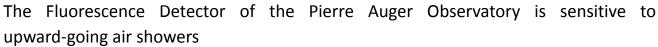
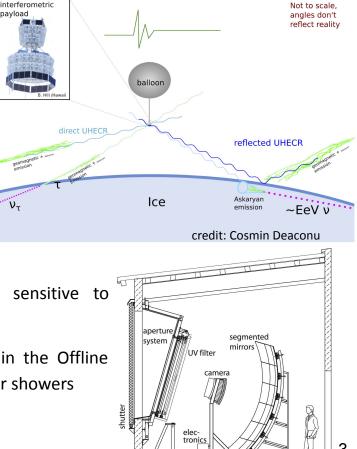


Investigating upward-going showers using the Fluorescence Detector of the Pierre Auger Observatory

E. De Vito for the Pierre Auger Collaboration



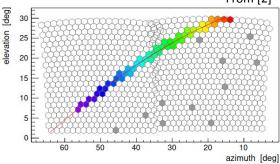
Outline

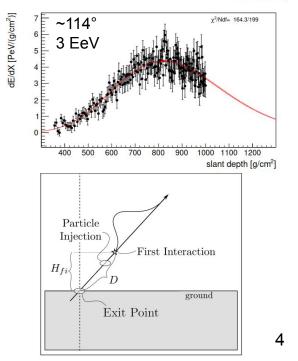

- Motivation: the ANITA anomalous events
- Search for upward-going showers with FD
- Comparison of Auger upper limits with ANITA observations
- Tau-induced air showers scenario
- Two simple BSM models

ANITA anomalous events

- Observation of two steeply upward-going air showers with non-inverted polarity, consistent with the direct detection of upward-going showers by ANITA^[1]
- E_{1,2} > 0.2 EeV
- zenith $\theta_1 \approx 117^\circ$ and $\theta_2 \approx 125^\circ$ (elevations 27° and 35°)
- Challenging to reconcile with Standard Model predictions

Simulate and reconstruct upward-going air-showers within the Offline framework to calculate the FD exposure to upward-going air showers

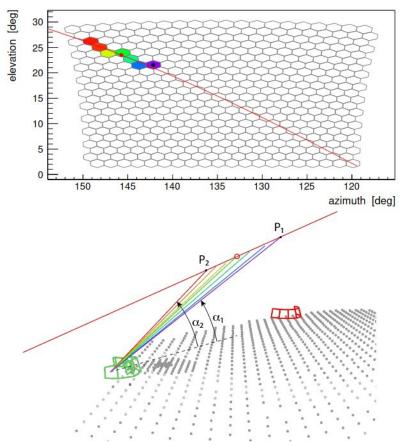



[1] P.W. Gorham et al. (ANITA Collaboration), Phys. Rev. Lett., 121, 161102, 2018

Signal simulations

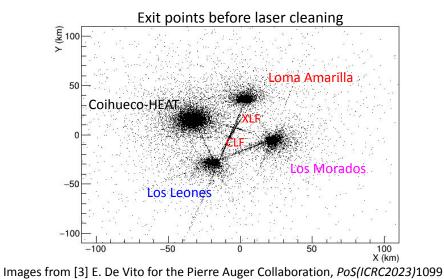
- Actual status of all components of the FD detector and realistic atmospheric conditions taken into account in the simulation
- Primary protons, easily adaptable to other scenarios
- Energy $\rightarrow \log(E/eV) \in [16.5, 19]$, 2 x 10⁷ showers simulated with E⁻¹ spectrum
- Very important to calculate the FD detection efficiency with high precision below 10^{17.5} eV for the comparison with ANITA
 - \circ 4.5 x 10⁷ additional showers below 10^{17.5} eV
 - more accurate exposure calculation at the lowest energies
- Zenith $\rightarrow \theta \in [110^\circ, 180^\circ]$ (elevation [20°, 90°])
- Generation area \rightarrow 100 x 100 km²
- Height of first interaction \rightarrow [0, 9] km above ground

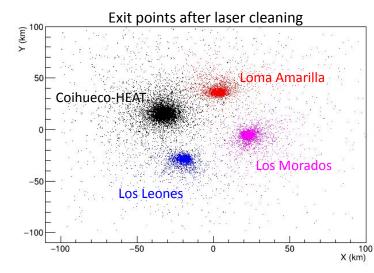
[2] A. Abdul Halim et al. (Pierre Auger Collaboration), Phys. Rev. Lett., 134, 121003, 2025



From [2]

Background simulations

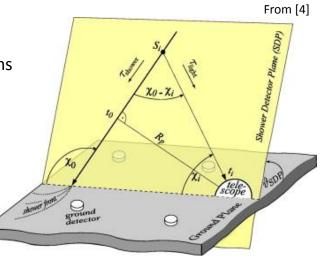

- Downward-going Cosmic Rays can mimic upward-going track in the FD camera
- For example an highly-inclined event landing behind the telescope can generate an upward-going track
- Primaries → protons + helium, nitrogen and iron nuclei, re-scaled to the CR spectrum
- Energy $\rightarrow \log(E/eV) \in [17, 20]$
- 2.5 x 10⁸ showers simulated:
 - \rightarrow 1.6 x $10^8\,$ with zenith $\theta\in[0^\circ,\,100^\circ]$
 - $\rightarrow 0.9 \; x \; 10^8 \,$ with zenith $\theta \in [60^\circ \text{, } 100^\circ]$



From [2]

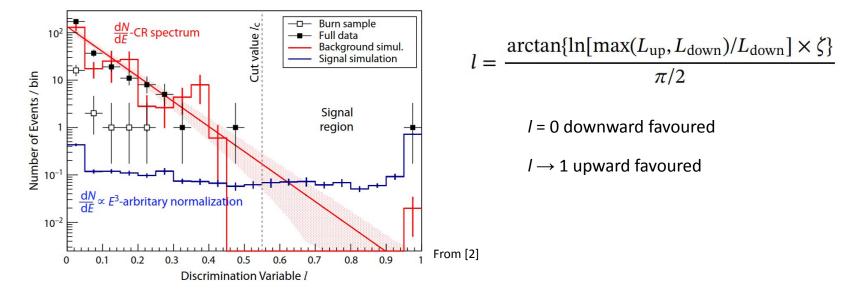
Data cleaning

- Blind analysis on 10% of FD data from 14 years of operations (2004-2018, 0.8 x 10⁶ events) to identify and remove untagged laser events used for atmospheric monitoring
- Pre-selection cuts applied on data and simulations requiring
 - successful reconstruction and good atmospheric conditions
- Laser removed based on their specific GPS time tag and position inside the SD array

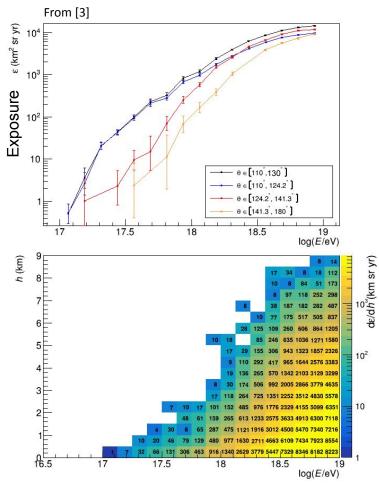

Reconstruction and event selection

- Data and simulations reconstructed with an iterative procedure combining the profile reconstruction with the geometry, testing upward (negative χ_0) and downward (positive χ_0) solutions
- Selection criteria requiring compact pattern of pixels in the FD camera, $\theta > 110^{\circ}$ and observed fraction of longitudinal profile > 80 g cm⁻²
- The likelihood of the combined fit, L_{down} and L_{up}, can be used to compare the two reconstructions

• Definition of a new variable for the comparison of the two reconstructions


$$l = \frac{\arctan\{\ln[\max(L_{\rm up}, L_{\rm down})/L_{\rm down}] \times \zeta\}}{\pi/2}$$

 $0 \le l \le 1$, if l = 0 downward favoured, if $l \rightarrow 1$ upward favoured



Expected background and signal identification

- Distribution of variable *l* for data (black, 10% of the total) signal simulations (blue) background simulations (red)
- Background weighted to CR spectrum and scaled to the burn sample fraction \rightarrow good agreement with data
- Cut is at *I* > 0.55 with expected background for the full sample of n_{bkg} = 0.27 ± 0.12

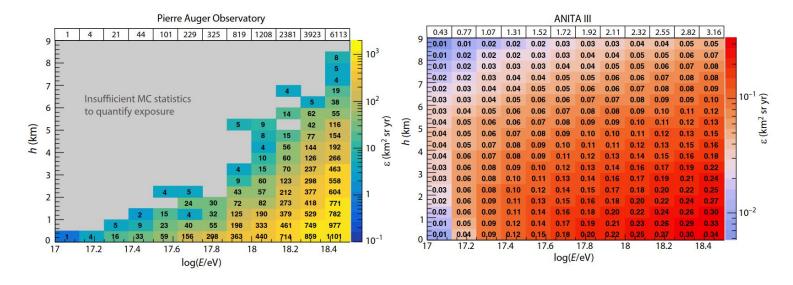
Exposure and upper limits

- One event found after the unblinding, consistent with expected background
- FD exposure as a function of the shower energy (top), calculated for different zenith sub-ranges
- Exposure as a function of the shower energy and the height of first interaction (bottom)
- Using Rolke^[5], the integral upper limit to the flux of upgoing showers above 10¹⁷ eV:

 \rightarrow (7.2 ± 0.2)x10⁻²¹ cm⁻² s⁻¹ sr⁻¹ assuming a E⁻¹ spectrum

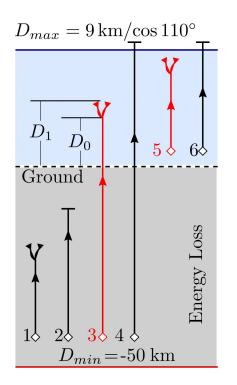
 \rightarrow (3.6 ± 0.2)x10⁻²⁰ cm⁻² s⁻¹ sr⁻¹ assuming a E⁻² spectrum

[5] Limits in presence of nuisance parameters. W. Rolke, A.M. Lopez, J. Conrad, *Nucl. Instrum. Meth. A*, **551** (2005).

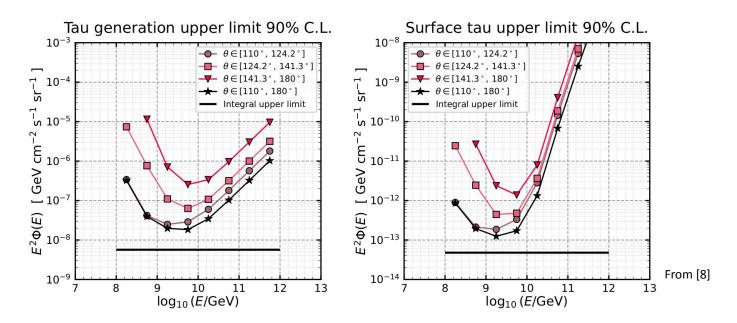

9

Comparison with ANITA observations

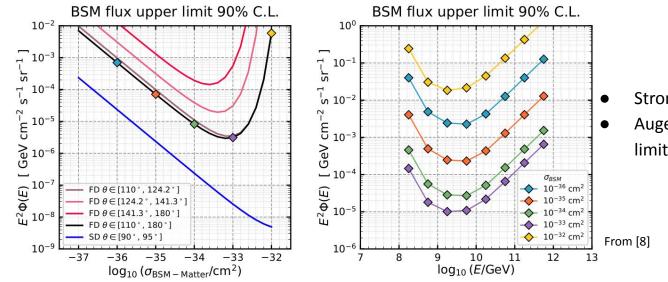
- Joint effort with members of the ANITA Collaboration to make an analytic calculation of ANITA exposure for the two anomalous events between 10^{17} eV and $10^{18.5}$ eV and $\theta \in [110^\circ, 130^\circ]$
- Comparison of Auger and ANITA exposures in the same energy and zenith ranges


From [2]

• Assuming a spectral index γ = 3 (5), we expect 69 (8.1) in Auger for a uniform distribution in height or 34 (11) for the *h* distribution expected from tau decay

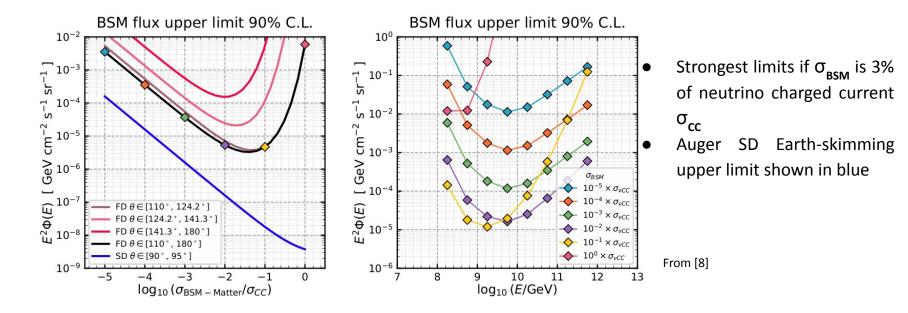

Tau-induced air showers

- Auger exposure obtained using protons, easily scalable to other particles (e.g. taus) by folding it with the corresponding FD detection efficiency
- Dedicated simulations of tau leptons generated within ~50 km below the Earth crust
- NuTauSim^[6] used for the propagation and TAUOLA^[7] used for decays
- Taus can propagate through the Earth crust and generate an air shower
- 3 and 5 are the most relevant cases where the shower develops in the atmosphere and can be observed with FD


Tau-induced air showers

- Tau simulations used to calculate the FD detection efficiency and then folded with Auger exposure
- Tau upper limits considering all generated taus (left) or only those exiting the Earth (right)

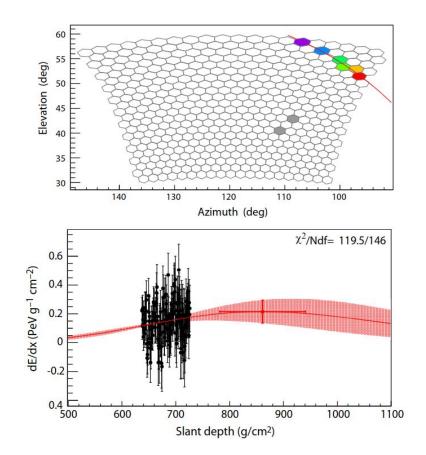
The reduced cross section BSM model: first scenario


- At these energies, the Earth is opaque to neutrinos. On the other hand BSM particles could in principle produce tau leptons if their interaction cross section with matter is sufficiently low
- We study a model in which a BSM particle produces a tau-lepton which then generate an upward-going air shower as a function of the unknown particle cross section
- First scenario with a constant cross section at all energies

- Strongest limits at $\sigma^{\sim} 10^{-33} \text{ cm}^2$
- Auger SD Earth-skimming upper limit shown in blue

The reduced cross section BSM model: second scenario

 Second scenario, the cross section mimics a charged current neutrino cross section scaled by a fixed factor (between 10⁻⁵ and 1)


Summary

- Blind analysis searching for upward-going air showers with the Fluorescence Detector of the Pierre Auger Observatory
- One candidate found, consistent with the expected background
- Comparison of Auger and ANITA exposure shows that even under the conservative assumption of an E⁻⁵ spectrum, we expect at least 8 events in Auger
- Upper limits converted to the case of a tau-induced air shower
- We have tested two possible scenarios of BSM particles of unknown cross section producing a tau-lepton

Thank you for your attention!

Backup slides

The "candidate"

Few pixels at the border of the FD camera

θ ~ 118°

Short profile

Core is behind the FD telescope