

Searches for ultra-high-energy photons with the Pierre Auger Observatory

Nicolás González^{1,2,3} for the Pierre Auger Collaboration⁴

 ¹ Università degli studi di Torino (UniTo)
² Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino
³ Instituto de Tecnologías en Detección y Astropartículas (CNEA-CONICET-UNSAM), Argentina
⁴ Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina Full author list available at https://www.auger.org/archive/authors_2025_07.html

> European Physical Society High-Energy Physics Conference (EPS-HEP) July 07-11 2025, Marseille, France

Neutral particles are probes of the Universe

► Produced in cosmic-ray acceleration sites (astrophysical fluxes), during cosmic-ray propagation (cosmogenic fluxes) or in the decay of dark matter particles

- Photons trace the local Universe while neutrinos travel through cosmological distances, both without deflection → complementary messengers of astrophysical steady and transient phenomena
- UHE (E > 10^{17} eV) photon flux overwhelmed by cosmic rays \rightarrow detection achievable with large exposures

Nicolás Martín González

Nucl. Instrum. Meth. A 798 (2015) 172-213 ICRC2023 016

The Pierre Auger Observatory

Surface detector (SD)

- 1500 m array 1661 stations (3000 km²) - 750 m array 61 stations (25 km²) - 433 m array 19 stations (2 km²)

- Radio antennas - Atmospheric monitoring facilities (CLF, XLF, Lidar)

Unprecedented exposure to photons above 5 x 10¹⁶ eV

Underground muon detector (UMD) 48 (19) stations spaced by 750 m (433 m)

Fluorescence detector (FD) 27 telescopes across 4 sites

How can we identify a photon primary?

Air showers initiated by photon primaries follow a nearly purely electromagnetic (EM) development

Deeper X_{max} due to lower multiplicity of EM interactions

 \blacktriangleright Less muon production due to suppressed π^{\pm} generation channels

Steeper lateral spread of signals: absence of muons flattening the shower front

Longer rise-time: delayed arrival of broad EM shower front

We exploit these features in all our searches

Photon search at 5x10¹⁶ eV – 2x10¹⁷ eV SD+UMD

$$M_1 = \log_{10} \left(\sum_{i} \frac{\rho_{\mu}^i}{\rho_{\mu}^{\mathrm{p}}} \times \frac{r_i}{200 \,\mathrm{m}} \right)$$

- ► The observable M_1 combines the high-energy muon densities, $\rho_{\mu}{}^i$, measured at a distance r_i from the shower axis
- ► The photon candidate cut is a threshold value, M₁^{cut}, ensuring 50% photon selection efficiency
- ► The background contamination is the fraction of cosmic-ray events below M₁^{cut}

► 10⁻⁵ contamination assuming a pure-proton background (the most photon-like species)

► Data set spans 15 months $\rightarrow \sim 0.6 \text{ km}^2 \text{ sr yr}$

O photon candidate events

Photon search at 2x10¹⁷ eV – 10¹⁸ eV SD+FD

► X_{max} measured with FD, number of triggered stations and S_4 combined into a single observable with a boosted decision trees method.

- ► $\sim 10^{-4}$ background contamination, i.e., 2 background events in data set, with 50% signal efficiency photon candidate cut
- Data set spanning 5.5 years \rightarrow ~2.5 km² sr yr
- ► 0 photon candidate events

Photon search at 10¹⁸ eV – 10¹⁹ eV SD+FD

► X_{max} measured with the FD. F_{μ} is a proxy of the muon content extracted from the SD signals

Estimated by matching the measured signal in SD stations to S_{pred} which is a decomposition in EM and muonic components ($S_{i,comp}$)

$$S_{\text{pred}} = \sum_{i=1}^{4} S_i = \sum_{i=1}^{4} f_i(F_{\mu}) S_{i,\text{comp}}$$

► Data set spans 12 years \rightarrow ~1,000 km² sr yr

► 22 photon candidate events, but compatible with background of 30 ± 15 events estimated with data

Photon search at > 10¹⁹ eV

- Benchmarks $t_{1/2}^{bench}$ and S_{LDF} obtained with data
- $\rightarrow\,$ method free of cosmic-ray composition assumptions
- ► Fisher analysis trained with photon simulations and a subset of data
- ► Data set spans 16 years \rightarrow 17,000 km² sr yr
- ► 16 photon candidate events, but compatible with the background contamination

Upper limits to ultra-high-energy photons flux

► Most stringent limits across four decades in energy with 16 years of data

► Useful for constraining new physics, e.g., super-heavy dark matter models.

► Start closing the gap to the smaller air-shower experiments

► Predictions from most optimistic cosmogenic models of cosmic-ray propagation are within reach above 10¹⁸ eV

► Note that these are diffuse limits. What about directional and follow-up searches?

Targeted directional search

- Five mass-sensitive observables used to train a BDT
- ► Stacked analysis of 12 target sets (364 candidate sources) within few Mpc
- No evidence for **steady emission** of UHE photons from any target (stat. significance below 3σ)

► Upper limits obtained by Auger contrain the extrapolation of the measured TeV gamma-ray flux to EeV energies (cut-off energy at 2x10¹⁸ eV)

► Upper limits from blind search from any direction in the sky between $-85^{\circ} < \delta < +20^{\circ}$

Nicolás Martín González

Nicolás Martín González

Multi-messenger follow-up studies

► The Pierre Auger Observatory takes part in the multimessenger-astronomy networks GCN/TAN

SD

- ► Follow-up photon searches in coincidence with 10 selected GWs from LIGO/VIRGO:
 - close-by, to avoid attenuation (III, IV)
 - distant but well-localized, to look for new physics (I, II)
- ► Two time windows: ±500 s and +24 h from GW detection:
 - 7 visible in the long time window (1 BNS, 1 NSBH, 5 BBH)
 - 3 visible in the short time window (3 BBH)

- Event selection cuts: $E > 10^{19} \text{ eV}, \theta \in [30^{\circ}, 60^{\circ}]$
- Photon-hadron discrimination based on LDF steepness and signal time structure (i.e., diffuse SD-only search)

 $\Omega_{50\%}$: solid angle contour localization of GW

neutrino emission too!

(see backup)

Multi-messenger follow-up studies

- ► First ever limits on the photon emission from GW events at UHEs
- \blacktriangleright < 20% energy transferred to UHE photons above 4x10¹⁹ eV from neutron star merger **GW170817** at ~40 Mpc
- Great improvement expected from closer GW events

The AugerPrime Upgrade

RD

SSD

detection:

Multi-hybrid air-shower

► 433 and 750 m SD arrays equipped with 3 x 10 m² UMD stations

► 4 m² plastic surface scintillation detectors (SSD)

► Measure radio emission from air showers with antennas (RD)

► Faster electronics (UUB) and larger dynamic range thanks to a small-area PMT (SPMT)

Aiming at a better composition sensitivity (including UHE γ)

The AugerPrime Upgrade

- ► Data can be exploited to (re-)define discriminating observables:
- e / μ decomposition using UMD/SSD (θ < 60°)
- shower development through radio measurements ($\theta > 60^\circ$)
- measured signals closer to the core with the SPMT

► Observables can be combined using cutting-edge algorithms (neural networks, AI, etc)

► Extending mass sensitivity to the lower energies (< 10¹⁷ eV) and improving photon/hadron discrimination

Summary

► Unrivalled exposure to photons: most stringent flux limits across four decades in energy above 5x10¹⁶ eV

► Upper limits can be used to constrain the parameter space of cosmogenic and super-heavy dark matter models

► The Pierre Auger Observatory is a key actor in the UHE multi-messenger astronomy thanks to its large sky coverage

 \rightarrow thorough follow-up searches to transients

► Data acquired with upgraded detectors will not only refine existing constraints but may lead to the first observation of UHE photons

[Tom Gauld, Department of mind-blowing theories, Canongate Books, 2020] Edited by the Neutrals task

Backup

Hybrid Detection of Air Showers

Nicolás Martín González

Diffuse and directional photon searches

Our searches can be classified in three classes:

- ▶ **<u>Diffuse</u>**: Searches for an unresolved, direction-independent, flux of y/v</u>
 - ► Tailored in different energy ranges
 - Exploiting different detection techniques
- **Point-source**: Searches for a flux of γ/ν in the direction of catalogued sources or regions
 - Dedicated to different type of sources
 - Sensitive to geometry resolution
- **Follow-up**: Searches for a flux of γ/ν in space-time coincidence to significant astrophysical events (e.g., gravitational waves)
 - ► Similar to point-source searches but with time dependence of the exposure (Earth's rotation)

Observables used in directional searches

Figure 1. Distributions of photon (full blue) and proton (striated red) simulations of the introduced observables. The distributions are shown as examples for the energy range between 10^{17.6} eV and 10¹⁸ eV and zenith angle between 0° and 30°.

Figure 2. MVA response value β for photon and proton primaries using BDTs. During evaluation the MC sample is split half into a training (filled circles) and half into a testing sample (solid line).

All-sky directional search

Photon-hadron discrimination combining five SD and FD observables

Photon candidate cut optimized by interplay of upper limits and signal efficiency

► No evidence for nearby photon-emitting steady sources from any direction in the sky between $-85^\circ < \delta < +20^\circ$

- ► Upper limits compatible with either:
- extragalactic sources farther than 5 Mpc
- transient or opaque Galactic sources

How can we identify a neutrino primary?

Muonic component of the shower PRD 84 (2011) 122005 Regular proton shower DG v_{τ} interacting Deep **DG** v shower in the mountains $60^\circ < \theta < 90^\circ$ E-M component of the shower Upgoing ES v_{τ} shower 90° < θ < 95°

- Background composed by muon-dominated hadronic showers (EM component absorbed in the atmosphere)
- \blacktriangleright Down-going (DG) channel: v interacting deep in the atmosphere. Sensitive to all flavors
- Earth-skimming (ES) channel: v_{τ} interacting in Earth's crust. τ lepton initiating an up-going shower close to the ground

events - Area-over-Peak

 $CR \rightarrow old$ shower at ground

10

8

6

JCAP10 (2019) 022

Inclined event

F≈2.2 FeV

Sensitivity to steady point sources

- ► Due to Earth's rotation, point sources transit through the field of view of each channel
- ► Longest daily transit 4-5 hours in ES channel or 6-11 hours in DG channel
- Total field of view covering δ (-85°,60°)

- ► Largest exposure for sources at around $\delta = \pm 55^{\circ}$ because they remain the longest in the ES field-of-view
- Complementary energy ranges of experiments

Auger participation in follow-up campaigns

- Excellent visibility of the merger (ES channel)
- Upper limits consistent with an off-axis short GRB

► Blazar detected by Fermi-LAT and IceCube in Sep. 2017. Neutrino excess in IceCube archived data.

- Sub-optimal sensitivity of the source in all channels ($\delta = 5.7^{\circ}$)
- ► Auger would have detected 1 event at ~EeV if extrapolated neutrino spectrum were sufficiently hard (index > 1.5)

Nicolás Martín González

GW170817 in the Auger FoV

The BNS merger was in optimal position for the detection of UHE v_{τ} from Auger at the instant of emission of GW170817

Figure 4. Left: Sensitive sky areas of ANTARES, IceCube and Auger at the time of the event GW170817 in Equatorial Coordinates. The red contour marks the 90% C.L. location of the event GW170817 [1, 18].