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LHCb experiment

LHCb was originally designed to study B-hadron decays in pp environment at the LHC
Extended to study charm and even strange decays from the start of operation
LHCb in Run 3 (since 2022)
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With current £ ~ 2 x 103 cm~2s™!, signal rates (b + c) are O(MHz)

A. Poluektov Machine learning in LHCb's real-time processing EPS-HEP 2025, Marseille 2/21



LHCb trigger framework

Output rate evolution: 200 Hz [Trigger TDR] — 2 kHz (Run 1) — 12 kHz (Run 2)

Radical change in Run 3 to maximally utilise MHz-level signal rate:
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~ 10 GB/s output bandwidth (can store partial events in Turbo stream) [Talk by Dorothea vom Bruch]
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https://cds.cern.ch/record/630828?ln=en
https://indico.in2p3.fr/event/33627/contributions/155243/

ML in LHCb data processing

ML is used at all stages:
= Subdetector reconstruction Requirements for real-time processing:

m Reconstruction of physics objects Lti = Fast
(tracks, neutrals, PVs) real-time = High throughput

m Exclusive and inclusive selections (30 MHz HLT1, 1 MHz HLT2)

_ = Efficient
= Flavour tagging and full event = Applied early in processing chain
interpretation [Talk by John Wendel] PP yme &
= Robust

Calibration, D itori
= Calibration, DQ monitoring = Stable against changing running

= Simulation conditions, imperfect MC etc.

u Offline analysis

Due to high-throughput requirement, limited to “simple” architectures (fully-connected ANNs, BDTs)
in real-time processing

m R&D ongoing with more advanced approaches (GNNs, autoencoders):
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https://indico.in2p3.fr/event/33627/contributions/155226/

Past and present

Particle ID Inclusive B trigger

Muon
Search Chambers Ghost
window
RICH "
Run 1, K
pr>1.3 GeV
ECAL& ”
Run2, HCAL P
Velo Pr>0.5 GeV
Tracking €
T-Stations System
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ANNs for forward tracking

[LHCb-PROC-2017-013]
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m Forward tracking:
m Seed tracks: VELO or VELO4TT
u Clustering in x plane
u Adding stereo hits — Kalman fit

Velo

m Two ANNs in tracking to reduce combinatorics introduced in Run 2

» Reject bad x clusters in T stations (9 input, 16+10 nodes HL)
m Track candidate selection before Kalman fit (16 input, 17-+9+5 nodes HL)
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https://cds.cern.ch/record/2260684/files/LHCb-PROC-2017-013.pdf?version=1

ANNs for fake track rejection

Rejection of fake tracks (“ghosts”) based on TMVA [LHCb-PUB-2017-011]

m Inputs: 22 variables (X2 of track segments, numbers of hits, track kinematics, occupances, etc.)
m Trained with MC in different running conditions (pileup, bunch spacing)
= ANN implemented in TMVA, optimised efficiency/fake rate, CPU consumption
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Offline (Run 1) — HLT?2 (2015) — HLT1 (2016)
» Reduces CPU consumption in HLT2 by 58% (less combinations)
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https://cds.cern.ch/record/2255039

ANNs for particle identification

Global particle ID combining information of different subdetectors [LHCb-DP-2018-001]

m Combination of ~ 20 inputs from tracking, RICH, ECAL, HCAL and MUON detectors
= Output: probability estimate for each of the charged PID hypotheses (7, K, p, t, €)
m Trained on full MC, MLP implemented in TMVA

m Alternative classifiers with specific features (e.g. boosted to uniform efficiency,
[A. Rogozhnikov, et al., 2015 JINST 10 T03002])
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https://arxiv.org/pdf/1803.00824
http://arxiv.org/abs/1410.4140

Topological trigger using Bonsai BDT

Most interesing signatures in LHCb are: high-pr and displaced
vertices/tracks

m Inclusive selections for most of B-hadron decays
m Topological trigger: displaced combinations of > 2 tracks
[V. Gligorov, M. Williams, 2013 JINST 8 P02013]

“Bonsai BDT" with discretised inputs: fast (look-up table) and controlled overfitting

0 (MN reweght’, 25000) @8 (Dend 25000) G (TMVA, 2500.0)
B (‘AdaBoost, 2500.0) 3 (M 25000

] - m Different classifiers for 2, 3, 4-body decay vertices

N (W ' I Wi = Inputs: kinematics (> pr, min pr), displacement (IPx?,
o ' ﬁ FDx?), vertex quality, multiplicity, etc.

. u Different BDT training algorithms compared

(MatrixNet, AdaBoost variations)
» Optimised to different output rates (2.5 kHz, 4 kHz)
[T. Likhomanenko, et al., J. Phys.: Conf. Ser. 664 082025]
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https://arxiv.org/abs/1210.6861
https://arxiv.org/abs/1510.00572

Run 3: Topological trigger with monotonic Lipschitz NNs

Want our classifiers to be
= Robust: stable against detector instabilities and inaccuracy of simulation
u Interpretable: incorporate expected features, e.g. that interesing candidates have high pr and

monotonic Lipschitz NN
0.8

high displacement
Both characteristics enforced by construction in monotonic Lipschitz networks
[O. Kitouni, N. Nolte, M. Williams, 2023 Mach. Learn.: Sci. Technol. 4 035020]
AUC=0.93

unconstrained NN

Lipschitz condition:
AUC=0.94

g(x) =gl < Allx =yl

by weight normalisation during training

2_pr [GeV]

log (min[x7p])
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Monotonicity:
log (minxfp])

() = g0 +A Y%

EPS-HEP 2025, Marseille
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https://arxiv.org/abs/2112.00038

Monotonic Lipschitz NNs: Topological selections in HLT?2

[N. Schulte, et al., arXiv:2306.09873]
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Applied to topo selections: ensure monotonicity as a function of pr and flight distance significance
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https://arxiv.org/abs/2306.09873

Lipschitz NNs: Lepton ID in HLT1

Same architecture can be applied to other use cases

m Lepton (p, e) identification in HLT1 [LHCB-FIGURE-2024-003] [LHCB-FIGURE-2024-029]

Significant improvement can be obtained wrt. “traditional” methods

m E/p for electrons
u “Correlated x?" for muons [JINST 15 (2020) T12005]
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https://cds.cern.ch/record/2897528
https://cds.cern.ch/record/2912183
https://arxiv.org/abs/2008.01579

R&D

GNN and hybrid ANNs for PV —
Anomaly detection in muon

finding
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ML inference frameworks: ONNXRuntime and TensorRT

m Custom implementations of ANNs are not flexible and Effect on HLT1 throughput

hard to maintain [LHCb-FIGURE-2023-006]
m Considering dedicated ML inference frameworks: Test MLP running with TensorRT
= CPU (HLT2): ONNXRuntime. Supported by most 901
training software _ /”*
= NVidia GPU (HLT1): TensorRT %]
m Can read ONNXRuntime files Zim- Default (2 hidden layers)

m Fast inference platform, SDK, optimisation :5 Bff_'t TI:;::C':'S‘

e

—=— 4 instances

. 50 1 LHCb simulation :: ;ai::lt:]r;ces

2 4 6 8 10 12 14 16
maximum batch size of TensorRT [10%]

B!

TonsorRT Optimizer

HLT1 throughput requirement:
~ 60 kHz per GPU

= Main bottleneck is kernel overhead

Optimized Inference
Engine

5. Multi-Streay
Scalable de:
str

m Several copies of typical MLP are
feasible to run
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https://cds.cern.ch/record/2859117

GNN track finding in VELO

Tracks
Velo ur SciFi
Vertex Locator Upstream Tracker With Scintillating Fibres
With silicon pixels With silicon strips |_H Cb VELO :

Magnet stations

" Long track m Pixel detector near pp interaction region

Reconstructible in the Velo and SciFi

m 26 planes, 55x55 pm pixels

T = No magpnetic field: straight tracks
(© Magnetic field B S~

Velo track
Reconstructible in the Velo
No momentum measurement

m ~ 2000 hits/event, large combinatorics

Conventional algorithms: quadratic scaling with Np;s

GNN approach (Exa.TrkX): near-linear scaling [Eur. Phys. J. C 81 (2021) 876 ]
m Developed for Atlas, CMS (47, magnetic field)
ETXA4VELO: based on Exa.TrkX, but adapted to LHCb [A. Correa, et al., PROC-CTD2023-34]

= No magnetic field, detection planes transverse to beam pipe

= Should handle: noise hits, inefficiency, shared hits, multiple hits per plane, material interactions
(eTe™ pair production)
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https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://arxiv.org/abs/2406.12869

GNN track finding in VELO

[A. Correa, et al., PROC-CTD2023- 34]
Hit graph construction (DNN + k-NN) Edge classification (GNN)

IIIHI»

Edge graph construction, triplets  Triplet classification, remove fakes Track construction (WCC)

New steps wrt. Exa.TrkX to handle shared hits
Lower ghost rate for same efficiency, improved electron reconstruction
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https://arxiv.org/abs/2406.12869

ML in PV finding

Hybrid KDE-to-hist approach [Rui Fang, et al. 2020 J. Phys.: Conf. Ser. 1525 012079]

E oE ' LHCh sin';ulzliml E
m KDE to produce 1D histogram of track z parameters £ wf ]
u CNN to find peaks and associate them with PVs T:’ ’ L\

z [mm]
Akar et al., arXiv:2309.12417]
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Similar efficiency and much lower flase positive rate compared to best KDE-to-hist model
EPS-HEP 2025, Marseille
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https://arxiv.org/abs/1906.08306
https://arxiv.org/abs/2309.12417

ML in PV finding

Alternative approach: GNN for PV finding

[S. Akar, poster at EuCAIFCon 2024]

m GNN using the same inputs as the VELO track finding model

= OQutput is true PV coordinates x;, y;, z;
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m Overall, slightly better physics performance wrt. hybrid model
m Track-PV association by construction
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https://indico.nikhef.nl/event/4875/contributions/20317/

Autoencoders for anomaly detection in HLT1

Anomaly detection for showers in the muon detectors with HLT1 [LHCB-FIGURE-2024-015]
Search for signatures of long-lived particles (e.g. axions, ALPs, HNLs)

I t Output
Unexpected shower | P P
e o
L \o~~ gl
R/ Code s .
BRI NN <N )y /T
/ \ ~_ - / \
\ / \ / \ /
L1 / \ \ / / \ -
\ / AN \ /

/ \ / \
Hoy H Y H A By HY H
AN A SN\ N\ N
L /A VA /- ~_\ /N -

EA I A I A NN VAN
1/ s <\ ]
/- ~~
L~ ~a
Encoder Decoder

Autoencoders (AE) trained to generalise via a bottleneck layer in the architecture

= Minimise the difference between input and output
= Train on “normal” data (no anomalies, minimum bias (MB))

A. Poluektov Machine learning in LHCb's real-time processing EPS-HEP 2025, Marseille 19/21


https://cds.cern.ch/record/2899695/

Autoencoders for anomaly detection in HLT1

[LHCB-FIGURE-2024-015]

| Last signal bin contains overflow |

z T T T Model Parameters Axion N —5eX,16GeV N —eX, 4 GeV
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1
logio (MSE)

m Several variations of multivariate classifiers and, in partcular, AE are compared

m Axions: H - AA, A— 71, 7 — 3nv
m Heavy neutral leptons: N — eX

m The best performance offered by Normalised Autoencoder (NAE)[S. Yoon, et al., arXiv:2105.05735]
= Sampling reconstructible space outside MB domain and penalise AE giving small error on it
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https://cds.cern.ch/record/2899695/
https://arxiv.org/pdf/2105.05735

= ML permits maximally efficient utilisation of LHCb data and contributes to excellent physics
performance

m ML is used practically at all stages of data processing, from subdetector reconstruction to offline
analysis

u In real-time processing, due to high data rate requirement, limited to simple and robust
architectures (fully-connected ANN, BDT)

= Since the very start of LHCb (Runl): PID classifiers, ghost track rejection, topological trigger
= In Run 3: PID, topo trigger with Lipschitz ANNs

Work ongoing to integrate ML inference frameworks (ONNXRuntime, TensorRT)

= R&D in many areas:

m Track finding
u PV finding
= Anomaly detection
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LHCb experiment in 2010-2018
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Forward spectrometer, optimised for b and ¢ decays. 2 <7 <5

m Excellent vertex resolution (weak decays)
m High-precision tracking before and after the magnet
m PID in broad range of momenta 3 < p < 150 GeV

m Efficient trigger, including fully-hadronic final states, ~12 kHz output rate
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LHC timeline

LHC HL-LHC
i1 |
Run1 | | Run 2 | | Run 3
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st07.5
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HL-LHC TECHNICAL EQUIPMENT:

DESIGN STUDY <7 PROTOTYPES CONSTRUCTION | INSTALLATION & COMM. ”H PHYSICS

HL-LHC CIVIL ENGINEERING:

DEFINITION EXCAVATION BUILDINGS

m LHC Run 2 finished in 2018

m LHCb: [Ldt = 9fb~! collected in 2010-2018
m Long shutdown until 2022: upgrade of the machine and detectors

m LHCb Upgrade |: major upgrade/replacement of the subsystems and readout
® Run 3 until 2026 — HL-LHC upgrade — Run 4 ...

m LHCb goal: 50fb~! by the end of Run 4 — Upgrade I
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LHCb upgrade case

= Instantaneous luminosity:
LHCb Trigger 4 x10% (Run 2) — 2 x 103 cm 257!
' m Run 1-2 trigger:
= First stage: hadrware LO (40—1 MHz) using high
pr/ET signatures
® 1 MHz limit saturates hadronic modes already in Run 2
(higher rate = higher thresholds)

w

INd
&)

Trigger yield (Arb. unit)
&)l n

m The only solution: read full event at bunch-crossing rate
and apply
track reconstruction/IP selections.

iy

05 :
: m Upgrade/replace subsystems:
T e e S u Cope with higher occupancy.
Luminosity { x 16%3) = Faster/higher precision tracking

m Fully replace DAQ and trigger.
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LHCb upgrade

M3
Magnet SciFi  RICH2 M2
Tracker
N B
1
| )
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pixel detector o
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upgrade o

Complete replacement of DAQ), fully software trigger (HLT1 + HLT2)
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Upgraded DAQ+trigger: functional diagram

LHCb Upgrade Trigger Diagram
30 MHz inelastic event rate
(full rate event building) HLT1: [LHCb upgrade computing TDR]

= Subdetector reconstruction:

m VELO: clustering, tracking, vertex reconstruction

[ Full event reconstruction, inclusive and ] = UT, SciFi: tracking
exclusive ki tic/ g tric selections . .
A = Muon: Hit-track matching
U’ : m Global event reconstruction:
Buffer events to disk, perform online m Track fit (Kalman ﬁ|ter)
SEEE i G SE Al = Reconstruction of secondary vertices
m Selections: [LHCb-PUB-2019-013]
) u Single displaced tracks
Add offline precision particle identification _ . H
and track quality information to selections " T-WO traf:k dlsplaced vertices
Output full event information for inclusive = Slngle dlspla}ced muons .
triggers, trigger candidates and related m Low-mass displaced two-muon vertices
primary vertices for exclusive triggers Hich di
_ u 1gh-mass aimuons

L

<+ I
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https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf
https://cds.cern.ch/record/2688423

Upgraded DAQ+trigger: hardware

Baseline CPU-based design was replaced by GPU-accelerated one

Baseline DAQ GPU-enhanced DAQ
[ pp collisions ( pp collisions )
40 Thit/s 40 Tbit/s
0(250) 0(250) —
[ X86 servers ] X386 servers event building
¢ [%‘gg? ] m HLT1 runs on EB nodes
COCTY e s # Reduce network bandwidth between
\L EB and filter farms
e e 0(1000) xB6 servers .
uiler on
e u Free up filter farm CPU for HLT2
only
80 Gbit/s ¢ 80 Gbit/s ¢
[ storage ( storage ]

Warning: the exact numbers for BW, N(servers) have evolved since then
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https://arxiv.org/abs/1912.09161

Allen project: HLT1 on GPU

m Framework for GPU-based execution of an algorithm sequence
[GitLab repo], [Documentation]
m Cross-architecture compatibility:
Runs on CPU, NVidia GPU (cuDA), AMD GPU (HIP)
m Algorithm sequences defined in python, generated at runtime
m Three levels of parallelism:
Intra-collision (tracks, clusters), collisions, collision batches
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SciFi

Parameerized
Kalman fiter



https://arxiv.org/abs/1912.09161
https://gitlab.cern.ch/lhcb/Allen
https://allen-doc.docs.cern.ch/index.html
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m Signal rates at £ =2 x 1033 cm 2
0O(10) MHz charm

O(1) MHz beauty
= Output bandwidth limited to 10 GB/s.

Up to 100 kHz with full event size
of 100 kB.

= Need to reduce the event size for higher rate

EPS-HEP 2025, Marseille
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Persistency model

Selective persistency: write out only the “interesting” part of the event.

HLT2
candidate

m Turbo stream:
# Minimum output: only HLT2 signal candidates

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. Advantage: Event size
O(10) smaller than RAW
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https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf

Persistency model

Selective persistency: write out only the “interesting” part of the event.

m Turbo stream:

# Minimum output: only HLT2 signal candidates

= Optionally: (parts of) pp vertex (e.g. "cone” around candidate for spectroscopy searches)
Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. Advantage: Event size
O(10) smaller than RAW
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Persistency model

Selective persistency: write out only the “interesting” part of the event.

N N/
AR

Raw banks: VELO RICH s ECAL

“(po — K~
T

= Turbo stream:

= Minimum output: only HLT2 signal candidates
= Optionally: (parts of) pp vertex (e.g. "cone” around candidate for spectroscopy searches)
Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. Advantage: Event size
0O(10) smaller than RAW
m FULL stream: all reconstructed objects in the event
m + selected RAW banks
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Persistency model

Selective persistency: write out only the “interesting” part of the event.

N/
N

Raw banks: VELO RICH s ECAL

m Turbo stream:
= Minimum output: only HLT2 signal candidates
= Optionally: (parts of) pp vertex (e.g. "cone” around candidate for spectroscopy searches)
Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. Advantage: Event size
0O(10) smaller than RAW
m FULL stream: all reconstructed objects in the event
m + selected RAW banks
m TurCal stream: HLT2 candidates and selected RAW banks
Used for offline calibration and performance measurement
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HLT2 output rates

Event Rate
(events/s)

Throughput
(GBTs)

: | I |

Rate and bandwidth to tape

Disk bandwidth

stream | rate fraction | throughput (GB/s) | bandwidth fraction stream | throughput (GB/s) | bandwidth fraction
FULL 26% 5.9 59% FULL 0.8 22%

Turbo 68% 2.5 25% Turbo 2.5 2%
TurCal 6% 1.6 16% TurCal 0.2 6%

total 100% 10.0 100% total 3.5 100%
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https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf

GNN track finding in VELO

[A. Correa, et al., PROC-CTD2023-34]
1. Hit graph construction

= DNN to convert (r, ¢, z) hits to 4D embedding space (close for hits from the same tracks)
m k-NN algorithm in embedding space to connect hits into graph

2. Edge classification with GNN

m Encode each hit and edge into 256D representation
m O-step message passing phase, update hit and edge encodings with DNNs
= DNN edge classifier based on updated encodings
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https://arxiv.org/abs/2406.12869

GNN track finding in VELO

3. Edge graph construction [A. Correa, et al., PROC-CTD2023-34]

m Solves the problem with shared hits
m Edge graph (edges of hit graph are now nodes, edge-edge connections are triplets sharing a hit)
4. Triplet classification

= Reuse hit and edge encodings from GNN step to avoid involving another GNN
m DNN classifier for triplet score

5. Track construction

m WCC (Weakly Connected Component) algorithm from Exa.TrkX

Long category Efficiency Velo-only Efficiency

Allen ETX4VELO category Allen ETX4VELQ
No electrons | 99.26  99.28 (99.51) No electrons | 96.84 97.03 (97.86) FTXIVELO
Electrons 97.11  98.80 (99.22) Electrons 67.81 85.10 (86.69) Allen | o — 0,020
From strange | 97.69 97.50 (98.06) From strange | 93.53  93.07 (96.05) Chostrate | 2T8% T 076% — 081%

u Improves reconstruction of electrons wrt. default LHCb algorithm
m Lower ghost (fake track) rate with the similar efficiency
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