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Motivations
What they are:

Primordial black holes (PBH) are black hole formed in the early universe

Many different possible mechanisms for the formation → not standard stellar evolution

Why they are important:

Because black evaporate through Hawking radiation, only a fraction might remains today

Depending on their abundance, can affect the cosmological observables:

→ CMB characteristic, non-gaussianities for instance

Source of gravitational waves: → affect the expected stochastic GW background

Potential candidate for (part of) the dark matter

Key targets:

Crucial to understand condition for their formation

Their interaction with the environment

Their characteristic signal : GW radiation, Hawking evaporation

Key challenges

Most of our knowledge on BH comes from the stationary exact solutions of GR :
→ asymptotically flat, no-hair theorem → uniqueness of Schwarzschild / Kerr solutions

PBH are by definition asymptotically FLRW (versus asymptotically flat)
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PBH abundance from black hole evaporation

Black hole are thermal objects

T =
~c3

8πkGM
(1)

Black holes loose mass through Hawking evaporation

For the Schwarzschild black hole, the rate of mass loss is given by

dm
dt

=
~c4

15360πG2

1

M2
(2)

Infer the lifetime of a black hole of mass M

t =
5120πG2

~c4
M3 ∼ 10−16M3 (3)

Abundance of PBH infer from this formula .... obtained for a static asymptotically flat
vacuum solution of GR

Not guaranteed that this result holds for realistic PBH !

Need exact PBH solutions and study concretely the evaporation process for asymptotically
FRW BH : very challenging !
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PBH abundance from black hole evaporation

Different communities with different questions

Cosmology: power spectrum and mass distribution function (statistical approach)

Numerical GR: criteria to select which initial data can lead to PBH

Compact objects:
→ How can we define the energy, temperature and themrodynamics of asymptotically FRW
black hole ?
→ Can we provide exact solutions to the non-linear Einstein equation descrbing
asymptotically FRW black hole ?

Most of the study focus on spherically symmetric collapse: neglect spin effects

So far, only few known solutions for asymptotically flat black holes in GR
→ All spherically symmetric
→ McVittie (1929), Husain-Nunes,Martinez (94), Fonarev (96)

Two key results

New-solution generating method in GR to obtain exact asymptotically FRW axi-symmetric
BH

New definition of quasi-local energy allowing to provide a new criteria for PBH formation
beyond spherical symmetry
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A warm-up example: the Schwarzschild black hole
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What is the definition of a black hole ?
Consider the Schwarzschild black hole with the metric

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dθ2 + r2 sin2 θdϕ2 f (r) = 1−

2m

r
(4)

Unique black hoe solution in vacuum spherically symmetric GR
Recover flat spacetime at large r : asymptotically flat
Radial out-going and in-going rays follow geodesics with tangent vectors

`µ∂µ =
1
√

2
(−

1
√
f
∂t +

√
f ∂r ) nµ∂µ = −

1
√

2

(
1
√
f
∂t +

√
f ∂r

)
(5)

Expansions of null rays θ` and θn tell us how spherical light front expand/contract

θ`θn =
2

r2
(r − 2m) → θ`θn = 0 at r = 2m (6)

Definition of black hole/cosmological horizons in terms of the expansions:
→ this room: θ` > 0 and θn < 0

→ black hole trapping horizon: θ` = 0 and θn < 0

→ black hole interior: θ` < 0 and θn < 0

→ cosmological anti-trapping horizon: θ` > 0 and θn = 0

→ beyond the cosmological horizon: θ` > 0 and θn > 0

Definition purely quasi-local: a black hole is a trapped region (possibly dynamical)
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What about time-dependent spherically symmetric black holes ?
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Kodama miracle for time-dependent spherically symmetric geometries
Consider a spherically symmetric spacetime

ds2 = gabdxadxb + R2dΩ2 = −f (t, r)dt2 +
dr2

f (t, r)
+ R2(t, r)dΩ2 (7)

One can introduce the so-called Kodama vector canonically defined as

kµ∂µ = εab∇bR ∂a =
(
R′∂t + Ṙ∂r

)
∇µkµ = 0 (8)

Kodama norm directly related to expansions of light rays : allow to identify the horizon !

kαk
α ∝ θ`θn → vanishes on the horizons (9)

Provide a notion of energy/mass: the Misner-Sharp mass

MMS =
R

2
(1− gµν∇µR∇νR) =

R

2
(1 + |kµkµ|) (10)

Underline the crucial role played by the geometrical Kodama vector: characterize the
horizons, mass with a single object !

Notion of mass allows one to build a criteria for condition under which a (spherically
symmetric) PBH will form
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α ∝ θ`θn → vanishes on the horizons (9)

Provide a notion of energy/mass: the Misner-Sharp mass

MMS =
R

2
(1− gµν∇µR∇νR) =

R

2
(1 + |kµkµ|) (10)

Underline the crucial role played by the geometrical Kodama vector: characterize the
horizons, mass with a single object !

Notion of mass allows one to build a criteria for condition under which a (spherically
symmetric) PBH will form
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Criteria for PBH formation in spherical symmetry

Compaction function

Sasaki and Shibata proposed a way to criteria for PBH formation based on the excess in the
Misner-Sharp mass from an inhomogeneity

Compaction function

CSS(t, r) =
2
(
MMS(t, r)− M̄MS(t, r)

)
R(t, r)

(11)

where M̄MS(t, r) is the mass of the patch of universe without inhomogeneity

Given one cosmic history, find the maximal value of the compaction function

Other proposals for criteria of PBH formation: finding the more robust is an open debate

Key limitations

Notion of quasi-local mass is not unique in GR: many proposals

Restricted to spherical symmetry

→ need a generalization beyond spherical symmetry
→ starting point : find a generalization of the Kodama vector and Misner-Sharp mass
→ build a definition of the compaction function from this generalized mass notion
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Improved compaction function beyond spherical symmetry
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Generalization the Kodama vector beyond spherical symmetry
Consider a region of spacetime V with boundary ∂V = Σi ∪ B ∪Σf and 2-sphere Ω = Σ ∪ B

Unit normal vector nµdxµ to Σ, i.e. nµnµ = −1, to Σ

Unit normal vector sµdxµ to B, i.e. sµsµ = +1, which is inward pointing and such that
gµνnµsν = 0.
Metric on Ω can be written as qµν = gµν + nµnν − sµsν such that qµνnµ = qµνsµ = 0 and the
covariant derivative on Ω is Dµ = qµν∇ν .
Bending of Ω within the hypersurface Σ or within the hypersurface B which are respectively
defined by

Kµν(n) = Dµnν Kµν(s) = Dµsν (12)

Introduce the mean curvature vector H and its dual H⊥ given by

Hµ∂µ = K(s)sµ∂µ −K(n)nµ∂µ (13)

Hµ⊥∂µ = K(s)nµ∂µ −K(n)sµ∂µ (14)

The vector Hµ⊥∂µ is the generalizationof the Kodama vector beyond spherical symmetry
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Generalization the Kodama vector beyond spherical symmetry
Norm of the mean curvature vector vanishes on the apparent horizons

H2
⊥ = −H2 ∝ θ`θn (15)

Notion of mean curvature energy:

ε = nµH
µ
⊥ → EMC = −

1

8π

∮
S

d2x
√
q ε = −

1

8π

∮
S

d2x
√
q K(s) (16)

Notion of ean curvature momenta:

p = sµH
µ
⊥ → PMC = −

1

8π

∮
S

d2x
√
q p =

1

8π

∮
S

d2x
√
q K(n) (17)

The interesting outcome of these definitions is that the norm of the mean curvature vector
combined both quantities such that

|H⊥| =
√
K2(s)−K2(n) =

√
ε2 − p2 (18)

Therefore, this form suggests to interprete this norm as encoding the rest quasi-local energy
of the closed 2-surface S.
Natural notion of mean curvature quasi-local energy EMCE by integrating the norm |H⊥| on
the closed 2-surface S such that

EMC = −
1

8π

∮
S

d2x
√
q|H⊥| = −

1

8π

∮
S

d2x
√
q
√
K2(s)−K2(n) (19)

Key point: With this general notion of energy, we can construct a generalized compaction
function beyond spherical symmetry
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√
K2(s)−K2(n) =

√
ε2 − p2 (18)

Therefore, this form suggests to interprete this norm as encoding the rest quasi-local energy
of the closed 2-surface S.
Natural notion of mean curvature quasi-local energy EMCE by integrating the norm |H⊥| on
the closed 2-surface S such that

EMC = −
1

8π

∮
S

d2x
√
q|H⊥| = −

1

8π

∮
S

d2x
√
q
√
K2(s)−K2(n) (19)

Key point: With this general notion of energy, we can construct a generalized compaction
function beyond spherical symmetry
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Mean curvature compaction function beyond spherical symmetry

Consider the new notion of quasi-local mass or energy

EMC = −
1

8π

∮
S

d2x
√
q|H⊥| = −

1

8π

∮
S

d2x
√
q
√
K2(s)−K2(n) (20)

We define the excess of quasi-local mass (or energy) in the region enclosed in Ω by

CMC = EMC − EFRWMC (21)

The second term is the quasi-local energy of the homogeneous FRW cosmological patch

EFRW = EMC − ERefMC = a(t)r
(

1−
√

1− a2(t)r2H2(t)
)

(22)

Main advantages

No assumptions on any symmetry (spherical or axi-symmetry): completely general !

To any given metric (gravitational field), construct the vector Hµ∂µ and the associated
quantities EMC, CMC

Generic algorithm : can be implemented in numerical GR

How can we test this general formalism on a concrete example ?
→ find exact solution
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Exact solutions
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A concrete example
Consider a self-interacting scalar coupled to matter for simplicity

S =

∫
d4x

√
|g|

{
R

2`2
P

−
1

2
gµνφµφν − V (φ)

}
with V (φ) = V◦e

k`P φ (23)

such that [V0] = L−4and [k] = 1.

The field equations are given by

Gµν = `2
PTµν = `2

P

[
φµφν − gµν

(
1

2
gαβφαφβ + V (φ)

)]
(24)

�φ = Vφ (25)

One concrete example of an exact time-dependent black hole solution

ds2 = (Ct + B)ξ2

−(1−
2m

r

)β
dt2 +

dr2(
1− 2m

r

)β +

(
1−

2m

r

)1−β
dΩ2

 , (26a)

φ = ξ0 ln

(
1−

2m

r

)
+
ξ1ξ2

κ
ln(Ct + B) (26b)

with

ξ1 = −ξ3 =
β

ξ0
(β2 − 2ξ2

0κ)ξ2 = 2ξ2
0κ (27)

(2ξ2
0κ− β2)2V0 = ± 2ξ2

0C
2(β2 − 6ξ2

0κ), (28)

β is the scalar charge
Can check that for β = 0, one recovers the static Schwarzschild black hole solution
At large r , we recover the flat FLRW cosmological geometry with a(t) = (Ct + B)ξ2

Can be derive from a powerful solution-generating method
Where are the cosmological and black hole horizons ?
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Dynamical horizons
Apply the previous method: compute the mean curvature vector Hµ∂µ, compute its norm

H2
⊥ = −H2 ∝ θ`θn = 0 (29)

Find the following equation for the time-dependent dynamical horizons

f β
[

1

r
+

1− β
2

f ′

f

]
=

Cξ2

Ct + B
where f (r) = 1−

2m

r
(30)

New phenomenology from exact solutions: horizons are created and annihilated by pairs

Figure: Dynamics of the cosmological and black hole horzons

Single out the portion of the solution allowing to describe a PBH
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Conclusion

Take away messages

PBH shall play a crucial role in early and late cosmology

Constraining their abundance, evaporation time, and their interaction with the environments
require to have exact solutions

Understanding their formation in a more realistic way requires having criteria of formation
valid beyond spherical symmetry

Main results

New proposal for the definition of the compaction function beyond spherical symmetry

New solution-generating technique to derive exact analytical solutions of GR + matter
describing PBH

Reveal new phenomenology for the dynamics of horizons

Main goals

Use the new definition of compaction function in numerical simulations

Explore more realistic solutions: include rotation and spin effects

Explore the definition of temperature for time-dependent horizons

Merge cosmological and black hole perturbations theory to capture the emission of
gravitational waves from PBH
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Conclusion

Thank you
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