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Introduction



Experimental Context
- Large Hadron Collider (LHC)

○ Proton-proton collider at 13.6 TeV
○ Protons accelerated via superconducting magnets
○ Collisions at 40 MHz

- ATLAS detector
○ General-purpose experiment 
○ Very high data rate

➢ On-the-fly event selection required

- Liquid Argon (LAr) Calorimeter
○ ATLAS sub-detector for energy measurement (e-/+, 𝛾, hadrons)
○ Sampling in active LAr alternating with inactive metal (Cu, Pb, W)

➢ Accordion shaper absorbers for EMB and EMEC
➢ Ionization signal from particle interactions
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- Electronic signal produced
○ Amplitude ∝ true deposited energy (Etrue)
○ Spans ~625 ns (25 proton-proton Bunch Crossings)
○ Shaped, sampled and digitized at 40 MHz

- Energy reconstruction with optimal filtering (OF) algorithm
○ Weighted sum of samples around the pulse peak
○ Max finder/Timing cut to select the correct BC

- Reconstruction algorithm requirements : 
○ Online computation (per BC)
○ Max latency : ~125 ns (used in trigger system)
○ Fit in FPGAs : O(500) Multiply-Accumulate operations (MAC units)

➢ 5 MAC units required to implement OF
○ 384 channels per FPGA (many algorithm instances needed)

Signal processing and energy reconstruction
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HL-LHC schedule 5

- Increased luminosity ⇒ Increased pileup
- HL-LHC is needed to study Higgs properties and detect new rare processes



Off-detector readout board (LASP) will carry two state-of-the-art FPGAs for energy computation

An opportunity to embark more complex algorithms

New LAr readout electronics for energy computation
LASP board

Demonstrator
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- HL-LHC ⇒ Increased luminosity and pileup
○ Increased rates of overlapping pulses
○ ⤷ Degraded performance of Optimal Filtering
○ Significant impact on energy resolution (e.g. H → 𝜸𝜸)

Impact of high luminosity

ATLAS-TDR-027 Simulated pileup with additional injected 
pulses at higher energy

overlapped

non overlapped
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Neural network approaches as 
energy reconstruction algorithms



- Exploit samples before the energy deposit to correct overlapping pulses
- Several architectures tested : CNN, RNN, Dense layer-based

- Samples from before and after the energy deposit are used : 

○ After the energy deposit (similar to OF inputs)
➢ Capture the pulse amplitude

○ Before the energy deposit (additional inputs)
➢ Correct for pulse distortions from previous deposits

- Preliminary studies done with high rate of pulse overlap
○ Neural networks can correct for overlapping pulses

- The correction is dependent on the size of network

Neural network architectures (1/3)
Samples before the deposit

Samples after the deposit
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- RNN → One Vanilla RNN cell per sample
○ Same parameters shared for all the cells

- This architecture has a low latency and but requires high 
number of MAC units

- Dense+RNN → RNN architecture optimization
○ Dense for samples before the deposit
○ Vanilla RNN cells for samples after the deposit

 
- This architecture has a low latency and requires lower 

number of MAC units than RNN. 

Neural network architectures (2/3)
RNN architecture
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Dense+RNN architecture



- Dense → only use Dense layers
○ Multiple Dense applied on samples before the deposit
○ Samples after the deposit are used on the latter layers
 

- This architecture requires low number of MAC units and has a      
moderate latency

Neural network architectures (3/3)

- CNN → Convolutional layers
○ Capture features in the sequence

- This architecture requires low number of MAC units but has a 
high latency. 

CNN architecture
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Dense architecture



Neural networks hyperparameters tuning
bayesian optimization



Bayesian optimization 13

- Goal : Find the best parameters to maximize/minimize a 
performance function while evaluating the function as few times 
as possible

- Initialization with several random points

- Iterations to find the best parameters space
○ Interpolation between points

➢ Based on a gaussian kernel with associated uncertainty
○ Acquisition function to determine where to evaluate next

➢ Balance between exploration and exploitation
○ Evaluation of the performance function at the chosen point



- Optimization on both performance and hardware to fit in FPGAs
○ Energy resolution (σ [MeV])
○ Number of MAC units (M)

- Hyperparameters to be tuned (e.g. for the Dense architecture) : 
○ Number of samples (before the energy deposit)
○ Number of units for the intermediate layers

Hyperparameters tuning with bayesian optimization
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- Better energy scale for NNs (ET
pred - ET

true closer to 0)
○ Correction for shift in baseline due to pileup
○ Especially for Dense and CNN

- Better energy resolution for NNs compared to OF over the whole energy range
○ Especially for Dense and CNN

Hyperparameters optimization results

MEAN RMS
368
241
392
419
5

MAC units
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Uncertainty prediction using neural network
with deep evidential regression



- NNs are trained to minimize their prediction errors
○ Unknown accuracy of the model for individual prediction
○ It would be interesting to know when the model is more 

likely to fail (or the opposite)
- Model the energy prediction as a distribution

○ Mean of the distribution → energy prediction
○ Standard deviation of the distribution → uncertainty
○ Trained to maximize the likelihood

- Differentiate uncertainties :
○ Epistemic

➢ Lack of knowledge, model uncertainty
➢ Can be reduced

○ Aleatoric
➢ Inherent to data
➢ Cannot be reduced

Deep evidential regression (DER)

Deep Evidential Regression, Amini et al.
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https://arxiv.org/abs/1910.02600


- DER applied to LAr cells energy reconstruction
○ Would allow to take into account instantaneous 

luminosity changes or bunch train structure
- Normale-Inverse Gamma distribution to describe mean 

and uncertainty
○ 4 parameters (γ,ν,α,β) rather than one

➢ Uncertainty computation
○ Still possible to implement in FPGA

- Overall good pull distribution
○ Estimated uncertainty comparable to ET

pred- ET
true

○ Slightly biased
➢ Right tails
➢ Uncertainty overestimated by 25%
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Deep evidential regression (DER) results



Implementation on an FPGA



- RNN implementation with 304 MAC units
- Successfully implemented on a Stratix-10 FPGA

- HLS implementation for fast prototyping
- Supporting HLS4ML

- VHDL implementation to meet all requirements

Firmware implementation

N networks x 
multiplexing

ALM DSP FMax latency

Target 384 channels 30%* 70%* Multiplexing x 40 MHz 125 ns

“Naive” HLS 384x1 226% 529% - 322 ns

HLS optimized 37x10 90% 100% 393 MHz 277 ns

VHDL optimized 28x14 18% 66% 561 MHz 116 ns

HLS placement

VHDL forced 
placement

JINST 18 (2023) P05017
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https://arxiv.org/abs/2302.07555


Conclusion

- Online energy reconstruction for LAr cells performed using neural networks
- Four neural network architectures were tested and optimized

○ CNN, RNN, RNN+Dense and Dense
- Hyperparameters tuning performed using bayesian optimization

○ Balance between performance and size of the network to fit in FPGAs
○ NNs outperform OF

- Uncertainty on energy prediction using deep evidential regression
○ Accurate uncertainty prediction
○ Possible to implement in FPGAs

- Prototype implementation in firmware performed
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