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LHCb experiment

LHCb was originally designed to study B-hadron decays in pp environment at the LHC

Extended to study charm and even strange decays from the start of operation

LHCb in Run 3 (since 2022)

With current L ∼ 2× 1033 cm−2s−1, signal rates (b + c) are O(MHz)
A. Poluektov Machine learning in LHCb’s real-time processing EPS-HEP 2025, Marseille 2/21



LHCb trigger framework

Output rate evolution: 200 Hz [Trigger TDR] → 2 kHz (Run 1) → 12 kHz (Run 2)

Radical change in Run 3 to maximally utilise MHz-level signal rate:

×500 NVidia A5000

∼ 10 GB/s output bandwidth (can store partial events in Turbo stream) [Talk by Dorothea vom Bruch]
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https://cds.cern.ch/record/630828?ln=en
https://indico.in2p3.fr/event/33627/contributions/155243/


ML in LHCb data processing

ML is used at all stages:

Subdetector reconstruction

Reconstruction of physics objects
(tracks, neutrals, PVs)

Exclusive and inclusive selections

 real-time

Flavour tagging and full event
interpretation [Talk by John Wendel]

Calibration, DQ monitoring

Simulation

Offline analysis

Requirements for real-time processing:

Fast

High throughput
(30 MHz HLT1, 1 MHz HLT2)

Efficient

Applied early in processing chain

Robust

Stable against changing running
conditions, imperfect MC etc.

Due to high-throughput requirement, limited to “simple” architectures (fully-connected ANNs, BDTs)
in real-time processing

R&D ongoing with more advanced approaches (GNNs, autoencoders):
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https://indico.in2p3.fr/event/33627/contributions/155226/


Past and present

Tracking Particle ID Inclusive B trigger
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ANNs for forward tracking

[LHCb-PROC-2017-013]

Forward tracking:

Seed tracks: VELO or VELO+TT
Clustering in x plane
Adding stereo hits → Kalman fit

Two ANNs in tracking to reduce combinatorics introduced in Run 2

Reject bad x clusters in T stations (9 input, 16+10 nodes HL)
Track candidate selection before Kalman fit (16 input, 17+9+5 nodes HL)
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https://cds.cern.ch/record/2260684/files/LHCb-PROC-2017-013.pdf?version=1


ANNs for fake track rejection

Rejection of fake tracks (“ghosts”) based on TMVA [LHCb-PUB-2017-011]

Inputs: 22 variables (χ2 of track segments, numbers of hits, track kinematics, occupances, etc.)
Trained with MC in different running conditions (pileup, bunch spacing)
ANN implemented in TMVA, optimised efficiency/fake rate, CPU consumption

Offline (Run 1) → HLT2 (2015) → HLT1 (2016)

Reduces CPU consumption in HLT2 by 58% (less combinations)
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https://cds.cern.ch/record/2255039


ANNs for particle identification

Global particle ID combining information of different subdetectors [LHCb-DP-2018-001]

Combination of ∼ 20 inputs from tracking, RICH, ECAL, HCAL and MUON detectors

Output: probability estimate for each of the charged PID hypotheses (π,K , p, µ, e)

Trained on full MC, MLP implemented in TMVA

Alternative classifiers with specific features (e.g. boosted to uniform efficiency,
[A. Rogozhnikov, et al., 2015 JINST 10 T03002])

L = Lexp + Lfl,

Lfl =
∑
b

∫
|Fb(s)− F (s)|2ds

A. Poluektov Machine learning in LHCb’s real-time processing EPS-HEP 2025, Marseille 8/21

https://arxiv.org/pdf/1803.00824
http://arxiv.org/abs/1410.4140


Topological trigger using Bonsai BDT

Most interesing signatures in LHCb are: high-pT and displaced
vertices/tracks

Inclusive selections for most of B-hadron decays

Topological trigger: displaced combinations of ≥ 2 tracks

[V. Gligorov, M. Williams, 2013 JINST 8 P02013]

“Bonsai BDT” with discretised inputs: fast (look-up table) and controlled overfitting

Different classifiers for 2, 3, 4-body decay vertices

Inputs: kinematics (
∑

pT, min pT), displacement (IPχ2,
FDχ2), vertex quality, multiplicity, etc.

Different BDT training algorithms compared
(MatrixNet, AdaBoost variations)

Optimised to different output rates (2.5 kHz, 4 kHz)

[T. Likhomanenko, et al., J. Phys.: Conf. Ser. 664 082025]
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https://arxiv.org/abs/1210.6861
https://arxiv.org/abs/1510.00572


Run 3: Topological trigger with monotonic Lipschitz NNs

Want our classifiers to be

Robust: stable against detector instabilities and inaccuracy of simulation

Interpretable: incorporate expected features, e.g. that interesing candidates have high pT and
high displacement

Both characteristics enforced by construction in monotonic Lipschitz networks

[O. Kitouni, N. Nolte, M. Williams, 2023 Mach. Learn.: Sci. Technol. 4 035020]
Lipschitz condition:

|g(x)− g(y)| < λ||x − y ||1

by weight normalisation during training

Monotonicity:

f (x) = g(x) + λ
∑
i

xi

“Tilt” the response with the same λ
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https://arxiv.org/abs/2112.00038


Monotonic Lipschitz NNs: Topological selections in HLT2

[N. Schulte, et al., arXiv:2306.09873]

Applied to topo selections: ensure monotonicity as a function of pT and flight distance significance
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https://arxiv.org/abs/2306.09873


Lipschitz NNs: Lepton ID in HLT1

Same architecture can be applied to other use cases

Lepton (µ, e) identification in HLT1 [LHCB-FIGURE-2024-003] [LHCB-FIGURE-2024-029]

Significant improvement can be obtained wrt. “traditional” methods

E/p for electrons

“Correlated χ2” for muons [JINST 15 (2020) T12005]

Electron ID performance Muon ID performance m(µµ) spectrum from HLT1 (data)
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https://cds.cern.ch/record/2897528
https://cds.cern.ch/record/2912183
https://arxiv.org/abs/2008.01579


Inference frameworks

GNN in VELO tracking

R&D

GNN and hybrid ANNs for PV
finding Anomaly detection in muon

system
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ML inference frameworks: ONNXRuntime and TensorRT

Custom implementations of ANNs are not flexible and
hard to maintain

Considering dedicated ML inference frameworks:

CPU (HLT2): ONNXRuntime. Supported by most
training software
NVidia GPU (HLT1): TensorRT

Can read ONNXRuntime files
Fast inference platform, SDK, optimisation

Effect on HLT1 throughput
[LHCb-FIGURE-2023-006]

HLT1 throughput requirement:
∼ 60 kHz per GPU

Main bottleneck is kernel overhead

Several copies of typical MLP are
feasible to run
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https://cds.cern.ch/record/2859117


GNN track finding in VELO

LHCb VELO:

Pixel detector near pp interaction region

26 planes, 55×55 µm pixels

No magnetic field: straight tracks

∼ 2000 hits/event, large combinatorics

Conventional algorithms: quadratic scaling with Nhits

GNN approach (Exa.TrkX): near-linear scaling [Eur. Phys. J. C 81 (2021) 876 ]

Developed for Atlas, CMS (4π, magnetic field)

ETX4VELO: based on Exa.TrkX, but adapted to LHCb [A. Correa, et al., PROC-CTD2023-34]

No magnetic field, detection planes transverse to beam pipe

Should handle: noise hits, inefficiency, shared hits, multiple hits per plane, material interactions
(e+e− pair production)
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https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://arxiv.org/abs/2406.12869


GNN track finding in VELO

Hit graph construction (DNN + k-NN) Edge classification (GNN)

Edge graph construction, triplets Triplet classification, remove fakes Track construction (WCC)︸ ︷︷ ︸
New steps wrt. Exa.TrkX to handle shared hits

[A. Correa, et al., PROC-CTD2023-34]

Lower ghost rate for same efficiency, improved electron reconstruction
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https://arxiv.org/abs/2406.12869


ML in PV finding

Hybrid KDE-to-hist approach [Rui Fang, et al. 2020 J. Phys.: Conf. Ser. 1525 012079]

KDE to produce 1D histogram of track z parameters

CNN to find peaks and associate them with PVs

Hybrid Track-to-hist approach (collaboration betwen Atlas and LHCb)[S. Akar et al., arXiv:2309.12417]

Replace KDE with DNN acting on track parameters

Similar efficiency and much lower flase positive rate compared to best KDE-to-hist model
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https://arxiv.org/abs/1906.08306
https://arxiv.org/abs/2309.12417


ML in PV finding

Alternative approach: GNN for PV finding [S. Akar, poster at EuCAIFCon 2024]

GNN using the same inputs as the VELO track finding model

Output is true PV coordinates xi , yi , zi

Overall, slightly better physics performance wrt. hybrid model

Track-PV association by construction
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https://indico.nikhef.nl/event/4875/contributions/20317/


Autoencoders for anomaly detection in HLT1

Anomaly detection for showers in the muon detectors with HLT1 [LHCB-FIGURE-2024-015]

Search for signatures of long-lived particles (e.g. axions, ALPs, HNLs)

Autoencoders (AE) trained to generalise via a bottleneck layer in the architecture

Minimise the difference between input and output

Train on “normal” data (no anomalies, minimum bias (MB))
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https://cds.cern.ch/record/2899695/


Autoencoders for anomaly detection in HLT1

[LHCB-FIGURE-2024-015]

Several variations of multivariate classifiers and, in partcular, AE are compared

Axions: H → AA, A → ττ , τ → 3πν
Heavy neutral leptons: N → eX

The best performance offered by Normalised Autoencoder (NAE)[S. Yoon, et al., arXiv:2105.05735]

Sampling reconstructible space outside MB domain and penalise AE giving small error on it
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https://cds.cern.ch/record/2899695/
https://arxiv.org/pdf/2105.05735


Summary

ML permits maximally efficient utilisation of LHCb data and contributes to excellent physics
performance

ML is used practically at all stages of data processing, from subdetector reconstruction to offline
analysis

In real-time processing, due to high data rate requirement, limited to simple and robust
architectures (fully-connected ANN, BDT)

Since the very start of LHCb (Run1): PID classifiers, ghost track rejection, topological trigger
In Run 3: PID, topo trigger with Lipschitz ANNs

Work ongoing to integrate ML inference frameworks (ONNXRuntime, TensorRT)

R&D in many areas:

Track finding
PV finding
Anomaly detection
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Backup
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LHCb experiment in 2010-2018

LHCb in run 1–2

Forward spectrometer, optimised for b and c decays. 2 < η < 5

Excellent vertex resolution (weak decays)

High-precision tracking before and after the magnet

PID in broad range of momenta 3 < p < 150GeV

Efficient trigger, including fully-hadronic final states, ∼12 kHz output rate
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LHC timeline

LHC Run 2 finished in 2018
LHCb:

∫
Ldt = 9 fb−1 collected in 2010-2018

Long shutdown until 2022: upgrade of the machine and detectors
LHCb Upgrade I: major upgrade/replacement of the subsystems and readout

Run 3 until 2026 → HL-LHC upgrade → Run 4 . . .
LHCb goal: 50 fb−1 by the end of Run 4 → Upgrade II
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LHCb upgrade case

Instantaneous luminosity:
4× 1032 (Run 2) → 2× 1033 cm−2 s−1

Run 1–2 trigger:

First stage: hadrware L0 (40→1 MHz) using high
pT/ET signatures
1 MHz limit saturates hadronic modes already in Run 2
(higher rate ⇒ higher thresholds)

The only solution: read full event at bunch-crossing rate
and apply
track reconstruction/IP selections.

Upgrade/replace subsystems:

Cope with higher occupancy.
Faster/higher precision tracking

Fully replace DAQ and trigger.
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LHCb upgrade

Complete replacement of DAQ, fully software trigger (HLT1 + HLT2)
A. Poluektov Machine learning in LHCb’s real-time processing EPS-HEP 2025, Marseille 26/21



Upgraded DAQ+trigger: functional diagram

30 MHz inelastic event rate
(full rate event building)

Software High Level Trigger

10 GB/s to storage

Full event reconstruction, inclusive and
exclusive kinematic/ geometric selections

Add offline precision particle identification
and track quality information to selections

Output full event information for inclusive
triggers, trigger candidates and related
primary vertices for exclusive triggers

LHCb Upgrade Trigger Diagram

Buffer events to disk, perform online
detector calibration and alignment

HLT1: [LHCb upgrade computing TDR]

Subdetector reconstruction:

VELO: clustering, tracking, vertex reconstruction
UT, SciFi: tracking
Muon: Hit-track matching

Global event reconstruction:

Track fit (Kalman filter)
Reconstruction of secondary vertices

Selections: [LHCb-PUB-2019-013]

Single displaced tracks
Two-track displaced vertices
Single displaced muons
Low-mass displaced two-muon vertices
High-mass dimuons
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https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf
https://cds.cern.ch/record/2688423


Upgraded DAQ+trigger: hardware [Comput Softw Big Sci 4, 7 (2020)]

Baseline CPU-based design was replaced by GPU-accelerated one

→
HLT1 runs on EB nodes

Reduce network bandwidth between
EB and filter farms

Free up filter farm CPU for HLT2
only

Warning: the exact numbers for BW, N(servers) have evolved since then
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https://arxiv.org/abs/1912.09161


Allen project: HLT1 on GPU [Comput Softw Big Sci 4, 7 (2020)]

Framework for GPU-based execution of an algorithm sequence
[GitLab repo], [Documentation]

Cross-architecture compatibility:
Runs on CPU, NVidia GPU (CUDA), AMD GPU (HIP)
Algorithm sequences defined in python, generated at runtime
Three levels of parallelism:
Intra-collision (tracks, clusters), collisions, collision batches

A. Poluektov Machine learning in LHCb’s real-time processing EPS-HEP 2025, Marseille 29/21

https://arxiv.org/abs/1912.09161
https://gitlab.cern.ch/lhcb/Allen
https://allen-doc.docs.cern.ch/index.html


HLT2 signal rates

Signal rates at L = 2× 1033 cm−2 s−1:
O(10)MHz charm

O(1)MHz beauty

Output bandwidth limited to 10 GB/ s.
Up to 100 kHz with full event size
of 100 kB.

Need to reduce the event size for higher rate
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Persistency model [LHCb upgrade computing TDR]

Selective persistency: write out only the “interesting” part of the event.

Turbo stream:
Minimum output: only HLT2 signal candidates

Optionally: (parts of) pp vertex (e.g. ”cone” around candidate for spectroscopy searches)

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. Advantage: Event size
O(10) smaller than RAW

FULL stream: all reconstructed objects in the event

+ selected RAW banks

TurCal stream: HLT2 candidates and selected RAW banks
Used for offline calibration and performance measurement
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HLT2 output rates [LHCb upgrade computing TDR]

Rate and bandwidth to tape Disk bandwidth
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https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf


GNN track finding in VELO

[A. Correa, et al., PROC-CTD2023-34]

1. Hit graph construction

DNN to convert (r , ϕ, z) hits to 4D embedding space (close for hits from the same tracks)
k-NN algorithm in embedding space to connect hits into graph

2. Edge classification with GNN

Encode each hit and edge into 256D representation
6-step message passing phase, update hit and edge encodings with DNNs
DNN edge classifier based on updated encodings
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https://arxiv.org/abs/2406.12869


GNN track finding in VELO

3. Edge graph construction [A. Correa, et al., PROC-CTD2023-34]

Solves the problem with shared hits
Edge graph (edges of hit graph are now nodes, edge-edge connections are triplets sharing a hit)

4. Triplet classification

Reuse hit and edge encodings from GNN step to avoid involving another GNN
DNN classifier for triplet score

5. Track construction

WCC (Weakly Connected Component) algorithm from Exa.TrkX

Improves reconstruction of electrons wrt. default LHCb algorithm
Lower ghost (fake track) rate with the similar efficiency
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