total	54.7	55.8	57.3
Observed	59	59	59

Second-most precise measurement of $\Delta m_{21}^2 = 7.96^{+0.48}_{-0.42} \times 10^{-5} \text{ eV}^2$ First measurement of geo- $\bar{\nu}$ in the Western hemisphere (3rd ever): 73⁺⁴⁷_{-43} TNU

- Result agrees with KamLAND, tension with solar Δm^2_{21}
- More data and analysis improvements on-going
- Addition of time-based (*α*,n) classifier for background reduction

Towards a Te-loaded SNO+

Major advantages of ¹³⁰Te

- No need for enrichment
- Long $2v\beta\beta$ half-life (8.76x10²⁰ years^{*})
- High Q-value at 2.527 MeV

Major advantages of ¹³⁰Te

- No need for enrichment
- Long $2v\beta\beta$ half-life (8.76x10²⁰ years^{*})
- High Q-value at 2.527 MeV

3. Phased loading approach for constraints to detector model and study of backgrounds

Expected sensitivity of 2x10²⁶ years after 3 years (90% CL) With 0.5% natTe loading

- Planned future higher loadings
 - Potential to cover the whole inverted ordering band
 - R&D shows good optical properties and long term stability
- 5 years with increased 1.5% natTe loading $T_{1/2} > 7.4 \times 10^{26}$ years (90% CL)

Summary

- SNO+ is preparing to load Te into the liquid scintillator!
- $0\nu\beta\beta$ milestones:
 - Study and monitoring of all backgrounds before Te
 - Characterization of detector response
- In the meantime, a lot of on-going analyses:
 - First observation of solar neutrino CC interactions on ¹³C
 - Second most precise measurement of Δm^2_{21}
 - First measurement of geoneutrino flux in Western hemisphere
 - Live for supernova
 - And many more
- All measurements improving with additional data

Thank you

on behalf of the SNO+ collaboration

Backup

SNO+ Water Phase

2017 2018 2019

May - December 2017 October 2018 - June 2019Much lower Rn backgrounds(~115 gold physics days) (~185 gold physics days)from installation of cover gasFirst SNO+ water phaseSecond SNO+ water phaseshielding

Major Outcomes

- Improved limits for invisible modes of nucleon decay <u>Phys. Rev. D 99, 032008 (2019)</u> <u>Phys. Rev. D 105, 112012 (2022)</u>
- Measurement of ⁸B solar neutrinos
 <u>Phys. Rev. D 99, 012012 (2019)</u>
- First measurement of reactor antineutrinos using pure water <u>Phys.Rev.Lett 130, 091801 (2023)</u>

0vββ Milestones

- Optical calibration of the detector components (external water, acrylic, PMTs) <u>JINST 16 P10021 (2021)</u>
- Measurement of external backgrounds

External Backgrounds in Water Phase

- Simple detector configuration
- Measure components that don't change with detector medium

Contribution of external backgrounds to $0\nu\beta\beta$ ROI is 50% smaller than expectations (some based on upper limits)!

Continuing to monitor the rate and source of the external backgrounds in the next phases

Scintillator Backgrounds

• Monitoring internal U/Th levels

Solar Directionality in SNO+

- Solar neutrino direction reconstructed event-by-event in 0.6 g/L PPO scintillator!
 - Directional Cherenkov light separated from isotropic scintillation light using timing information
 - First demonstration in a high light-yield, large-scale detector

