Axion emission

from beyond-1st-generation matter in core-collapse SNe — Diego Guadagnoli, LAPTh Anney based on work W/ Maël Cavon - Piton (LAPTh), Micaela Oertel (Meudon), Hyeonseok Serong (DESY), Ludbuics Vittorio (LAPTh)

I TH Motivation

- the (QCD) axion is one of the best motivated BSM particles

Genesally expected to be light

$$W_a \simeq 6 \text{ meV} \left(\frac{Ao^9 \text{ GeV}}{\text{fa}} \right)$$

TH Motivation

- the (QCD) axion is one of the best motivated BSM particles

Generally expected to be light $u_a \simeq 6 \text{ meV} \left(\frac{Ao^3 \text{ GeV}}{fa} \right)$ Georgi, kaplon, Rondoll, 1986 — Tuteractions w/ matter amenable of rigorous EFT description (within Chiral Perturbation Theory)

TH Motivation

- the (QCD) axion is one of the best motivated BSM particles Genesally expected to be light $W_a \simeq 6 \text{ meV} \left(\frac{40^9 \text{ GeV}}{\text{fa}} \right)$ Georgi, Kaplan, Randall, 1986 - Tateractions w/ matter amenable of rigorous EFT description (within Chiral Perturbation Theory) = The axion comples to matter derivatively $da_{hadrows} = \frac{\partial_{h}a}{fa} \cdot \left(X_{L}^{b} J_{L}^{Hb}(U, B) + X_{R}^{b} J_{R}^{Hb}(U, B) \right)$ fields of octet mesons and baryons

the coupling $\propto \frac{\Im_{fr}}{fa} \rightarrow coupling strength goes as <math>\frac{\text{external momenta}}{fa (\leftarrow | \text{arge})}$

- Given the coupling $\propto \frac{\Im_F}{fa} \Rightarrow coupling strength goes as <math>\frac{\text{external momenta}}{fa}$ QCD-axian's couplings to lab-produced watter generally ting

Astro probes

- Given the coupling $\propto \frac{\Im_{fr}}{fa} \Rightarrow \operatorname{coupling strangth goes as} \frac{\text{external momenta}}{fa (< | arge)}$ QCD-axion's couplings to lab-produced watter generally tinx - Dense and hat enough abjects may radiate axions and thereby cool down faster thou expected from established mechanisms

Astro probes

- Given the coupling $\propto \frac{\partial f}{f\alpha} \rightarrow coupling shought goes as <math>\frac{\text{extend}}{f\alpha} (\leftarrow | \text{arge})$ QCD-axion's couplings to lob-produced matter generally ting

- Deuse and hat enough abjects may radiate axions and thereby cool down faster than expected from established mechanisms

- D SNe (in the core-calla pse picture) stand out as QCD-axian probes

I She and axions

- The N burst associated to SN 1987 A strongly constrains exotic sources of cooling

SNe and axims The D burst associated to SN 1987 A strongly constrains exotic sources of cooling Raffelt Qa 5 QD [see Raffelt's Phys. Rept.]

I She and axions - The D burst associated to SN 1987 A strongly constrains exotic sources of cooling → Raffelt Qa 5 Qu bound Qa 5 Qu See Raffelt's Phys. Rept. difficult to go beyond a crude estimate Qu~ 1.5.10 erg .C sec.gr $\omega / \rho = \rho \cos \alpha - 3 \div 8 \cdot 10^{4} g \rho \cos^{3} \cos^{3}$

 Axions from SNe : processes
 Nost established bound obtained from nucleon axionstrahlung
 N, N₂ -> N₃N₄a (Erican, Mathiot, 1989; Carenza et al., 2019; Caputo, Raffelt, 2024)

Axions from SNe : processes

- Nost established bound obtained from nucleon axionstrahlung N, N2-> N, N43 Erican, Mathiot, 1989; Carenza et al., 2019; Caputo, Raffelt, 2024
- processes may even deminate axion emission

 Axions from SNe : processes
 nost established bound obtained from nucleon axionstrahlung
 N, N₂ -> N₃N₄a Ericson, Mathiot, 1989; Carenza et al., 2019; Caputo, Raffelt, 2024

processes may even dominate axion emission

		Care	enza et a	2., 2020
ρ		\bar{g}_{aN}	m_a	f_a
		$(\times 10^{-9})$	(meV)	(×10 ⁸ GeV)
$ ho_0$	only NN $\pi N + NN$	0.81 0.46	21.02 11.99	2.71 4.75
$ ho_0/2$	only NN $\pi N + NN$	0.93 0.42	24.11 10.96	2.36 5.20

[lells et al., 2012]

A forther layer of complexity

is the possible role

What we do in shart We consider the full meson & baryon actets

What we do in shart We consider the full meson & baryon octets - And colculate all $B; M \rightarrow B_f \sim ("Compton")$ $& B; \rightarrow B_f \sim ("Lecay")$ Contributions to P_2

What we do in shart

- We consider the full meson & baryon octets - And colculate all $B: M \rightarrow B_f \sim ("Compton")$ $\begin{cases} & B_i \rightarrow B_f \sim ("decay") \\ & B_i \rightarrow B_f \sim ("decay") \end{cases}$

$$Q_{2} = \int E_{2}(2\pi)^{4} 8^{4}(p) |\mathcal{M}|^{2} F_{i} F_{M} (1-F_{f}) T_{k} \frac{d^{3} F_{k}}{(2\pi)^{8} 2F_{k}}$$
positive definite

What are do in shart

- We consider the full meson & baryon actets - And colculate all $B; M \rightarrow B_f \approx ("Compton")$ $\& B; \rightarrow B_f \approx ("decay")$ Contributions to P_2

 $Q_{2} = \int E_{2}(x)^{4} 8^{4}(p) |\mathcal{M}|^{2} F_{i} F_{M} (n-F_{f}) T_{k} \frac{d^{3} \overline{p}_{k}}{(2\pi)^{8} 2F_{k}}$ positive definite

Even if Bi, Bf, M fractions "small", the large number of processes yields a relevant constraint

Modeling of fundamental axion - matter couplings
[Georgi-Kaplan - Randoll, 1986]

$$d_{orgg} = \frac{\partial r^{or}}{f_{a}} \left(\frac{\partial}{\partial} f_{L}^{\dagger} k_{L} q + \frac{\partial}{\partial} g_{R}^{\dagger} k_{R} q \right) \qquad u/q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$

Modeling of fundamental axion - matter couplings

$$\begin{aligned}
Georgi-kaptan - Randall, 1986] \\
doorga &\equiv \frac{\partial_{n}a_{n}}{f_{n}} \left(\overline{g} t_{L}^{\dagger} k_{L} q + \overline{g} t_{R}^{\dagger} k_{R} q\right) \quad U/ \quad q = \begin{pmatrix} \mathcal{M} \\ d \\ s \end{pmatrix} \\
t &\gtrsim \Lambda_{qco} \quad f_{row} \quad Qco \quad t_{n} \quad ChPT + n \text{ axion} \\
t &\lesssim \Lambda_{qco} \quad f_{row} \quad Qco \quad t_{n} \quad ChPT + n \text{ axion}
\end{aligned}$$

Modeling of fundamental axion matter couplings Georgi-Kaplan - Randoll, 1986 $d_{aqq} \equiv \frac{\partial_{par}}{f_{a}} \left(\overline{q} f_{L}^{\dagger} k_{L} q + \overline{q} g_{R}^{\dagger} k_{R} q \right)$ $\omega / q = \begin{pmatrix} u \\ J \\ s \end{pmatrix}$ H> Kaco From QCD to ChPT + 1 axion $h \leq \Lambda_{qG}$ $\mathcal{A}_{a} \cup \mathcal{B} = \frac{\partial \mu \alpha}{f \alpha} \sum_{b=1}^{p} \left(X_{L}^{b} J_{L}^{b} (U_{l} \mathcal{B}) + X_{R}^{b} J_{R}^{b} (U_{l} \mathcal{B}) \right)$ octet-Loryon field octet-meson field

Mobiling of fundamental axion - matter couplings [Georgi-Kaplan - Randall, 1986] $d_{aqq} \equiv \frac{\partial_{par}}{f_{a}} \left(\overline{q} f_{L}^{\dagger} k_{L} q + \overline{q} g_{R}^{\dagger} k_{R} q \right)$ $\omega / q = \begin{pmatrix} \mu \\ J \\ s \end{pmatrix}$ H > Maco From QCD to ChPT + 1 axion $r \leq \Lambda_{qcg}$ $= \frac{\partial \mu \alpha}{f \alpha} \sum_{b=1}^{0} \left(X_{L}^{b} J_{L}^{b} (U_{l}B) + X_{R}^{b} J_{R}^{b} (U_{l}B) \right)$ NaUB octet-Loryon field $W/X_{L,R} \equiv projections of the k couplings$ $w/X_{L,R} \equiv slong the octet dirs.$ octet-meson field

7

Modeling of fundamental axion - matter couplings [Georgi-Kaplan - Randoll, 1986] H > Maco From QCD to ChPT + 1 axion $r \leq \Lambda_{qcg}$ $\mathcal{A}_{a} \cup \mathcal{B} = \frac{\partial p_{a}}{f_{a}} \sum_{b=1}^{p} \left(X_{L}^{b} J_{L}^{b} (U_{i}B) + X_{R}^{b} J_{R}^{b} (U_{i}B) \right)$ octet-meson octet-Laryon $W/X_{L,R} \equiv \text{projections of the k couplings}$ field field $W/X_{L,R} \equiv \text{slong the octet dirs.}$ The axion-hadron dynamics is also parameterized in terms of the fundamental K-couplings (=axion-quark couplings)

7

• Ten k-coupling d.o.f. to start with $(k_{V,A})_{n1,22,33,23,432}$ $W/k_{V,A} \equiv k_R \pm k_L$ Ten k-coupling d.o.f. to stat with
 (Kv,A) nn, 22, 33, 23 & 32
 (Kv,A) nn, 22, 34
 (Kv,A) nn, 22

Ten k-coupling d.o.f. to stat with
 (Kv,A) M, 22, 33, 23 & 82
 W/ Kv,A = KR ± KL
 real by me couplex number

- $(kv)_{ii}$ unobservable aside from weak-interaction contribs (which are suppressed by ~ GF $f_{\pi}^2 \sim 10^{-7}$) Baver et al. (2021) Ten k-coupling d.o.f. to start with
 (Kv,A) M, 22, 33, 23 & 82
 W/ Kv,A = KR±KL
 real by me couplex number

- $(kv)_{ii}$ unobservable aside from weak-interaction contribs (which are suppressed by ~ $G_{F} f_{\pi}^2 \sim 10^{-7}$) Baver et al. 2021 - $[(kv)_{23}]$: Qa bound less stringent than $\Gamma(k \rightarrow \pi a)$ Ten k-coupling d.o.f. to start with

 (Kv,A) n1, 22, 33, 23 & 32
 (Kv,A) n1, 22, 33 & 32
 (Kv,A) n1, 22, 33 & 32
 (Kv,A) n1, 22, 34
 (Kv,A) n2, 34

- $(Kv)_{ii}$ unobservable aside from weak-interaction contailss (which are suppressed by ~ $G_F f_\pi^2 ~ 10^{-7}$) Baver et al. (2021) - $[(Kv)_{23}]: Q_2$ bound less stringent than $\Gamma(K \rightarrow \pi a)$ - $arg(Kv,A)_{23}: Q_2$ bound not constraining Ten k-coupling d.o.f. to stat with
 (Kv,A) nn, 22, 33, 23 & 32
 Feel Ly
 Mermiticity
 Momber

- $(kv)_{ii}$ unobservable aside from weak-interaction contribs (which are suppressed by ~ GF $f_{\pi}^2 \sim 10^{-7}$) Baver et al. [2021] - (Kulzz): Qa bound less stringent than (K-)Ta) - arg (KV,A)23 : Q2 bound not constraining Q2 chiefly constrains (KA) 11, 22,33 & (KA)23 8

(a) (Ka); «> (Ka); correlations

(b) A direct constraint on
$$|(k_A)_{23}|$$
, of $O(10^{-1} - 10^{2})$

(6) A direct constraint on $|(k_A)_{23}|$, of $O(10^{-1} - 10^{2})$

Two alternative Eas models with different stronge - matter densities

TABLE I. Q_a bounds on $|(\mathbf{k}_A)_{23,33}|$, assuming $f_a = 10^9$ GeV. The larger boldfaced vs smaller value quoted in each table entry refers to the EOS model being considered, DD2Y [57] vs SFH0Y [58] (see text for details on these models).

	$n_B = n_{\rm sat}$		$n_B = 1.5 n_{\rm sat}$	
k coupling	30 MeV	40 MeV	30 MeV	40 MeV
$ (k_A)_{23} $	0.35	0.12	0.38	0.14
	0.15	0.061	0.097	0.052
$ (\boldsymbol{k}_A)_{33} $	8.8	4.4	5.9	3.1
	8.9	4.8	3.9	2.9

Two alternative Eas models with different strange - matter densities

TABLE I. Q_a bounds on $|(\mathbf{k}_A)_{23,33}|$, assuming $f_a = 10^9$ GeV. The larger boldfaced vs smaller value quoted in each table entry refers to the EOS model being considered, DD2Y [57] vs SFH0Y [58] (see text for details on these models).

	$n_B = n_{\rm sat}$		$n_B = 1.5 n_{\rm sat}$	
k coupling	30 MeV	40 MeV	30 MeV	40 MeV
$ (\boldsymbol{k}_A)_{23} $	0.35	0.12	0.38	0.14
	0.15	0.061	0.097	0.052
$ (k_A)_{33} $	8.8	4.4	5.9	3.1
	8.9	4.8	3.9	2.9

Stle (and other compact astro dojects) powerful probes of fundamental & solidly motivated BSM, such as PCD axions.

Dutl-ok

Dutl-ok

Improved renderstanding of the sources crucial to
go beyond
$$O(1)$$
 answers.

SPARES

Robustness of conclusions
 Our conclusions must be proved robust at least
 w.r.t. the modeling of
 — the axion - emitting SN volume
 — the axion - hadron interactions

St-core modeling

· State of matter defined by 3 thermodyn. pars. : T, nB, Te pone con détermine all 2 bundances

· We estimate Qa a posteriori, surveying its variation as themodynamics is changed within reasonable ranges

Two ng volves ; two EoS with somewhat different
 stronge-matter densities