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Introduction
Effective field theories (EFTs) are constrained by causality,
unitarity, and locality [1], known collectively as causality/positivity
bounds. In this poster, we present these bounds within the
context of the EFT of gravity coupled with a scalar field. These
theories are popular extensions of general relativity and have
been extensively studied in astrophysics and cosmology. They
are now being probed by new observational tools, such as the
LIGO-Virgo-KAGRA gravitational wave detectors and the Event
Horizon Telescope.
We derive the power counting of the Wilson coefficients and

discuss how some bounds vary with the coefficient of the leading
scalar self-coupling term, (∂ϕ)4. The sharp bounds on the
coefficients are derived by formulating an optimization problem
to extract information from causality and unitarity. Furthermore,
we explore the phenomenological implications of the causality
bounds. This poster is primarily based on [2, 3].

Power counting via dispersion relations
Causality, unitarity, and locality impose strong constraints on low-
energy effective field theories (EFTs).
The analytical structures of the amplitudes are determined by

the causality condition. The analytical structure of M(µ, t)/(µ−s)

as a complex function of µ is shown in the figure below.

Λ is the cutoff energy scale of the EFT. In general, Λ ≪ MP. The
theory is assumed to be weakly coupled below Λ, which allows
tree level approximation in IR.
The generalized optical theorem, a result of unitarity, gives:

DiscµMA→B(µ, t) ∼
∑
ℓ

(2ℓ + 1)cA→X
µ,ℓ c

B→X,∗
µ,ℓ ,for µ ≥ Λ2 ,

where c
A,B→X
ℓ,µ are the UV partial waves to the intermediate state

X (→ X is omitted below).
The Regge behavior of the amplitudes is bounded by

limµ→∞ |M(µ, t < 0)| < |µ|2. Together with the crossing
symmetry of the amplitudes, dispersion relations can be derived
using the Cauchy integration formula along the contour in the
figure above:

2∑
n=−1

(Wilson coefficient) × tn =

∑
ℓ

∫ ∞

Λ2

dµ (Known functions) × cAµ,ℓ c
B,∗
µ,ℓ + crossing .

where A,B label the helicities of the incoming and outgoing states.
Dispersion relations connect the IR EFT and its UV completion,
through which the unitarity condition of the UV completion can
impose constraints on the EFT.
The EFT contains all possible couplings allowed by symmetry:

S ⊃
∫

d4x
√
g

(
α

2
(∇µϕ∇µϕ)2 +

β1
2!
ϕG +

β2
4
ϕ2G +

γ0
3!
R(3) +

γ1
3!
ϕR(3)

)
,

where G is the Gauss-Bonnet term, R(3) = Rµν
ρσRρσ

αβRαβ
µν.

Independent in and out states have helicities A = 00,+0,++,+−.
The contributions of some UV partial waves can be estimated

from the dispersion relations.
Λ

MP
⇔ c++ℓ,µ , c+−ℓ,µ , c+0ℓ,µ .

Now the only unknown independent partial wave is c00ℓ,µ: it is
related to the scalar self-coupling constant and, in general, it
should survive in the gravity decoupling limit MP. Thus, it is
generally not suppressed by the Planck scale, and its contribution
can reach the upper bound given by unitarity.

1 ⇔ c00ℓ,µ .

This indicates that if all dispersion relations of an IR coefficient
involve c00ℓ,µ, the scale of this coefficient is sensitive to the scale of
the scalar self-coupling α.
In general, the scales of the coupling constants are given by:

ÔϕR ∼ M2
PΛ
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The power of the enhancement factor Ñϕ is determined by the
number of UV partial wave c00ℓ,µ in the most constraining dispersion
relation.
As an illustration, bounds on γ0, β1, γ1 are not sensitive to the

scale of scalar self coupling α, while bound on β2 is.

γ0 ∼
M2

P

Λ4
, β1 ∼

MP

Λ2
. γ1 ∼

MP

Λ4
,

β2 ∼
MP

Λ3
when α ∼ 1

Λ4
, β2 ∼

1

Λ2
when α ∼ 1

M2
PΛ

2
.

Sharp bounds from optimization
For gravitational theories, t−channel poles appear as a result of
the Regge behavior of the amplitude [4]. This prohibits the use
of the forward limit of the twice subtracted dispersion relations.
Instead, one needs to attach each dispersion relation with a weight
function ϕA→B

k (p), t = −p2 and then integrate over p in the region
0 < p < Λ:
∑
A,B

∑
k

2∑
n=−1

aA→B
k,n

(∫ Λ

0

dp ϕA→B
k (p)(−p2)n

)
=
∑
A,B

∑
ℓ

∫
dµ BA,B

ℓ,µ cAℓ,µc
B,∗
ℓ,µ ,

where aA→B
k,n are linear combinations of the Wilson coefficients,

B
A,B
ℓ,µ is a known function of ℓ and µ By choosing the weight

functions such that Bℓ,µ ⪰ 0, the LHS gives a constraint

∑
A,B

∑
k

2∑
n=−1

aA→B
k,n

(∫ Λ

0
dp ϕA→B

k (p)(−p2)n

)
≥ 0 .

By selecting the strongest bound provided by the weight functions
that ensure Bℓ,µ ⪰ 0, we can derive sharp bounds on the Wilson
coefficients. With some approximations, this problem can be
formulated as a semi-definite problem (SDP) [5, 6], and can be
solved using the SDP solver SDPB [7].

The existence of the t−channel
pole indicates the contribution
from the region parameterized
by the impact parameter
b = 2ℓ/

√
µ is important in

the dispersion relations. This
region is carefully treated in the
optimization scheme [5, 6].

We define dimensionless coupling constants as:

#̃ÔϕR
= #ÔϕR

×
ΛN∇+2NR−2M

Nϕ−2
P

log#(Λ/mIR)
.

The infrared divergence log(Λ/mIR) arising from the impact
parameter space is due to the fact that the gravitational S-matrix
is not well-defined in 4 dimensions. In general, the IR cutoff mIR
can be taken as the inverse of the Hubble scale of the universe.
The bounds on coefficients γ20 and β21 for various α are shown

below

0 1 2 3 4 5 6 7
2
1

0

1

2

3

4

2 0

= 15
= 0
= 100

Agnostic about  
Kink1
Kink2

6.7606.7626.7646.7666.7686.7703.730

3.735

3.740

3.745

3.750

3.755

3.760

They are insensitive to the scale of the scalar self-coupling α, which
is consistent with the power counting via the dispersion relations.
On the other hand, the upper bound on Wilson coefficient |β2|

is sensitive to the value of α, as shown in the figure below (The
figures are cross sections of the 3D bound on γ20, β21 and β2.)

We can also see that the upper bound on |β2| is proportional to
α1/2 as α approaches its upper bound α ∼ 1/Λ4, as shown in the
left figure below. This is consistent with the fact that all the
dispersion relations for β2 contain one UV partial wave c00ℓ,µ.

In contrast, the upper bound on |γ1|, for which the dispersion
relations do not contain c00ℓ,µ, is insensitive to the scale of α, as
shown in the right figure above.

Bounds on parity violating couplings

Including parity-violating operators:

L ⊃ β2
4
ϕ2G +

γ2
2
∇µϕ∇µϕR(2) +

β̆2
4
ϕ2R̃(2) +

γ̆2
2
∇µϕ∇µϕR̃(2)

)
.

Generally, the bounds on the parity-violating terms are of the
same order as the parity-conserving ones.

Phenomenological implications

• In general, the scales of scalar Gauss-Bonnet couplings are

L ⊃ M2
P

√
−g

(
O(1)

Λ2
φG +

O(1)MP

Λ3
φ2G
)

,

where φ is defined as ϕ/MP. This means the spontaneous
scalarization models are natural where a vanishing φG term
is usually assumed and a sizable φ2G is required for tachyonic
instabilities to take place.

• Combining the positivity bounds and oberveble bounds, the
lower bounds on the EFT cuttoff Λ can be derived. The table
below shows the lower bounds on Λ from the NS-WD binary
J0348+0432 for various equations of state (EoS) of the neutron
star

β2 > 0 β2 < 0

EoS MS1 MPA1 WFF1 MS1 MPA1 ENG APR4 WFF1
Λ(10−10eV) 1.4 2.1 3.4 2.9 4.0 4.7 5.2 5.9

• While the observational constraints on parity-violating
coefficients are weaker than the parity-conserving counterparts,
the causality bounds are of comparable strength and thus may
play a more prominent role in constraining strong gravity effects
in upcoming observations.
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