Advancements in the Hadronic Tau
Reconstruction and Identification at CMS
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Challenges

Why 77 Discriminate hadronically decaying 7(z;,) from
collimated jets represents the greatest challenge ~ BUT also light leptons can be
 Excellent probe for Electroweak t misidentified as 7
interactions |
 Study CP properties of the Higgs - * Muons: mainly affect the
e Search for additional Higgs decay with only one

- +
bosons, long-lived particles, charged particle (77)
leptoquarks, etfc. e Electrons: can emit photons

T decays to hadrons and mimic the h*z° decay

in ~ 65% of the cases 7, decay into h* h¥h*z®  Jet resembling a z,

The (new) standard:
HPS + DeepTau v2.5

Hadron-Plus-Strip (HPS) algorithm[1]
combines within jet-seeded regions:

« Charged Hadrons (h*) reconstructed by

Unified jet taggers:
PNet & UParT

& : :

. S 7, Are reconstructed as jets with the
.. 0

R anti-kt algorithm([5], AR = 0.4

.:"Ph°t°" e Pileup mitigation is performed by the
CHS or PUPPI algorithm[é]

A
hadron *

Particle Flow (PF)
. 7¥ candidates reconstructed as clusters
of photons and e, called Strips

It reconstructs the 7, decay products in the
main decay modes. Tot. 90% efficiency
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The unified taggers[/] perform bofth jef flavour and 7, idenfification tasks

DeepTau v2.5[2]:. Convolutional-Neural-Network-based algorithm improved PNet: UParT:

with respect fo ifs predecessor, v2.1(3] e Graph-Neural-Network-based e ParticleTransformer[9] (attention-based)
* Domain adaptation techniques[4] to mitigate data-simulation disagreement e Particle Cloud representation for e Particle Cloud representation

* Shuffle and Merge o balance events across all regions of the phase space jets[8] to efficiently incorporate « Adversarial training for robustness

e Improved Feature Standardization and Hyperparameter Optimization low level information against simulation mismodeling

Improvement in classification performance
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W jets >30% less W jets 8 102 :

m POV jet bkg . Y E e Worse performance in lepton

rejection. The increase in fake
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rates is ~50% in Z — 1,7, selection
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Th-jet tagging efficiency
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Improvement in data-simulation agreement * Separate network subclasses per
decay mode and charge

 Improvement in decay assignment
accuracy compared to HPS,
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e Domain adaptation techniques
successfully reduce discrepancy
between data and simulation

» Correction scale factors closer
to 1 with v2.5

e IMmprovement more pronounced

Lepton misidentification efficiency

Correction

0 g

especially for h* hTh* (") decay
e IMmproved ! counting

e Possiblility to recover genuine 7, not S
reconstructed by HPS TS EGIING Sieisncy

e Addition of 7, prregression

for lower pr and tighter WPs

¢ DeepTau v2.1
¢ DeepTauv2.5

Main limitation: unable to access individual 7, decay products
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