Cosmological constraints from ACT Data Release 6

Adrien La Posta (Oxford University) and the ACT collaboration

EPS-HEP 2025, Marseille Friday July 11th 2025

adrien.laposta@physics.ox.ac.uk

The **ACDM** description

ACDM is a very successful model to describe a wide range of cosmological observations

Some challenges to learn more about the Universe

- > Inflation
- ➢ Nature of DM/DE
- Cosmological tensions ?

CMB emission 380.000 yr

growth of structures

> 10⁹ yr

The ΛCDM description: news from March 2025

ACDM is a very successful model to describe a wide range of cosmological observations

Some challenges to learn more about the Universe

- > Inflation
- ➢ Nature of DM/DE
- Cosmological tensions ?

March 2025 has been a busy month for Cosmology with ACT DR6, DESI-Y3 and KIDS-Legacy analyses

no more S_8 "tension" ?

Outline

This talk is about the ACT DR6 cosmological results from primary CMB

- Naess, Guan, Duivenvoorden, Hasselfield, Wang et al. 2025, **The Atacama Cosmology Telescope: DR6 maps**
- Louis, La Posta, Atkins, Jense et al. 2025, The Atacama Cosmology Telescope: DR6 Power Spectra, Likelihoods and ACDM Parameters
- Calabrese, Hill, Jense, La Posta et al. 2025, The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models

more papers already out with this dataset

- Modelling and validation: Atkins et al. (2412.07068) [covariances], Beringue et al. (2506.06274) [foregrounds]
- CMB lensing: Qu et al. 2023 (2304.05202), Madhavacheril et al. 2023 (2304.05203)
- thermal SZ: Coulton et al. 2023, (2307.01258)
- **CMB lensing x LSS:** Farren et al. 2023 (2309.05659), Kim et al. 2024 (2407.04606), Qu et al. 2024 (2410.10808), ...
- + many other papers and more to come soon (Duivenvoorden et al. [beams], Hasslefield et al. [passbands], Vargas et al. [sources]) [non exhaustive list]

A little reminder about power spectra

The ACT Collaboration 160 collaborators at 60 institutions

The Atacama Cosmology Telescope

• 6 m CMB telescope, observed 2007-2022 @ 5200 m altitude in the Atacama desert

CLASS

ACT

- Best site for sky coverage, 2nd best weather (after Antarctica)
- DR6 = 2017-2022, 828 full days of CMB obs (44% efficiency)

Night-time half primary data set

POI ARBEAE

ALMA

SC

Closer look

45% sky coverage and large overlap with other surveys

Sensitivity of DR6 data

Deeper than Planck over 19000 square degrees (45% of the sky)

Planck f150 T

ACT+Planck f150 T

Planck E

frequency coadd

ACT+Planck E frequency coadd

ACT DR6 Cosmology results

Guided tour

Before we start, this is what the data look like

The Atacama Cosmology Telescope: DR6 Power Spectrum Foreground Model and Validation Beringue et al. 2025 (2506.06274)

The ΛCDM model

 agrees very well with Planck PR3 constraints (**1.6** σ) with PTE=67% w.r.t. ACDM

	ACT	
Parameter		
Sampled		
$\theta_{ m MC}$	0.0104056 ± 0.0000031	
$\Omega_{ m b}h^2$	$0.02259 \pm 0.00017 \ldots$	
$\Omega_{\rm c} h^2$	0.1238 ± 0.0021	
$\log(10^{10}A_{\rm s})\dots\dots$	3.053 ± 0.013	
$n_{ m s}$	0.9666 ± 0.0077	
au	$0.0562^{+0.0053}_{-0.0063} \dots \dots$	
Derived		

. .

.

H_0	66.11 ± 0.79
$\Omega_{ m m}$	0.337 ± 0.013
σ_8	0.8263 ± 0.0074

The ΛCDM model

- agrees very well with Planck PR3 constraints (**1.6σ**) with PTE=67% w.r.t. ΛCDM
- can find a common model to fit both ACT and Planck data

 ²(ACT) = 1598/1617 (63%)
 ²(P-ACT) = 1842/1897 (81%)

ACT Planck PR3 P-ACT (ACT + Planck)

The ΛCDM model

EE power spectrum residual

The ACDM model - Comparison with low-redshift data

The ΛCDM model - Comparison with low-redshift data

Combining with **CMB lensing** and **DESI-Y1 BAO** further improve constraints on the Λ CDM model parameters

0.5% measurement of the expansion rate $H_0 = 68.22 \pm 0.36$ km/s/Mpc

Primordial scalar perturbations

n_s = 0.9660 ± 0.0046 (WMAP + ACT) n_s = 0.9651 ± 0.0044 (Planck PR3)

Deviation from a power law spectrum dn_/dlnk = 0.0062 ± 0.0052 (P-ACT-LB)

Additional light relativistic species

No evidence for new light, relativistic species

Free-streaming: N_{eff} = 2.86 ± 0.13 (68%, P-ACT-LB) consistent with the standard model value (3.044)

Additional light relativistic species

No evidence for new light, relativistic species

Free-streaming:

 $N_{eff} = 2.86 \pm 0.13$ (68%, P-ACT-LB)

Self-interacting:

N_{idr} < 0.134 (95%, P-ACT-LB)

~3 times improvement from Planck to P-ACT

Neutrino mass constraints

```
Using DESI-Y1
```

```
Σm<sub>v</sub> < 0.089 eV (95%, P-ACT-LB)
Σm<sub>v</sub> < 0.088 eV (95%, WMAP + ACT-LB)
```


DR6 constraining power

Improved sensitivity from ACT DR6 data

Three types of models which would be still allowed by Planck data

Free-streaming dark radiation

 $N_{\rm eff} = 3.4$

Axion-like particles contributing to Dark Matter

 $\Omega_{\rm ax}/(\Omega_{\rm ax}+\Omega_{\rm c}) = 5\%$ ($m_{\rm ax} = 10^{-26} \ {\rm eV}$)

Modified recombination history

 $\Delta X_e/X_e = -20\%$ at $z \sim 1470$

DR6 constraining power

Improved sensitivity from ACT DR6 data

Three types of models which would be still allowed by Planck data

Free-streaming dark radiation

 $N_{\rm eff} = 3.4$

Axion-like particles contributing to Dark Matter

 $\Omega_{\rm ax}/(\Omega_{\rm ax}+\Omega_{\rm c}) = 5\%$ ($m_{\rm ax} = 10^{-26} \ {\rm eV}$)

Modified recombination history

 $\Delta X_e / X_e = -20\% \quad \text{at} \quad z \sim 1470$

DR6 constraining power

Improved sensitivity from ACT DR6 data

Three types of models which would be still allowed by Planck data

Free-streaming dark radiation

 $N_{\rm eff} = 3.4$

Axion-like particles contributing to Dark Matter

 $\Omega_{\rm ax}/(\Omega_{\rm ax}+\Omega_{\rm c}) = 5\%$ ($m_{\rm ax} = 10^{-26} \ {\rm eV}$)

Modified recombination history

 $\Delta X_e / X_e = -20\% \quad \text{at} \quad z \sim 1470$

Extensions summary

ns

Main takeaway From ACT DR6 analysis, we find no statistically significant departure from LCDM

(not only on single parameter extensions) $\sum_{n=0}^{\frac{9}{2}} \frac{0.24}{0.22}$

The Hubble constant

None of the tested BSM scenario is able to rise up the value of the Hubble constant enough to agree with SH0ES supernovae

The end of the journey

- ACT DR6 provides a new consistent and complementary dataset to pre-existing CMB datasets. LCDM still provides an accurate description of CMB data
- It can substantially improve constraints on beyond standard model physics, providing best constraints from the P-ACT CMB dataset
- New measurements are on the way ! Simons Observatory started observing (first light from the LAT earlier this year)

ACT DR6 – Maps, Likelihoods, Code, Notebooks

LAMBDA legacy archive (<u>lambda.gsfc.nasa.gov</u>)

- Maps (frequency, coadd, ILC, null tests)
- MCMC chains, power spectra

PSpipe repository (Simons Observatory) (https://github.com/simonsobs/PSpipe)

Code to reproduce spectra and likelihood

NERSC (/global/cfs/cdirs/cmb/data/act_dr6/dr6.02)

In addition to all products on LAMBDA:

- Single-pass maps for time-domain studies
- Noise models and simulations
- Products to reproduce spectra and likelihood

DR6_Notebooks

ACT DR6 Jupyter Notebooks (https://github.com/ACTCollaboration/DR6 Notebooks)

Explanatory tutorials for DR6 data products