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Introduction



Experimental Context
- Large Hadron Collider (LHC)

o Proton-proton collider at 13.6 TeV
o Protons accelerated via superconducting magnets
o Collisions at 40 MHz

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

- ATLAS detector

o General-purpose experiment
o Very high data rate
> On-the-fly event selection required

Toroid Magnets  Solenoid Magnet  SCT Tracker Pixel Detector TRT Tracker

Tile barrel Tile extended barrel

- Liquid Argon (LAr) Calorimeter
o ATLAS sub-detector for energy measurement (e”*, ¢, hadrons)
o Sampling in active LAr alternating with inactive metal (Cu, Pb, W) ]
> Accordion shaper absorbers for EMB and EMEC e
> lonization signal from particle interactions



Signal processing and energy reconstruction

Electronic signal produced
o  Amplitude cc true deposited energy (E'"“¢)
o Spans ~625 ns (25 proton-proton Bunch Crossings)
o Shaped, sampled and digitized at 40 MHz

Energy reconstruction with optimal filtering (OF) algorithm

o Weighted sum of samples around the pulse peak
o Makx finder/Timing cut to select the correct BC

Amplitude

o
o

o
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Reconstruction algorithm requirements :
o  Online computation (per BC)
o Max latency : ~125 ns (used in trigger system) 02
o Fitin FPGAs : O(500) Multiply-Accumulate operations (MAC units)
> 5 MAC units required to implement OF

o 384 channels per FPGA (many algorithm instances needed) =1 R e T O SO
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HL-LHC schedule
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Increased luminosity = Increased pileup
HL-LHC is needed to study Higgs properties and detect new rare processes



New LAr readout electronics for energy computation

— T am ¢ LASP board
Demonstrator

Phase-ll Upgrade
Front-End Board (FEB2)

LAr Calorimeter Cells

Monfioring

Off-detector readout board (LASP) will carry two state-of-the-art FPGAs for energy computation

An opportunity to embark more complex algorithms



Impact of high luminosity

% % - AREUS Simulation
i i i &/“:‘. 1 50 <H> =140, ET* > 240 MeV
- HL-LHC = Increased luminosity and pileup g OFMax
o Increased rates of overlapping pulses am 1
o  Degraded performance of Optimal Filtering ’

o Significant impact on energy resolution (e.g. H — py)
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https://cds.cern.ch/record/2285582/

Neural network approaches as
energy reconstruction algorithms



Neural network architectures (1/3)

Exploit samples before the energy deposit to correct overlapping pulses
Several architectures tested : CNN, RNN, Dense layer-based

Samples from before and after the energy deposit are used :
o  After the energy deposit (similar to OF inputs)
> Capture the pulse amplitude q
o  Before the energy deposit (additional inputs)
> Correct for pulse distortions from previous deposits

Preliminary studies done with high rate of pulse overlap
o  Neural networks can correct for overlapping pulses
- The correction is dependent on the size of network
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https://cds.cern.ch/record/2775033/files/ATL-LARG-PROC-2021-001.pdf?version=1

Neural network architectures (2/3)

RNN architecture B (7
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- RNN — One Vanilla RNN cell per sample
o Same parameters shared for all the cells

- This architecture has a low latency and but requires high

number of MAC units
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Dense+RNN architecture Er(®)

Dense
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Dense+RNN — RNN architecture optimization
o Dense for samples before the deposit
o Vanilla RNN cells for samples after the deposit

This architecture has a low latency and requires lower
number of MAC units than RNN.



Energy Reconstruct on

Neural network architectures (3/3)

Output CNN architecture
kernel = 6
Conv2 ... J [ i " ] ’ ‘ — " —F ‘ ‘ [ —f "' [ dilaton =3
feature maps = 1
> ‘,
_¥:: kernel =7
Convl - [T dilaton =1
feature maps =7
Input e PR e

Field of View = 22

CNN — Convolutional layers -

o  Capture features in the sequence

This architecture requires low number of MAC units but has a -

high latency.
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Dense architecture

Output Etrue

Dense 2

Dense 1
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Input samples before the energy deposit

Dense — only use Dense layers
o  Multiple Dense applied on samples before the deposit
o  Samples after the deposit are used on the latter layers

This architecture requires low number of MAC units and has a
moderate latency



Neural networks hyperparameters tuning
bayesian optimization



Bayesian optimization

Goal : Find the best parameters to maximize/minimize a
performance function while evaluating the function as few times
as possible

Initialization with several random points

Iterations to find the best parameters space
o Interpolation between points
> Based on a gaussian kernel with associated uncertainty
o Acquisition function to determine where to evaluate next
> Balance between exploration and exploitation
o Evaluation of the performance function at the chosen point

fix)
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Likelihood Data Prior

Bayes' Theorem
+ Recurrence

/\ if new data

Posterior Distribution

Gaussian process regression on noise-free dataset

filx) = xsin(x)
® Observations
—— Mean prediction
95% confidence interval
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Hyperparameters tuning with bayesian optimization

Optimization on both performance and hardware to fit in FPGAs

o  Energy resolution (o [MeV])

o

Number of MAC units (M)

Hyperparameters to be tuned (e.g. for the Dense architecture) :

lteration

No penalty

Performance function used for the bayesian optimization :
c—70
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M, o) = or M < 500
fM,0)= —=~f
f(M,0) = £(500, 0)+a*M_500 for M €1500;850]
1000
M -850

f(M, 0) = f(850,0) + bxe 1000 —1 for M > 850

Performance function for o = 83 MeV
1 1

Linear harware penalty

Exponential harware penalty

>

o Number of samples (before the energy deposit)
o Number of units for the intermediate layers
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Hyperparameters optimization results

- Better energy scale for NNs (ETpred - ETtrue closer to 0)
Correction for shift in baseline due to pileup

O

O

- Better energy resolution for NNs compared to OF over the whole energy range

Especially for Dense and CNN

o Especially for Dense and CNN
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Uncertainty prediction using neural network
with deep evidential regression
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Deep evidential regression (DER)

- NNs are trained to minimize their prediction errors
o Unknown accuracy of the model for individual prediction
o It would be interesting to know when the model is more . ®
likely to fail (or the opposite)
- Model the energy prediction as a distribution
o Mean of the distribution — energy prediction
o Standard deviation of the distribution — uncertainty ® ® °
o Trained to maximize the likelihood
- Differentiate uncertainties :
o Epistemic
> Lack of knowledge, model uncertainty
> (Can be reduced
o Aleatoric
> |nherent to data
> (Cannot be reduced

O iniers  © oufiers X detected outliers

150

-=='True
— Pred
Train
Unc.

100 A

Deep Evidential Regression, Amini et al.



https://arxiv.org/abs/1910.02600

Deep evidential regression (DER) results

DER applied to LAr cells energy reconstruction
o Would allow to take into account instantaneous
luminosity changes or bunch train structure
Normale-Inverse Gamma distribution to describe mean
and uncertainty
o 4 parameters (y,v,q,) rather than one
> Uncertainty computation
o Still possible to implement in FPGA
Overall good pull distribution
o Estimated uncertainty comparable to E_P- E_®
o Slightly biased
> Right tails
> Uncertainty overestimated by 25%
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Implementation on an FPGA
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https://arxiv.org/abs/2302.07555
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Conclusion

Online energy reconstruction for LAr cells performed using neural networks
Four neural network architectures were tested and optimized
o CNN, RNN, RNN+Dense and Dense
Hyperparameters tuning performed using bayesian optimization
o Balance between performance and size of the network to fit in FPGAs
o NNs outperform OF
Uncertainty on energy prediction using deep evidential regression
o Accurate uncertainty prediction
o Possible to implement in FPGAs
Prototype implementation in firmware performed



