Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

EPS-HEP Marseille 9th of July 2025

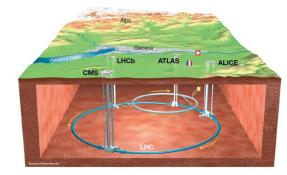
Raphaël Bertrand (Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France) on behalf of the ATLAS LAr community

Introduction

Experimental Context

- Large Hadron Collider (LHC)
 - Proton-proton collider at 13.6 TeV
 - Protons accelerated via superconducting magnets
 - Collisions at 40 MHz

- ATLAS detector
 - General-purpose experiment
 - Very high data rate
 - On-the-fly event selection required



Muon Detectors Tile Calorimeter Liquid Argon Calorimete Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker Tile extended barre LAr hadroni end-cap (HEC LAr electromagnetic and-cap (EMEC LAr electromagne

- Liquid Argon (LAr) Calorimeter

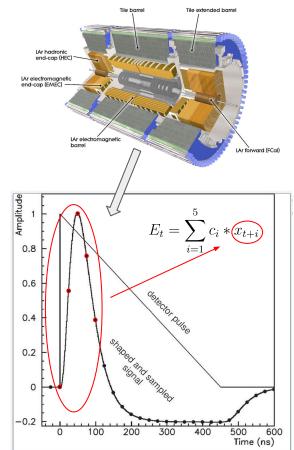
- ATLAS sub-detector for energy measurement (e^{-/+}, γ , hadrons)
- Sampling in active LAr alternating with inactive metal (Cu, Pb, W)
 - Accordion shaper absorbers for EMB and EMEC
 - Ionization signal from particle interactions

LAr forward (FCal)

Signal processing and energy reconstruction

- Electronic signal produced
 - Amplitude ∝ true deposited energy (E^{true})
 - Spans ~625 ns (25 proton-proton Bunch Crossings)
 - Shaped, sampled and digitized at 40 MHz
- Energy reconstruction with optimal filtering (OF) algorithm
 - Weighted sum of samples around the pulse peak
 - Max finder/Timing cut to select the correct BC

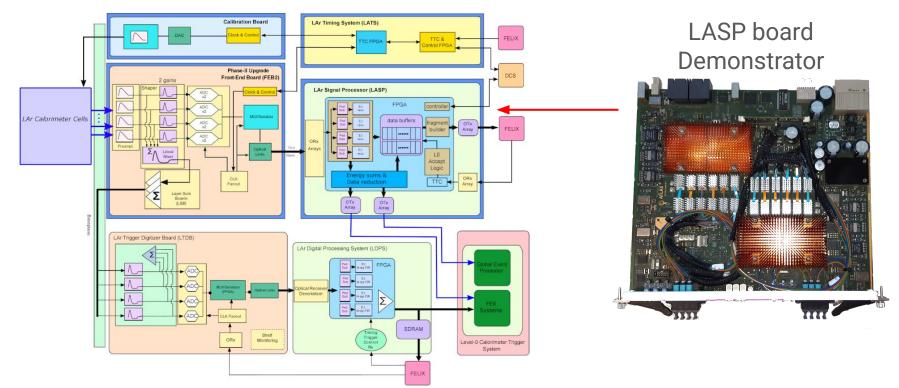
- Reconstruction algorithm requirements :
 - Online computation (per BC)
 - Max latency : ~125 ns (used in trigger system)
 - Fit in FPGAs : O(500) Multiply-Accumulate operations (MAC units)
 - > 5 MAC units required to implement OF
 - 384 channels per FPGA (many algorithm instances needed)



HL-LHC schedule

- Increased luminosity ⇒ Increased pileup
- HL-LHC is needed to study Higgs properties and detect new rare processes

New LAr readout electronics for energy computation



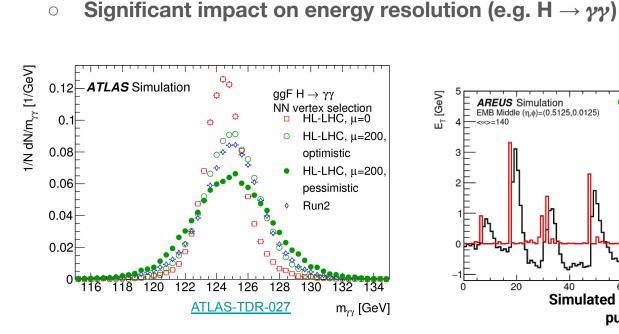
Off-detector readout board (LASP) will carry two state-of-the-art FPGAs for energy computation

An opportunity to embark more complex algorithms

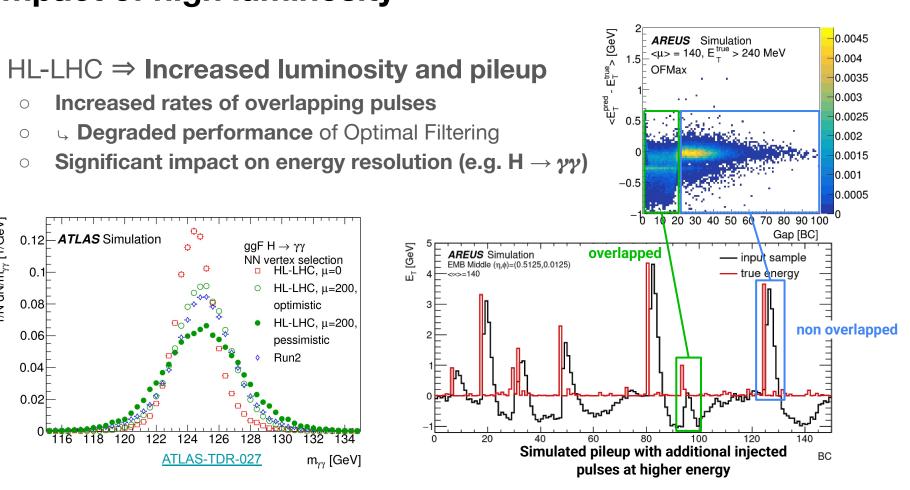
Impact of high luminosity

Ο

 \bigcirc



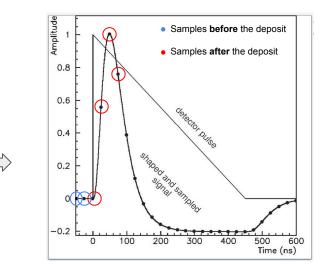
[GeV]

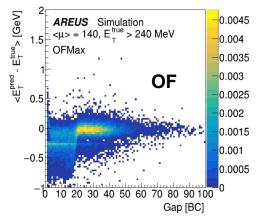


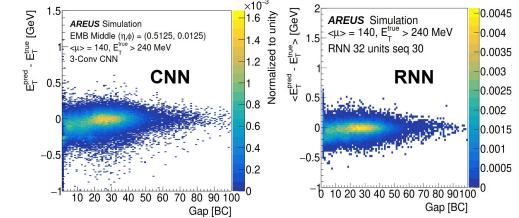
Neural network approaches as energy reconstruction algorithms

Neural network architectures (1/3)

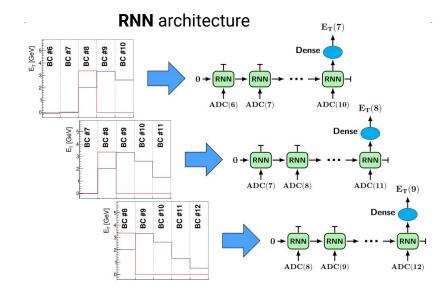
- Exploit samples before the energy deposit to correct overlapping pulses
- Several architectures tested : CNN, RNN, Dense layer-based
- Samples from before and after the energy deposit are used :
 - After the energy deposit (similar to OF inputs)
 - Capture the pulse amplitude
 - Before the energy deposit (additional inputs)
 - > Correct for pulse distortions from previous deposits
- Preliminary studies done with high rate of pulse overlap
 - Neural networks can correct for overlapping pulses
 - The correction is **dependent on the size** of network



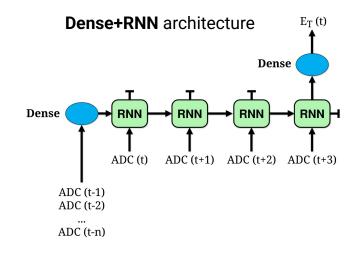




Neural network architectures (2/3)



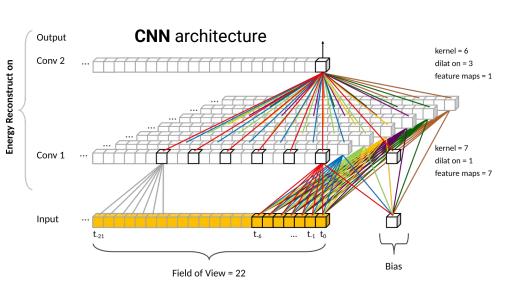
- $RNN \rightarrow One Vanilla RNN cell per sample$
 - Same parameters shared for all the cells
- This architecture has a low latency and but requires high number of MAC units



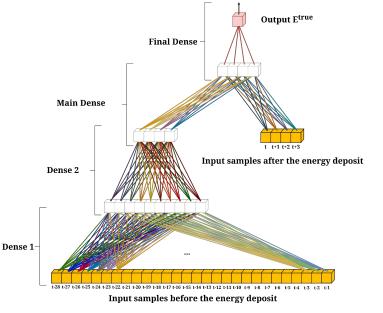
- Dense+RNN \rightarrow RNN architecture optimization
 - Dense for samples before the deposit
 - Vanilla RNN cells for samples after the deposit
- This architecture has a **low latency** and requires **lower number of MAC units** than RNN.

Neural network architectures (3/3)

Dense architecture



- $CNN \rightarrow Convolutional layers$
 - Capture features in the sequence
- This architecture requires **low number of MAC units** but has a **high latency**.

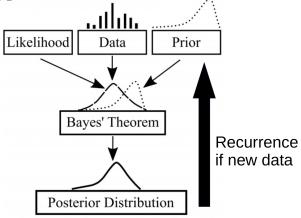


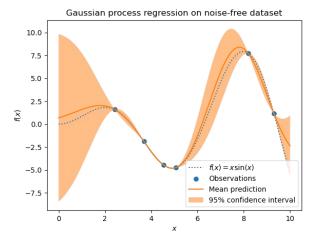
- Dense \rightarrow only use Dense layers
 - Multiple Dense applied on samples before the deposit
 - Samples after the deposit are used on the latter layers
- This architecture requires **low number of MAC units** and has a **moderate** latency

Neural networks hyperparameters tuning bayesian optimization

Bayesian optimization

- Goal : Find the best parameters to maximize/minimize a performance function while evaluating the function as few times as possible
- Initialization with several random points
- Iterations to find the best parameters space
 - Interpolation between points
 - > Based on a gaussian kernel with associated uncertainty
 - Acquisition function to determine where to evaluate next
 - > Balance between **exploration** and **exploitation**
 - Evaluation of the performance function at the chosen point





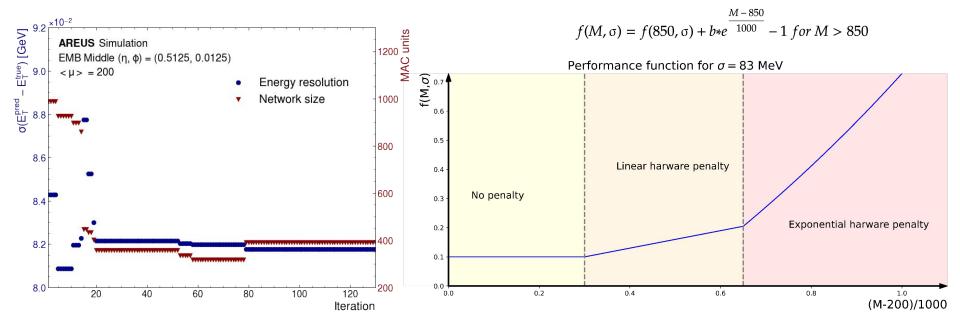
Hyperparameters tuning with bayesian optimization

- Optimization on both performance and hardware to fit in FPGAs
 - Energy resolution (σ [MeV])
 - Number of MAC units (M)
- Hyperparameters to be tuned (e.g. for the Dense architecture) :
 - Number of samples (before the energy deposit)
 - Number of units for the intermediate layers

Performance function used for the bayesian optimization :

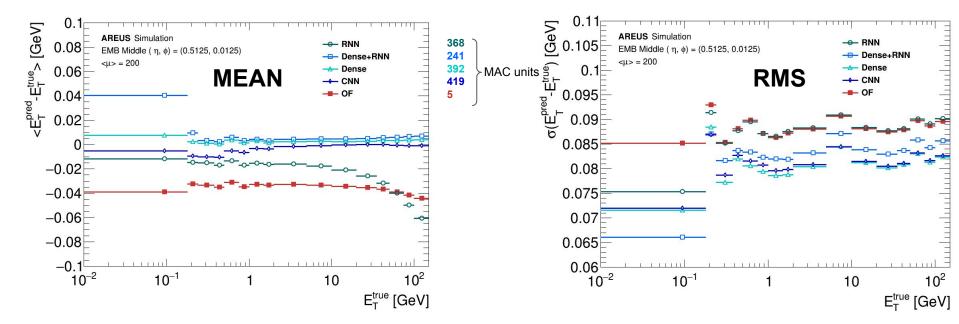
$$f(M,\sigma) = \frac{\sigma - 70}{130} \text{ for } M \leq 500$$

$$f(M, \sigma) = f(500, \sigma) + a * \frac{M - 500}{1000} \text{ for } M \in]500;850]$$



Hyperparameters optimization results

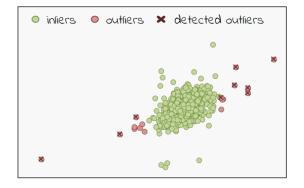
- **Better energy scale** for NNs ($E_T^{\text{pred}} E_T^{\text{true}}$ closer to 0)
 - Correction for shift in baseline due to pileup
 - Especially for Dense and CNN
- Better energy resolution for NNs compared to OF over the whole energy range
 - Especially for Dense and CNN

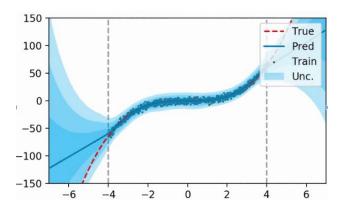


Uncertainty prediction using neural network with deep evidential regression

Deep evidential regression (DER)

- NNs are trained to minimize their prediction errors
 - Unknown accuracy of the model for individual prediction
 - It would be interesting to know when the model is more likely to fail (or the opposite)
- Model the energy prediction as a distribution
 - \circ Mean of the distribution \rightarrow energy prediction
 - Standard deviation of the distribution \rightarrow **uncertainty**
 - Trained to maximize the likelihood
- Differentiate uncertainties :
 - Epistemic
 - Lack of knowledge, model uncertainty
 - Can be reduced
 - Aleatoric
 - Inherent to data
 - Cannot be reduced

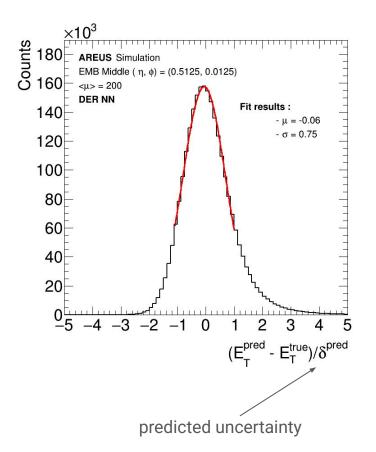




Deep Evidential Regression, Amini et al.

Deep evidential regression (DER) results

- DER applied to LAr cells energy reconstruction
 - Would allow to take into account instantaneous luminosity changes or bunch train structure
- Normale-Inverse Gamma distribution to describe mean and uncertainty
 - **4 parameters** $(\gamma, \nu, \alpha, \beta)$ rather than one
 - Uncertainty computation
 - Still possible to implement in FPGA
- Overall good pull distribution
 - Estimated uncertainty comparable to E_{τ}^{pred} E_{τ}^{true}
 - Slightly biased
 - ➢ Right tails
 - Uncertainty overestimated by 25%



Implementation on an FPGA

Firmware implementation

VHDL forced placement

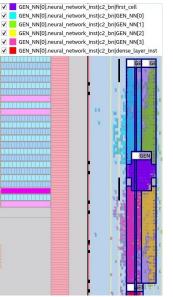
HLS placement

🗸 📕 dense_layer_inst

GEN_NN[3].full_cell_inst

GEN_NN[2].full_cell_inst

GEN_NN[1].full_cell_inst



- **RNN** implementation with 304 MAC units
 - Successfully implemented on a Stratix-10 FPGA
 - HLS implementation for fast prototyping
 - Supporting HLS4ML
 - **VHDL** implementation to meet all requirements

	N networks x multiplexing	ALM	DSP	FMax	latency
Target	384 channels	30%*	70%*	Multiplexing x 40 MHz	125 ns
"Naive" HLS	384x1	226%	529%	-	322 ns
HLS optimized	37x10	90%	100%	393 MHz	277 ns
VHDL optimized	28x14	18%	66%	561 MHz	116 ns

Conclusion

- Online energy reconstruction for LAr cells performed using neural networks
- Four neural network architectures were tested and optimized
 - CNN, RNN, RNN+Dense and Dense
- Hyperparameters tuning performed using bayesian optimization
 - Balance between performance and size of the network to fit in FPGAs
 - NNs outperform OF
- Uncertainty on energy prediction using deep evidential regression
 - Accurate uncertainty prediction
 - Possible to implement in FPGAs
- Prototype implementation in firmware performed