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Why they are important:
@ Because black evaporate through Hawking radiation, only a fraction might remains today
@ Depending on their abundance, can affect the cosmological observables:
— CMB characteristic, non-gaussianities for instance
@ Source of gravitational waves: — affect the expected stochastic GW background

o Potential candidate for (part of) the dark matter

Key targets:
@ Crucial to understand condition for their formation
@ Their interaction with the environment

@ Their characteristic signal : GW radiation, Hawking evaporation

Key challenges

@ Most of our knowledge on BH comes from the stationary exact solutions of GR :
— asymptotically flat, no-hair theorem — uniqueness of Schwarzschild / Kerr solutions

o PBH are by definition asymptotically FLRW (versus asymptotically flat)
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Black holes loose mass through Hawking evaporation

For the Schwarzschild black hole, the rate of mass loss is given by

dm hct 1

- = - 2
dt 153607G2 M? )

Infer the lifetime of a black hole of mass M

51207 G2
£= 22T 3 L 1071603 (3)
fic4

@ Abundance of PBH infer from this formula .... obtained for a static asymptotically flat
vacuum solution of GR

o Not guaranteed that this result holds for realistic PBH !
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PBH abundance from black hole evaporation

@ Black hole are thermal objects
hc3

T=_—"_
8mkGM

(1)
@ Black holes loose mass through Hawking evaporation

@ For the Schwarzschild black hole, the rate of mass loss is given by

dm _ et 1 @
dt ~ 153607G2 M?

@ Infer the lifetime of a black hole of mass M

5120mG?
t= 2270 g3 0 107163 (3)
hct

@ Abundance of PBH infer from this formula .... obtained for a static asymptotically flat
vacuum solution of GR

o Not guaranteed that this result holds for realistic PBH !

@ Need exact PBH solutions and study concretely the evaporation process for asymptotically
FRW BH : very challenging !
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PBH abundance from black hole evaporation

Different communities with different questions
@ Cosmology: power spectrum and mass distribution function (statistical approach)
@ Numerical GR: criteria to select which initial data can lead to PBH

@ Compact objects:
— How can we define the energy, temperature and themrodynamics of asymptotically FRW
black hole ?
— Can we provide exact solutions to the non-linear Einstein equation descrbing
asymptotically FRW black hole ?

@ Most of the study focus on spherically symmetric collapse: neglect spin effects

@ So far, only few known solutions for asymptotically flat black holes in GR
— All spherically symmetric
— McVittie (1929), Husain-Nunes,Martinez (94), Fonarev (96)

Two key results

@ New-solution generating method in GR to obtain exact asymptotically FRW axi-symmetric
BH

@ New definition of quasi-local energy allowing to provide a new criteria for PBH formation
beyond spherical symmetry
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A warm-up example: the Schwarzschild black hole
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What is the definition of a black hole ?

o Consider the Schwarzschild black hole with the metric
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What is the definition of a black hole ?

@ Consider the Schwarzschild black hole with the metric

dr? 2m
ds? = —1‘(r)d1§2 + —— + r2d6? + r?sin? 6dy? f(ry=1- —
f(r) r
@ Unique black hoe solution in vacuum spherically symmetric GR
@ Recover flat spacetime at large r : asymptotically flat

@ Radial out-going and in-going rays follow geodesics with tangent vectors

1 1 1 1
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(4)

()

5/17



What is the definition of a black hole ?

@ Consider the Schwarzschild black hole with the metric

dr? 2
42402 + Psin?ede® f(r)=1- 2"
p

ds? = —f(r)dt® + 5

Unique black hoe solution in vacuum spherically symmetric GR
Recover flat spacetime at large r : asymptotically flat
@ Radial out-going and in-going rays follow geodesics with tangent vectors

1 1 1 /1
#0y = —(——=0: + Vo Hy = ——= (—a \/?a)
" ( VF et ") o V2 \VF et r

V2
o Expansions of null rays 6, and 6, tell us how spherical light front expand/contract

2
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What is the definition of a black hole ?

@ Consider the Schwarzschild black hole with the metric

dr? 2
ds? = —f(r)dt? + & 246% + P sin? 6dyp? flry=1- zm (4)
f(r) r
@ Unique black hoe solution in vacuum spherically symmetric GR
@ Recover flat spacetime at large r : asymptotically flat
@ Radial out-going and in-going rays follow geodesics with tangent vectors
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What is the definition of a black hole ?

@ Consider the Schwarzschild black hole with the metric

dr? 2
ds? = —f(r)dt? + & 246% + P sin? 6dyp? flry=1- zm (4)
f(r) r
@ Unique black hoe solution in vacuum spherically symmetric GR
@ Recover flat spacetime at large r : asymptotically flat
@ Radial out-going and in-going rays follow geodesics with tangent vectors
POy = (-8 + V) O = - <ia +ﬁa) ®)
BTV VE r LTV \VF r

o Expansions of null rays 6, and 6, tell us how spherical light front expand/contract

2
000n = — (r —2m) — 006, =0 at r=2m (6)
r

o Definition of black hole/cosmological horizons in terms of the expansions:
— this room: 6, >0 and 6, <0

— black hole trapping horizon: 6, =0 and 6, < 0
— black hole interior: 6, < 0 and 6, < 0
— cosmological anti-trapping horizon: 6, > 0 and 6, =0
— beyond the cosmological horizon: 6, > 0 and 6, > 0
o Definition purely quasi-local: a black hole is a trapped region (possibly dynamical)
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What about time-dependent spherically symmetric black holes ?
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Kodama miracle for time-dependent spherically symmetric geometries
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@ One can introduce the so-called Kodama vector canonically defined as

khO, = eVyR 0, = (R'0: + RO,)  Vuk* =0 (8)

@ Kodama norm directly related to expansions of light rays : allow to identify the horizon !

ko k® o< 046p — vanishes on the horizons 9)

@ Provide a notion of energy/mass: the Misner-Sharp mass

R R
Mus = 7 (1= g*'VuRVuR) = = (14 |k kul) (10)

@ Underline the crucial role played by the geometrical Kodama vector: characterize the
horizons, mass with a single object !

Notion of mass allows one to build a criteria for condition under which a (spherically
symmetric) PBH will form
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@ Sasaki and Shibata proposed a way to criteria for PBH formation based on the excess in the
Misner-Sharp mass from an inhomogeneity

@ Compaction function _
2 (Mus(t, r) — Mys(t, r))
R(t, r)

where Ms(t, r) is the mass of the patch of universe without inhomogeneity

Css(t,r) = (11)

@ Given one cosmic history, find the maximal value of the compaction function

@ Other proposals for criteria of PBH formation: finding the more robust is an open debate

Key limitations
@ Notion of quasi-local mass is not unique in GR: many proposals
@ Restricted to spherical symmetry

— need a generalization beyond spherical symmetry
— starting point : find a generalization of the Kodama vector and Misner-Sharp mass
— build a definition of the compaction function from this generalized mass notion
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Improved compaction function beyond spherical symmetry
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defined by
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@ Introduce the mean curvature vector H and its dual H, given by
H*8, = K(s)s*8y, — K(n)n*8, (13)
HY} 8y = K(s)n*8u — K(n)s*8y (14)

@ The vector Hiau is the generalizationof the Kodama vector beyond spherical symmetry
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@ Notion of mean curvature energy:
u 1 2 1 2
€= nuHY — Emc=——— ¢ d°xy/ge = —— @ d°x/q K(s)
8T Js 8T Js
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Generalization the Kodama vector beyond spherical symmetry

@ Norm of the mean curvature vector vanishes on the apparent horizons
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Mean curvature compaction function beyond spherical symmetry

@ Consider the new notion of quasi-local mass or energy
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How can we test this general formalism on a concrete example 7
— find exact solution
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A concrete example

@ Consider a self-interacting scalar coupled to matter for simplicity

202 2
such that [Vp] = L=*and [k] = 1.

S= / d*x+/Ig] {R ~Lowg,g, —V(¢>} with — V(§) = Veekr? (23)
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Dynamical horizons

o Apply the previous method: compute the mean curvature vector H*9,,, compute its norm

H? = —H? x 646, = 0 (29)
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@ Single out the portion of the solution allowing to describe a PBH
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Conclusion

Take away messages
@ PBH shall play a crucial role in early and late cosmology

@ Constraining their abundance, evaporation time, and their interaction with the environments
require to have exact solutions

@ Understanding their formation in a more realistic way requires having criteria of formation
valid beyond spherical symmetry

Main results
@ New proposal for the definition of the compaction function beyond spherical symmetry

@ New solution-generating technique to derive exact analytical solutions of GR + matter
describing PBH

@ Reveal new phenomenology for the dynamics of horizons

Main goals

@ Use the new definition of compaction function in numerical simulations
@ Explore more realistic solutions: include rotation and spin effects

@ Explore the definition of temperature for time-dependent horizons
°

Merge cosmological and black hole perturbations theory to capture the emission of
gravitational waves from PBH
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Conclusion

Thank you
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