
keV STERILE NEUTRINO DARK MATTER together with LARGE NEUTRINO MASSES IN COSMOLOGY from a DARK SECTOR

Cristina Benso, KIT

Isobel Kolbé, Anna McCoy, Farid Salazar, Yukari Yamauchi

Karlsruher Institut für Technologie

• Standard Model is great

• Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature:

4

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature:
 - active neutrino masses

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature:
 - active neutrino masses
 - dark matter

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature:
 - active neutrino masses seesaw mechanism (3 heavy RH Majorana neutrinos N)
 - dark matter

east) two puzzles of Nature: 3 heavy RH Majorana neutrinos *N*)

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature:
 - active neutrino masses ---- seesaw mechanism (3 heavy RH Majorana neutrinos N)
 - dark matter \longrightarrow sterile neutrino DM (ψ)

east) two puzzles of Nature: 3 heavy RH Majorana neutrinos *N*)

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature:
 - active neutrino masses ---- seesaw mechanism (3 heavy RH Majorana neutrinos N)
 - dark matter \longrightarrow sterile neutrino DM (ψ)
- Lab. experiments aim to measure directly the small value of active neutrino masses;

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature: - active neutrino masses \longrightarrow seesaw mechanism (3 heavy RH Majorana neutrinos N)

 - dark matter \longrightarrow sterile neutrino DM (ψ)
- Lab. experiments aim to measure directly the small value of active neutrino masses; - KATRIN: current upper limit $m_{\nu_o} < 0.45$ eV *, expected final reach $m_{\nu_o} = 0.3$ eV $\longrightarrow \Sigma m_{\nu} \simeq 0.9$ eV;

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature: - active neutrino masses \longrightarrow seesaw mechanism (3 heavy RH Majorana neutrinos N)

 - dark matter \longrightarrow sterile neutrino DM (ψ)
- Lab. experiments aim to measure directly the small value of active neutrino masses; - KATRIN: current upper limit $m_{\nu_o} < 0.45$ eV *, expected final reach $m_{\nu_o} = 0.3$ eV $\longrightarrow \Sigma m_{\nu} \simeq 0.9$ eV; - Oscillation data: $\Sigma m_{\nu} > 0.058 (0.098)$ eV, for normal (inverted) neutrino mass ordering. **

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature: - active neutrino masses \longrightarrow seesaw mechanism (3 heavy RH Majorana neutrinos N)

 - dark matter \longrightarrow sterile neutrino DM (ψ)
- Lab. experiments aim to measure directly the small value of active neutrino masses; - KATRIN: current upper limit $m_{\nu_e} < 0.45$ eV *, expected final reach $m_{\nu_e} = 0.3$ eV $\longrightarrow \Sigma m_{\nu} \simeq 0.9$ eV; - Oscillation data: $\Sigma m_{\nu} > 0.058 (0.098)$ eV, for normal (inverted) neutrino mass ordering. **
- Cosmological observations (assuming ΛCDM): stringent constraints on Σm_{ν} ; - DESI: $\Sigma m_{\nu} < 0.064 \text{ eV} ***$

* KATRIN Collaboration, [2406.13516 [nucl-ex]] ** I. Esteban et al, [2410.05380 [hep-ph]]

cristina.benso@kit.edu

****DESI Collaboration, [2503.14738 [astro-ph.CO]]

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature: - active neutrino masses \longrightarrow seesaw mechanism (3 heavy RH Majorana neutrinos N)

 - dark matter \longrightarrow sterile neutrino DM (ψ)
- Lab. experiments aim to measure directly the small value of active neutrino masses; - KATRIN: current upper limit $m_{\nu_e} < 0.45$ eV *, expected final reach $m_{\nu_e} = 0.3$ eV $\longrightarrow \Sigma m_{\nu} \simeq 0.9$ eV; - Oscillation data: $\Sigma m_{\nu} > 0.058 (0.098)$ eV, for normal (inverted) neutrino mass ordering. **
- Cosmological observations (assuming ΛCDM): stringent constraints on Σm_{ν} ; - DESI: $\Sigma m_{\nu} < 0.064 \text{ eV} ***$
- What if KATRIN measures something?

* KATRIN Collaboration, [2406.13516 [nucl-ex]] ** I. Esteban et al, [2410.05380 [hep-ph]]

cristina.benso@kit.edu

****DESI Collaboration, [2503.14738 [astro-ph.CO]]

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature: - active neutrino masses \longrightarrow seesaw mechanism (3 heavy RH Majorana neutrinos N)

 - dark matter \longrightarrow sterile neutrino DM (ψ)
- Lab. experiments aim to measure directly the small value of active neutrino masses; - KATRIN: current upper limit $m_{\nu_o} < 0.45$ eV *, expected final reach $m_{\nu_o} = 0.3$ eV $\longrightarrow \Sigma m_{\nu} \simeq 0.9$ eV; - Oscillation data: $\Sigma m_{\nu} > 0.058 (0.098)$ eV, for normal (inverted) neutrino mass ordering. **
- Cosmological observations (assuming ΛCDM): stringent constraints on Σm_{ν} ; - DESI: $\Sigma m_{\nu} < 0.064 \text{ eV} ***$
- What if KATRIN measures something? How could laboratory results be reconciled with cosmological limits?

* KATRIN Collaboration, [2406.13516 [nucl-ex]] ** I. Esteban et al, [2410.05380 [hep-ph]]

cristina.benso@kit.edu

****DESI Collaboration, [2503.14738 [astro-ph.CO]]

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature: - active neutrino masses \longrightarrow seesaw mechanism (3 heavy RH Majorana neutrinos N)

 - dark matter \longrightarrow sterile neutrino DM (ψ)
- Lab. experiments aim to measure directly the small value of active neutrino masses; - KATRIN: current upper limit $m_{\nu_o} < 0.45$ eV *, expected final reach $m_{\nu_o} = 0.3$ eV $\longrightarrow \Sigma m_{\nu} \simeq 0.9$ eV; - Oscillation data: $\Sigma m_{\mu} > 0.058 (0.098)$ eV, for normal (inverted) neutrino mass ordering. **
- Cosmological observations (assuming ΛCDM): stringent constraints on Σm_{ν} ; - DESI: $\Sigma m_{\nu} < 0.064 \text{ eV} ***$
- What if KATRIN measures something? How could laboratory results be reconciled with cosmological limits?
- Is it possible that the same dark sector that could make laboratory measurement compatible with cosmological limits can also provide a viable dark matter candidate?

* KATRIN Collaboration, [2406.13516 [nucl-ex]] ** I. Esteban et al, [2410.05380 [hep-ph]]

cristina.benso@kit.edu

***DESI Collaboration, [2503.14738 [astro-ph.CO]]

EPS-HEP 2025 - 11.07.2025, Marseille

Cosmological bounds on neutrino masses are established constraining ρ_v

Cosmological bounds on neutrino masses are establish

*DESI Collaboration, [2503.14738 [astro-ph.CO]]

cristina.benso@kit.edu

ned constraining
$$\rho_v \colon \Sigma m_v \times \left(\frac{n_v^0}{56 \text{ cm}^{-3}}\right) < 0.064 \text{ eV}^*$$

Cosmological bounds on neutrino masses are establish

 \longrightarrow if n_{ν}^0 changes, the upper bound on Σm_{ν} can be relaxed.

*DESI Collaboration, [2503.14738 [astro-ph.CO]]

ned constraining
$$\rho_v \colon \Sigma m_v \times \left(\frac{n_v^0}{56 \text{ cm}^{-3}}\right) < 0.064 \text{ eV}^*$$

EPS-HEP 2025 - 11.07.2025, Marseille

Cosmological bounds on neutrino masses are establish

 \longrightarrow if n_{ν}^0 changes, the upper bound on Σm_{ν} can be relaxed.

*DESI Collaboration, [2503.14738 [astro-ph.CO]]

ned constraining
$$\rho_v \colon \Sigma m_v \times \left(\frac{n_v^0}{56 \text{ cm}^{-3}}\right) < 0.064 \text{ eV}^*$$

ontributes to
$$N_{eff} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{rad} - \rho_{\gamma}}{\rho_{\gamma}}\right)$$

RELAXATION OF COSMOLOGICAL BOUND ON NEUTRINO MASSES

Cosmological bounds on neutrino masses are establish

 \longrightarrow if n_{ν}^0 changes, the upper bound on Σm_{ν} can be relaxed.

 \rightarrow the depletion of ν must be compensated by production of new light or massless dark species χ . Our hypothesis: ν are transformed into χ (fermionc singlets).

*DESI Collaboration, [2503.14738 [astro-ph.CO]]

cristina.benso@kit.edu

ned constraining
$$\rho_{v} \colon \Sigma m_{\nu} \times \left(\frac{n_{\nu}^{0}}{56 \text{ cm}^{-3}}\right) < 0.064 \text{ eV}^{*}$$

ontributes to
$$N_{eff} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{rad} - \rho_{\gamma}}{\rho_{\gamma}}\right)$$

RELAXATION OF COSMOLOGICAL BOUND ON NEUTRINO MASSES

Cosmological bounds on neutrino masses are establish

 \longrightarrow if n_{ν}^0 changes, the upper bound on Σm_{ν} can be relaxed.

 \rightarrow the depletion of ν must be compensated by production of new light or massless dark species χ . Our hypothesis: ν are transformed into χ (fermionc singlets).

*DESI Collaboration, [2503.14738 [astro-ph.CO]]

cristina.benso@kit.edu

ned constraining
$$\rho_{\nu} \colon \Sigma m_{\nu} \times \left(\frac{n_{\nu}^{0}}{56 \text{ cm}^{-3}}\right) < 0.064 \text{ eV} *$$

ontributes to
$$N_{eff} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{rad} - \rho_{\gamma}}{\rho_{\gamma}}\right)$$

RELAXATION OF COSMOLOGICAL BOUND ON NEUTRINO MASSES

Cosmological bounds on neutrino masses are established

 \longrightarrow if n_{ν}^0 changes, the upper bound on Σm_{ν} can be relaxed.

 \rightarrow the depletion of ν must be compensated by production of new light or massless dark species χ . Our hypothesis: ν are transformed into χ (fermionc singlets).

*DESI Collaboration, [2503.14738 [astro-ph.CO]]

cristina.benso@kit.edu

ned constraining
$$\rho_{v} \colon \Sigma m_{\nu} \times \left(\frac{n_{\nu}^{0}}{56 \text{ cm}^{-3}}\right) < 0.064 \text{ eV}^{*}$$

ontributes to
$$N_{eff} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{rad} - \rho_{\gamma}}{\rho_{\gamma}}\right)$$

 \rightarrow the transformation of ν into χ must take place in the specific temperature range 100 keV $\gtrsim T \gtrsim 10$ eV.

Recipe:

Recipe:

 \leq 3 heavy RH Majorana neutrinos N to give mass to u via seesaw mechanism

EPS-HEP 2025 - 11.07.2025, Marseille

Recipe:

3 heavy RH Majorana neutrinos N to give mass to u via seesaw mechanism

 N_{χ} massless vector-like dark fields χ to deplete u after their decoupling from the thermal bath

Recipe:

3 heavy RH Majorana neutrinos N to give mass to u via seesaw mechanism

 N_χ massless vector-like dark fields χ to deplete u after their decoupling from the thermal bath

 \bigcirc one DM candidate ψ

Recipe:

3 heavy RH Majorana neutrinos N to give mass to u via seesaw mechanism

 N_{χ} massless vector-like dark fields χ to deplete u after their decoupling from the thermal bath

 \bigcirc one DM candidate ψ

They can all be accommodated in a dark sector that is mainly an extension of the SM neutrino sector,

Recipe:

3 heavy RH Majorana neutrinos N to give mass to u via seesaw mechanism

 N_{γ} massless vector-like dark fields χ to deplete u after their decoupling from the thermal bath

 \bigcirc one DM candidate ψ

They can all be accommodated in a dark sector that is mainly an extension of the SM neutrino sector, complemented with

a new gauge boson Z' that mediates the interactions between u, χ and ψ

Recipe:

3 heavy RH Majorana neutrinos N to give mass to u via seesaw mechanism

 N_{χ} massless vector-like dark fields χ to deplete u after their decoupling from the thermal bath

 \bigcirc one DM candidate ψ

They can all be accommodated in a dark sector that is mainly an extension of the SM neutrino sector, complemented with

a new gauge boson Z' that mediates the interactions between u, χ and ψ a new singlet scalar ϕ , whose VEV breaks the new U(1) and gives mass to Z' and to dark neutrinos

Recipe:

3 heavy RH Majorana neutrinos N to give mass to u via seesaw mechanism

 N_{γ} massless vector-like dark fields χ to deplete u after their decoupling from the thermal bath

 \bigcirc one DM candidate ψ

They can all be accommodated in a dark sector that is mainly an extension of the SM neutrino sector, complemented with

- a new gauge boson Z' that mediates the interactions between ν, χ and ψ
- a new singlet scalar ϕ , whose VEV breaks the new U(1) and gives mass to Z' and to dark neutrinos

Bonus:

one lighter copy N' of the heavy RH Majorana neutrinos N, participating in a second seesaw mechanism to give mass to ψ

New symmetries:

New symmetries:

• U(1)' gauge symmetry

New symmetries:

- U(1)' gauge symmetry
- \mathbb{Z}_2 symmetry, under which all fields but ψ_R and χ_R are even \longrightarrow forbids vector-like mass terms

EPS-HEP 2025 - 11.07.2025, Marseille

New symmetries:

- U(1)' gauge symmetry
- \mathbb{Z}_2 symmetry, under which all fields but ψ_R and χ_R are even \longrightarrow forbids vector-like mass terms

New interactions:

EPS-HEP 2025 - 11.07.2025, Marseille

New symmetries:

- U(1)' gauge symmetry
- \mathbb{Z}_2 symmetry, under which all fields but ψ_R and χ_R are even \longrightarrow forbids vector-like mass terms

New interactions:

• Yukawa interactions

$$-\mathscr{L}_{int} = Y_{\nu}\bar{N}l_{L}\tilde{H}^{\dagger} + Y_{\chi}\bar{N}\chi_{L}\phi + Y_{\psi}\bar{N}\psi_{L}\phi + Y_{\nu}\bar{N}'l_{L}\tilde{H}$$

$\tilde{H}^{\dagger} + Y'_{\chi}\bar{N}'\chi_L\phi + Y'_{\psi}\bar{N}'\psi_L\phi + \frac{1}{2}M\bar{N}N^c + \frac{1}{2}M'\bar{N}'N'^c + H.c.$

New symmetries:

- U(1)' gauge symmetry
- \mathbb{Z}_2 symmetry, under which all fields but ψ_R and χ_R are even \longrightarrow forbids vector-like mass terms

New interactions:

• Yukawa interactions

Interactions of N

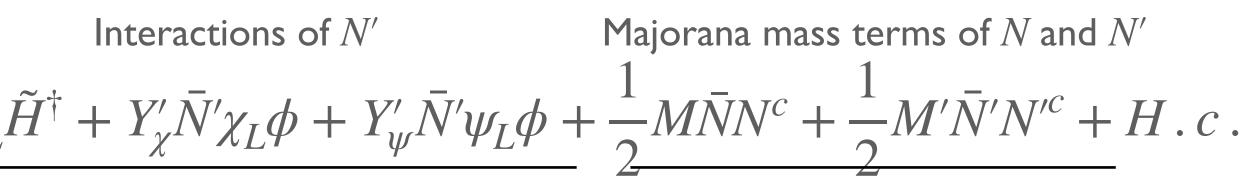
$$-\mathscr{L}_{int} = Y_{\nu}\bar{N}l_{L}\tilde{H}^{\dagger} + Y_{\chi}\bar{N}\chi_{L}\phi + Y_{\psi}\bar{N}\psi_{L}\phi + Y_{\nu}\bar{N}'l_{L}\tilde{H}$$

Interactions of N'

$\tilde{H}^{\dagger} + Y'_{\chi}\bar{N}'_{\chi_L}\phi + Y'_{\psi}\bar{N}'\psi_L\phi + \frac{1}{2}M\bar{N}N^c + \frac{1}{2}M'\bar{N}'N'^c + H.c.$

New symmetries:

- U(1)' gauge symmetry
- \mathbb{Z}_2 symmetry, under which all fields but ψ_R and χ_R are even \longrightarrow forbids vector-like mass terms

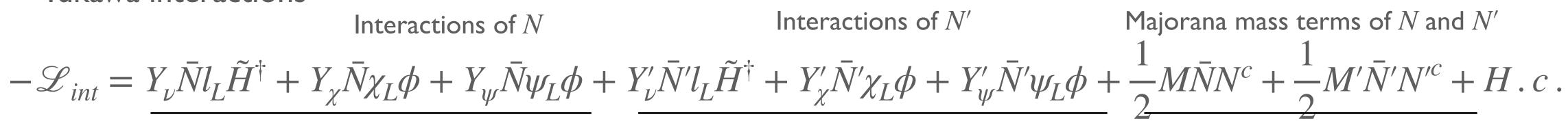

New interactions:

• Yukawa interactions

Interactions of N

$$-\mathscr{L}_{int} = Y_{\nu}\bar{N}l_{L}\tilde{H}^{\dagger} + Y_{\chi}\bar{N}\chi_{L}\phi + Y_{\psi}\bar{N}\psi_{L}\phi + Y_{\nu}\bar{N}'l_{L}\tilde{H}$$

New symmetries:


- U(1)' gauge symmetry
- \mathbb{Z}_2 symmetry, under which all fields but ψ_R and χ_R are even \longrightarrow forbids vector-like mass terms

New interactions:

- Yukawa interactions Interactions of N
- Gauge interactions:

$$\mathscr{L} = \sum_{f} Q_{f} g Z'_{\mu} \bar{f} \gamma^{\mu} f \qquad \text{with} \quad f = \{\chi_{L}, \chi_{R}, \psi_{L}, \psi_{L}$$

 Ψ_R

New symmetries:

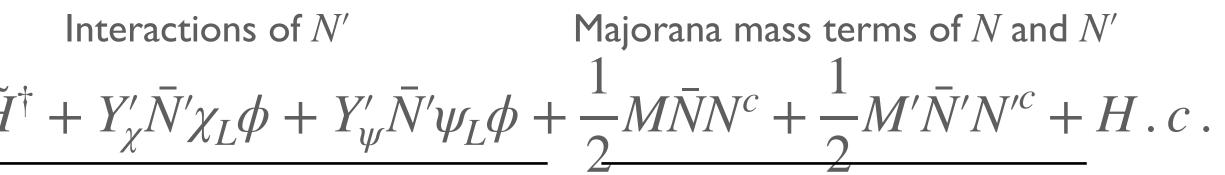
- U(1)' gauge symmetry
- \mathbb{Z}_2 symmetry, under which all fields but ψ_R and χ_R are even \longrightarrow forbids vector-like mass terms

New interactions:

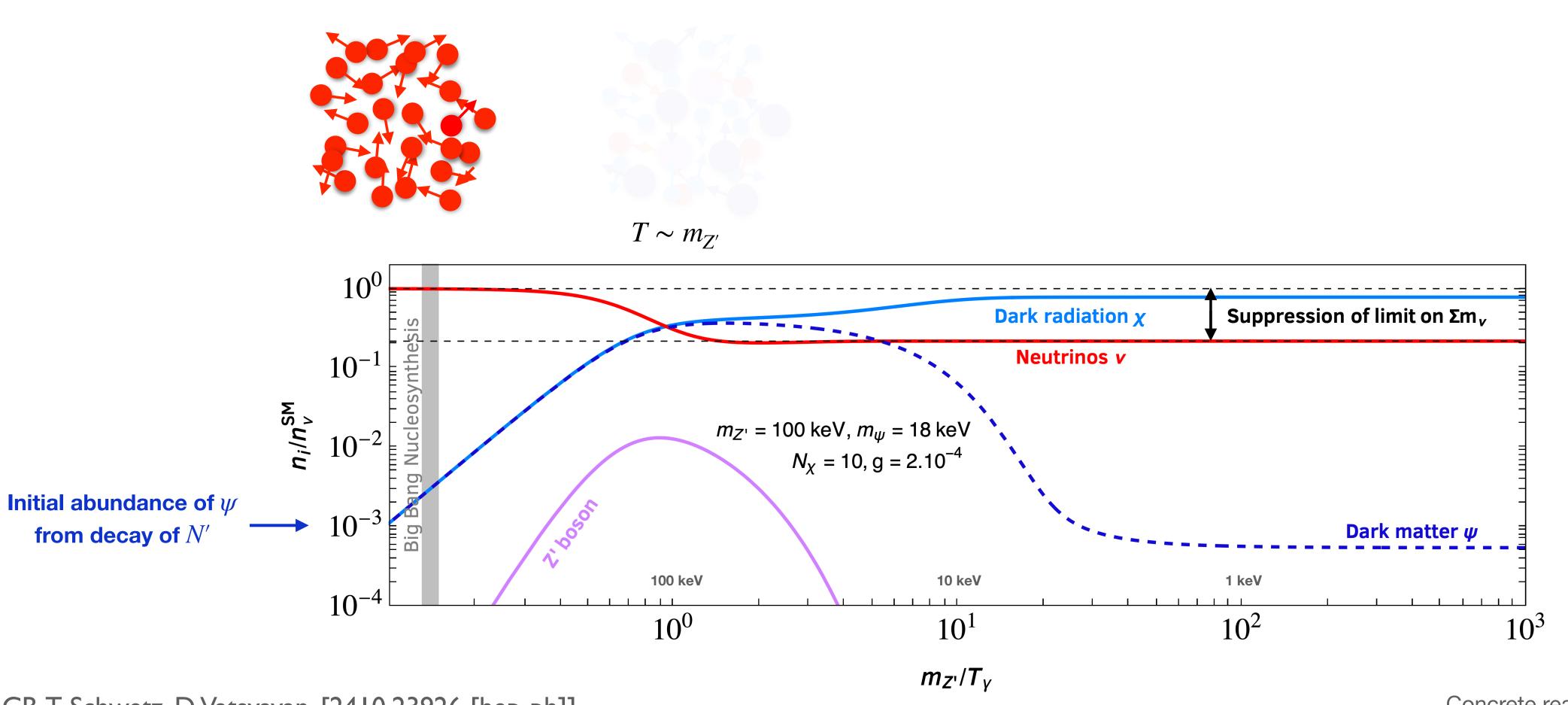
• Yukawa interactions
Interactions of
$$N$$

 $-\mathscr{L}_{int} = Y_{\nu}\bar{N}l_{L}\tilde{H}^{\dagger} + Y_{\nu}\bar{N}\chi_{L}\phi + Y_{\psi}\bar{N}\psi_{L}\phi + Y_{\nu}'\bar{N}'l_{L}\tilde{H}^{\dagger}$

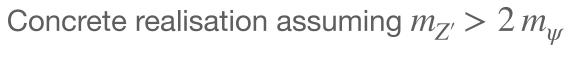
• Gauge interactions:


$$\mathscr{L} = \sum_{f} \mathcal{Q}_{f} g Z'_{\mu} \bar{f} \gamma^{\mu} f$$

with $f = \{\chi_I, \chi_R, \psi_I, \psi_R\}$


Parameters of interest:

$$\{m_{\psi}, m_{Z'}, v_{\phi}, \theta_{\nu\chi}, N_{\chi}\}$$


CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

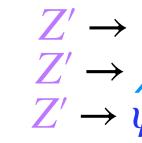
cristina.benso@kit.edu

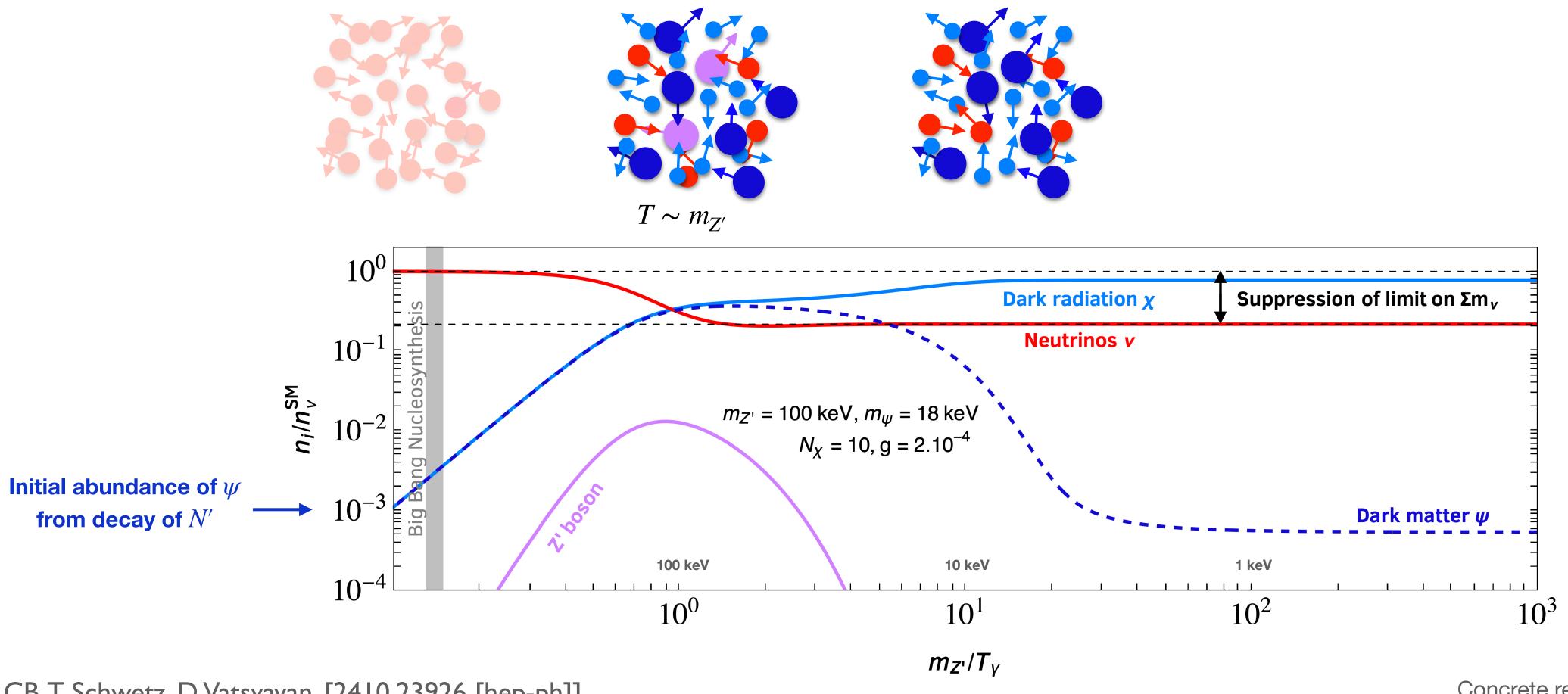
EPS-HEP 2025 - 11.07.2025, Marseille

CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

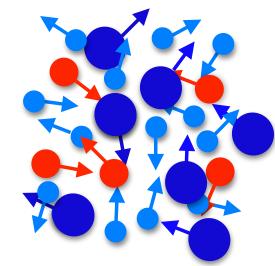
<u>cristina.benso@kit.edu</u>

EPS-HEP 2025 - 11.07.2025, Marseille





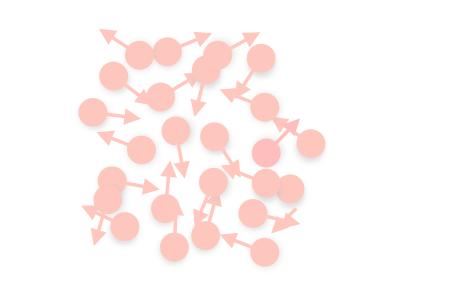
Concrete realisation assuming $m_{Z'} > 2 m_{\psi}$



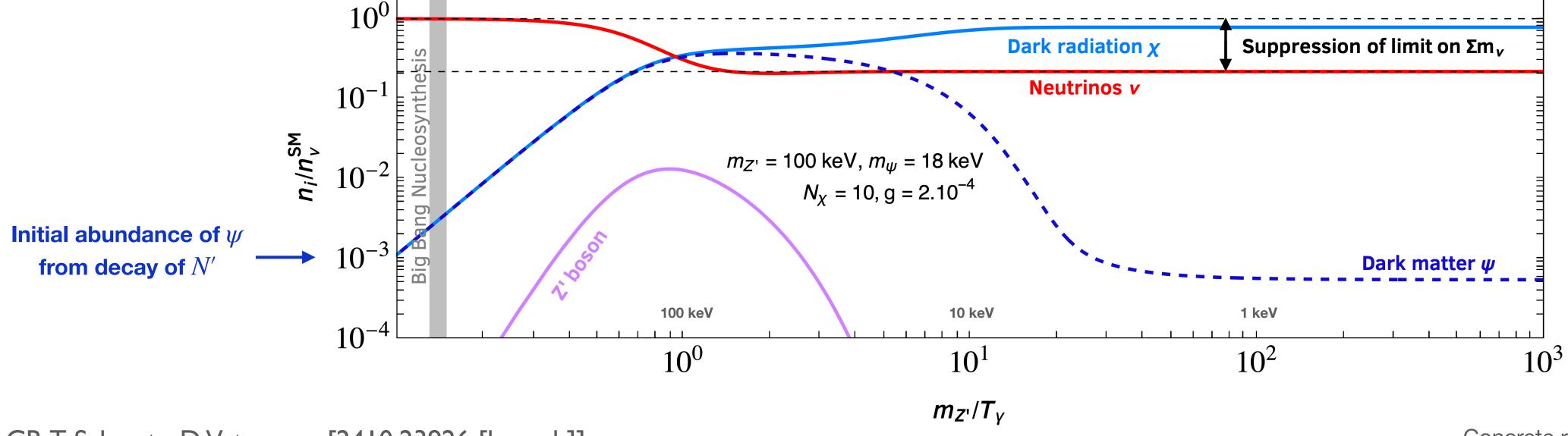
CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

cristina.benso@kit.edu

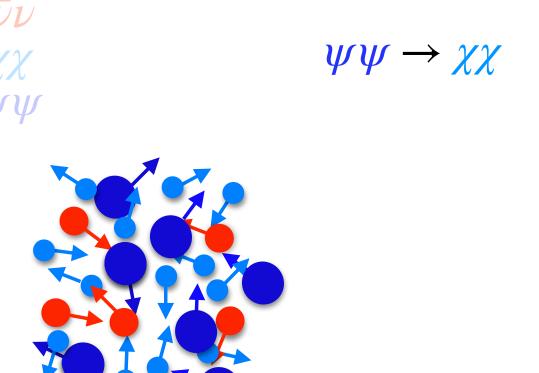
EPS-HEP 2025 - 11.07.2025, Marseille

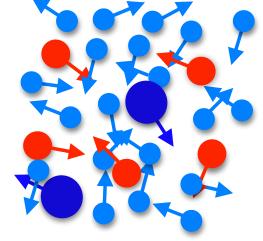


Concrete realisation assuming $m_{Z'} > 2 m_{\psi}$



 $\bar{\nu}\nu \to Z' \qquad \qquad Z' \to \bar{\nu}
u$ $\begin{array}{ll} \bar{\nu}\nu \leftrightarrow Z' \leftrightarrow \chi\chi & Z' \rightarrow \chi\chi \\ \bar{\nu}\nu \leftrightarrow Z' \leftrightarrow \psi\psi & Z' \rightarrow \psi\psi \end{array}$

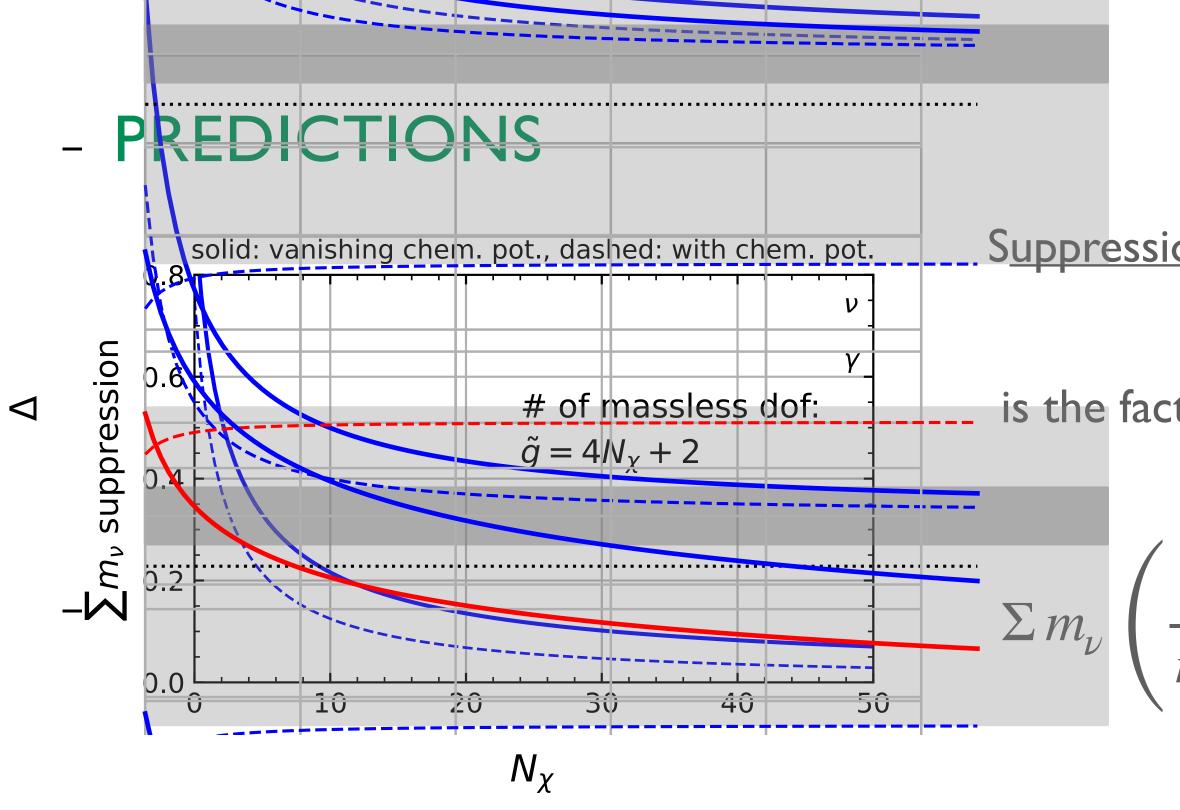


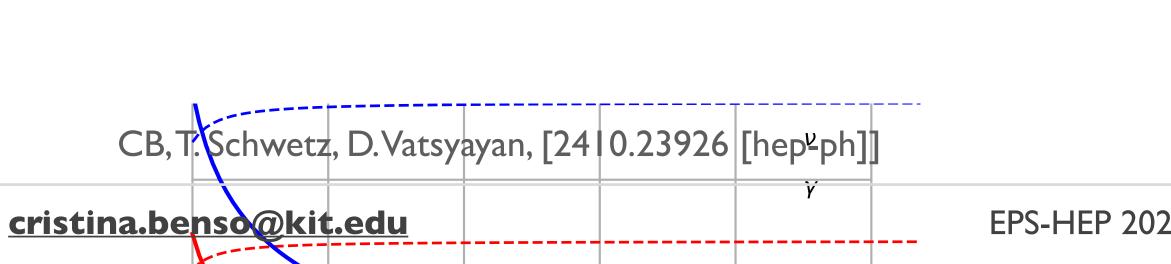

CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

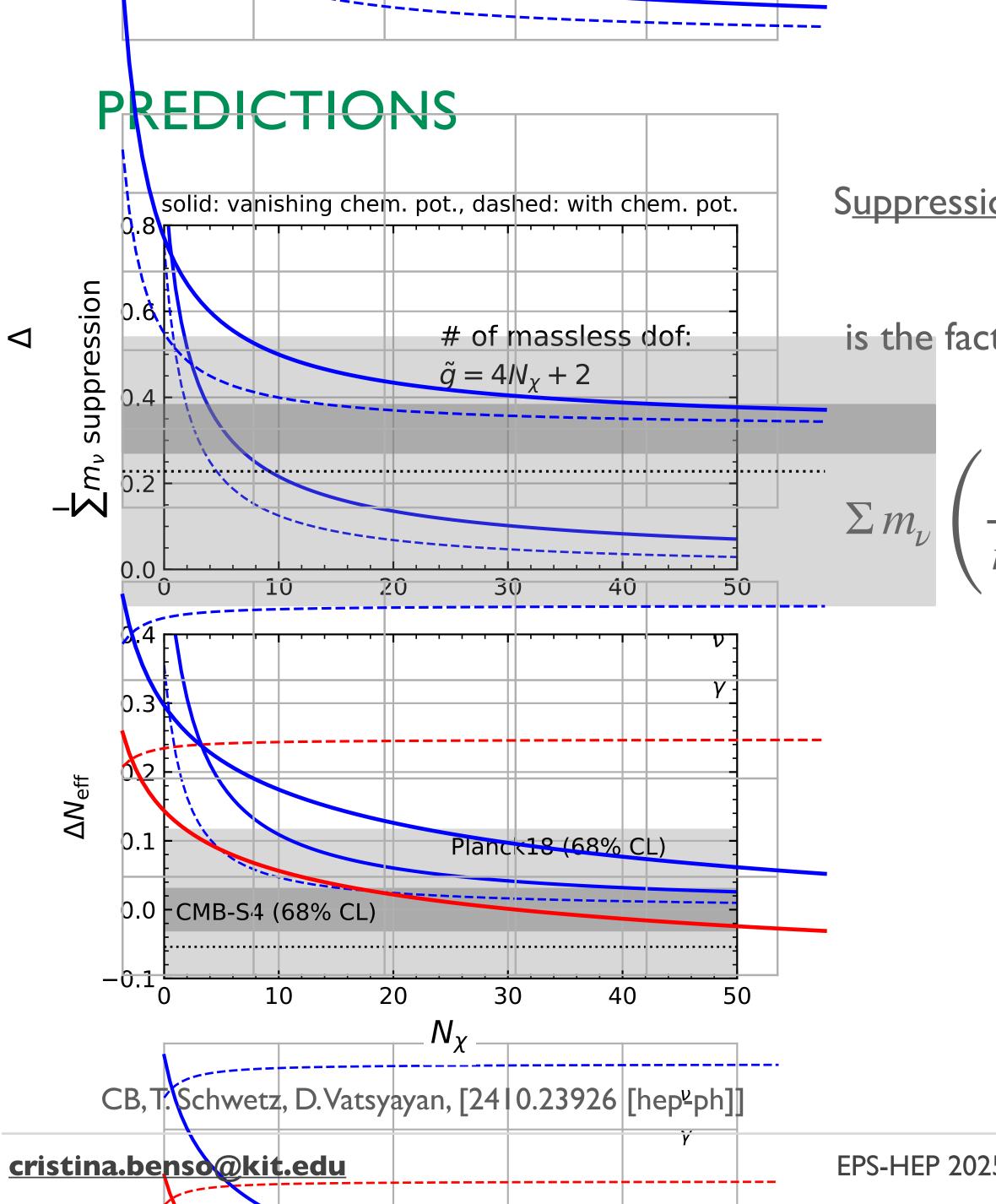
cristina.benso@kit.edu

EPS-HEP 2025 - 11.07.2025, Marseille

Concrete realisation assuming $m_{Z'} > 2 m_{\psi}$

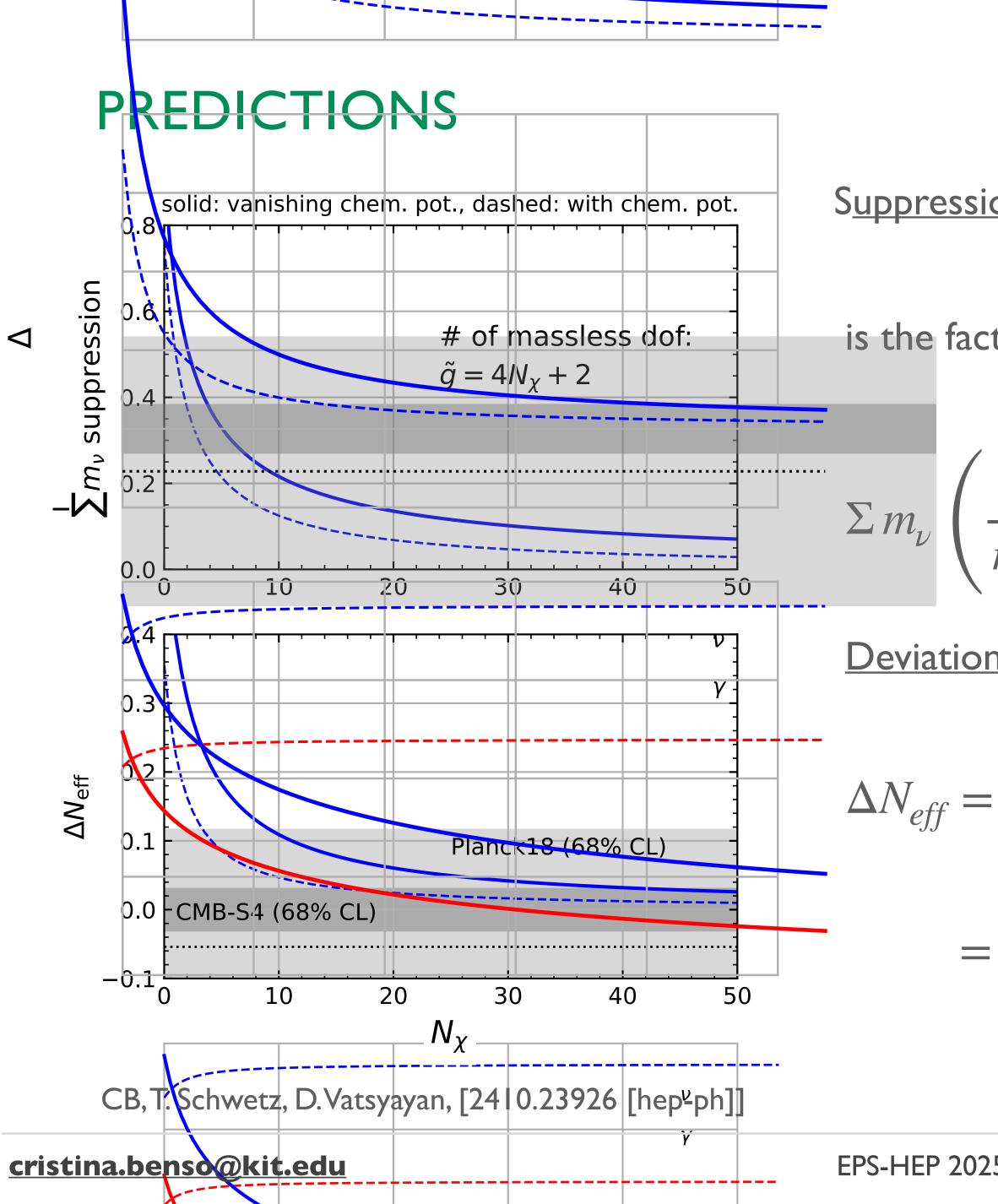






Suppression of cosmological bound on Σm_{ν} :

$$\operatorname{tor}\left(\frac{n_{\nu}}{n_{\nu}^{SM}}\right) < 1 \text{ by which the limit on } \Sigma m_{\nu} \text{ is relaxed in}$$
$$\frac{n_{\nu}}{n_{\nu}^{SM}} \left(\frac{n_{\nu}^{0}}{56 \mathrm{cm}^{-3}}\right) < 0.064 \text{ eV}$$



Suppression of cosmological bound on Σm_{ν} :

$$\operatorname{tor}\left(\frac{n_{\nu}}{n_{\nu}^{SM}}\right) < 1 \text{ by which the limit on } \Sigma m_{\nu} \text{ is relaxed in}$$
$$\frac{n_{\nu}}{n_{\nu}^{SM}} \left(\frac{n_{\nu}^{0}}{56 \mathrm{cm}^{-3}}\right) < 0.064 \mathrm{~eV}$$

Suppression of cosmological bound on Σm_{ν} :

is the factor $\left(\frac{n_{\nu}}{n_{\nu}^{SM}}\right) < 1$ by which the limit on Σm_{ν} is relaxed in $\Sigma m_{\nu} \left(\frac{n_{\nu}}{n_{\nu}^{SM}}\right) \left(\frac{n_{\nu}^{0}}{56 \text{cm}^{-3}}\right) < 0.064 \text{ eV}$

Deviation from standard value of effective number of neutrino species :

$$\frac{\frac{8}{7}\left(\frac{11}{4}\right)^{4/3}\frac{\rho_{dark}}{\rho_{\gamma}} = \frac{g_{\nu} + \tilde{g}}{2}\left(\frac{T_{dark}}{T_{\nu}^{SM}}\right)^{4} = \frac{g_{\nu} + \tilde{g}}{2}\left(\frac{g_{\nu} + \tilde{g} + g_{\psi} + \frac{8}{7}g_{Z'}}{(g_{\nu} + \tilde{g})^{1/3}}\right)^{4}$$

- We considered an extension of the SM neutrino sector, by addition of
 - 4 copies of heavy RH neutrinos, N and N', that participate in two separate seesaw mechanisms,
 - I sterile neutrino DM candidate ψ ,
 - N_{χ} families of massless dark fermions χ ,

- I gauge boson Z' relative to a new U(1) symmetry + I scalar singlet ϕ that breaks the new symmetry.

- We considered an extension of the SM neutrino sector, by addition of
 - 4 copies of heavy RH neutrinos, N and N', that participate in two separate seesaw mechanisms,
 - I sterile neutrino DM candidate ψ ,
 - N_{γ} families of massless dark fermions χ ,
- SM bath, depleting n_{ν}^0 and subsequently noticeably relaxing the cosmological bound on Σm_{ν} .

- I gauge boson Z' relative to a new U(1) symmetry + I scalar singlet ϕ that breaks the new symmetry.

• The N_{γ} species of χ fermions are produced at the expenses of active neutrinos after their decoupling from the

- We considered an extension of the SM neutrino sector, by addition of
 - 4 copies of heavy RH neutrinos, N and N', that participate in two separate seesaw mechanisms,
 - I sterile neutrino DM candidate ψ ,
 - N_{γ} families of massless dark fermions χ ,
- SM bath, depleting n_{ν}^0 and subsequently noticeably relaxing the cosmological bound on Σm_{ν} .
- that is efficiently populated via interactions with active neutrinos in the interval of time within BBN and recombination.

- I gauge boson Z' relative to a new U(1) symmetry + I scalar singlet ϕ that breaks the new symmetry.

• The N_{γ} species of χ fermions are produced at the expenses of active neutrinos after their decoupling from the

• The DM candidate ψ is produced in the correct abundance via freeze-out after thermalisation of the dark sector

- We considered an extension of the SM neutrino sector, by addition of
 - 4 copies of heavy RH neutrinos, N and N', that participate in two separate seesaw mechanisms,
 - I sterile neutrino DM candidate ψ ,
 - N_{γ} families of massless dark fermions χ ,
 - I gauge boson Z' relative to a new U(1) symmetry + I scalar singlet ϕ that breaks the new symmetry.
- The N_{χ} species of χ fermions are produced at the expenses of active neutrinos after their decoupling from the SM bath, depleting n_{ν}^{0} and subsequently noticeably relaxing the cosmological bound on Σm_{ν} .
- The DM candidate ψ is produced in the correct abundance via freeze-out after thermalisation of the dark sector that is efficiently populated via interactions with active neutrinos in the interval of time within BBN and recombination.
- Our model predicts a sizable deviation of N_{eff} from the SM value at recombination, that may be observable by future CMB missions.

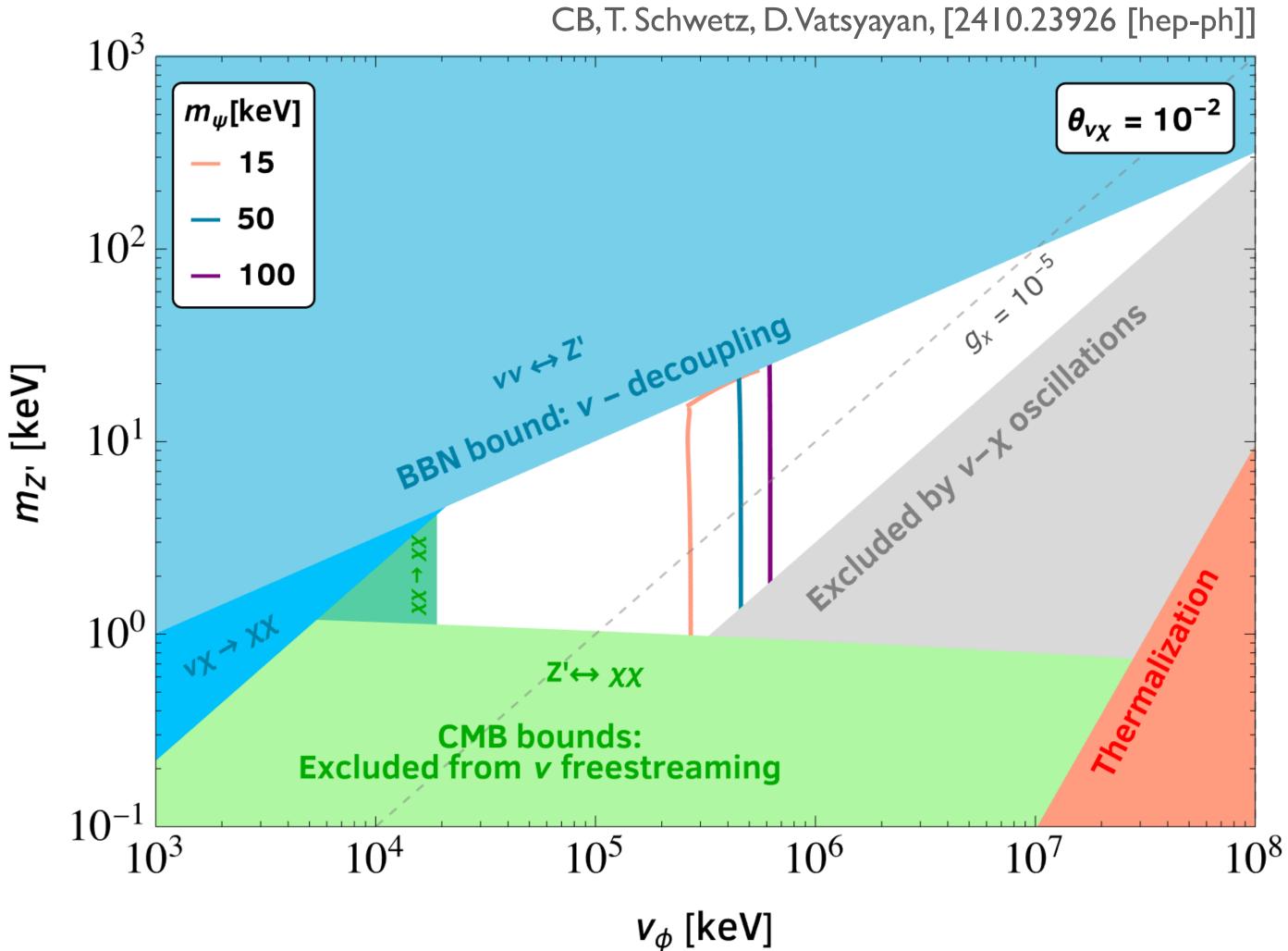
tor, by addition of rticipate in two separate seesaw mechanisms

<u>cristina.benso@kit.edu</u>

EPS-HEP 2025 - 11.07.2025, Marseille

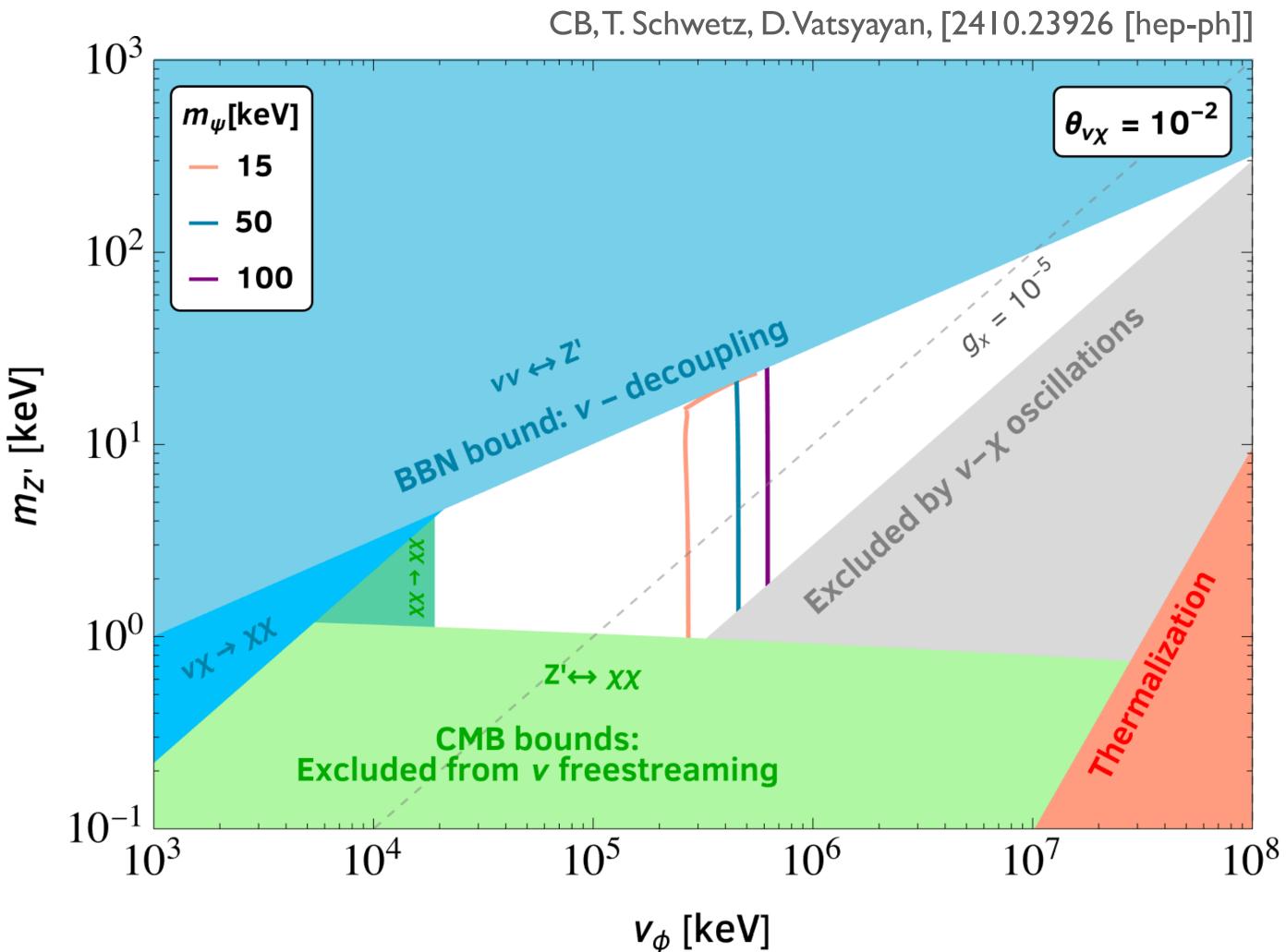
BACKUP SLIDES

LIMITS ON NEUTRINO MASSES FROM COSMOLOGY


• Neutrinos are produced thermally as relativistic particles and become non relativistic in the late universe:

- depending on the value of m_{ν} (and Σm_{ν}) neutrinos impact:
 - the time (or temperature) of matter-radiation equality, T_{eq} ,
 - the growth of structures: larger $m_{\nu} \longrightarrow \nu$ contribute to the gravitational potential and accelerate the gravitational infall of matter smaller $m_{\nu} \rightarrow \nu$ do not contribute to the gravitational potential and they drag matter away from it, preventing the growth of structures ----- can be detected in large scale structure (LSS) surveys, like DESI

CONSTRAINTS AND PREDICTIONS



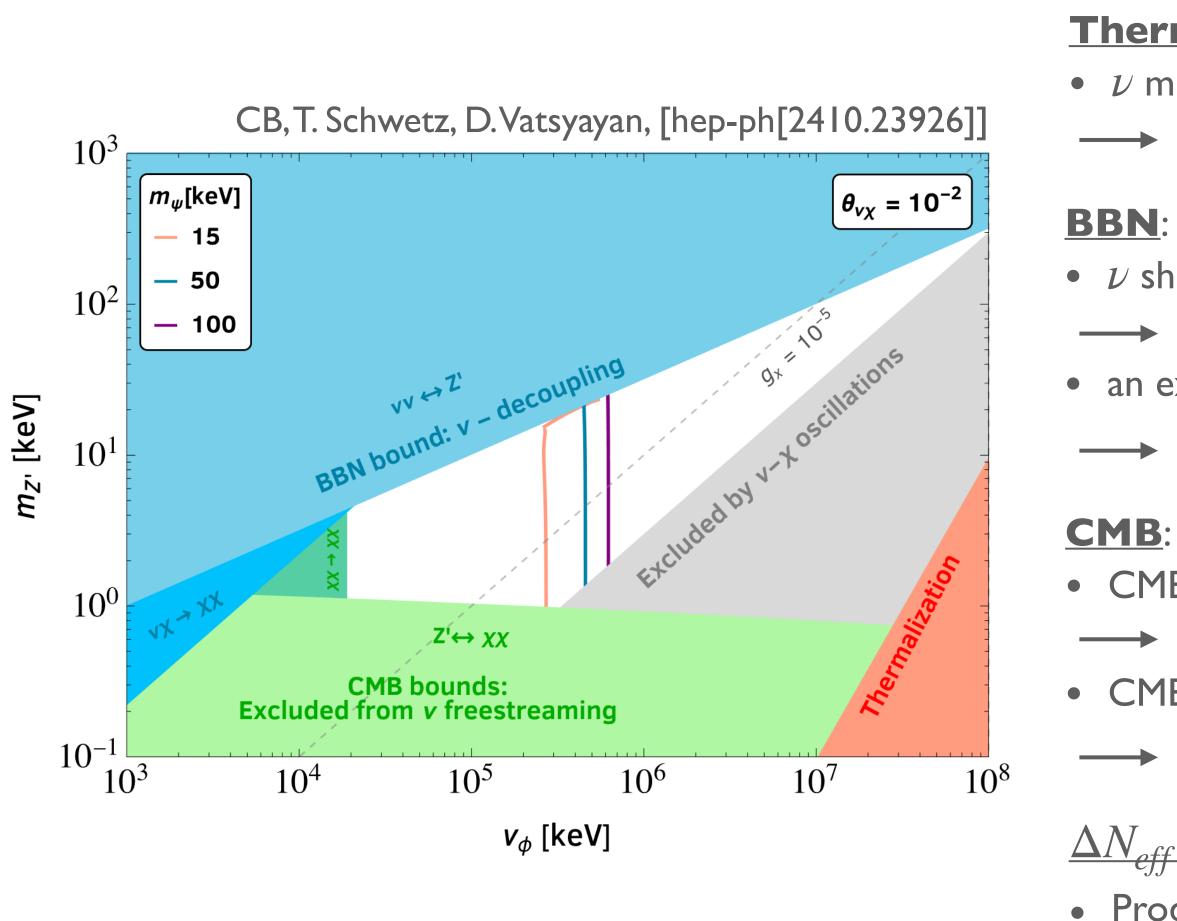
Remember: Relevant parameters for phenomenology $\{m_{\psi}, m_{Z'}, v_{\phi}, \theta_{\nu\chi}, N_{\chi}\}$

here $N_{\gamma} = 10$

CONSTRAINTS AND PREDICTIONS

Remember:

Relevant parameters for phenomenology $\{m_{\psi}, m_{Z'}, v_{\phi}, \theta_{\nu\chi}, N_{\chi}\}$


here $N_{\gamma} = 10$

Majority of constraints from requirement of equilibrium or non-equilibrium of various processes within the dark sector or involving also active neutrinos

CONSTRAINTS AND PREDICTIONS

cristina.benso@kit.edu

EPS-HEP 2025 - 11.07.2025, Marseille

Thermalization:

• ν must thermalise with Z' in the interval 100 keV > T > 10 eV

 \longrightarrow condition: $\langle \Gamma(Z' \leftrightarrow \nu \nu) \rangle > H(T \sim m_{T'}/3);$

• ν should not be in thermal equilibrium with Z' at T > 0.7 MeV

 \longrightarrow condition: $\langle \Gamma(Z' \leftrightarrow \nu \nu) \rangle < H(T = 0.7 \text{ MeV});$

• an existing abundance of χ must not grow exponentially before BBN \square condition: $\langle \Gamma(\nu\chi \leftrightarrow \chi\chi) \rangle < H(T = 0.7 \text{ MeV});$

• CMB must not be distorted by $\nu\nu \leftrightarrow Z'$ and $Z' \leftrightarrow \chi\chi$ at $z < 10^{5}$ $\longrightarrow \langle \Gamma(\nu\nu\leftrightarrow Z') \rangle < H(T = 23 \text{ eV}) \text{ and } \langle \Gamma(Z'\leftrightarrow \chi\chi) \rangle < H(T = 23 \text{ eV});$ • CMB must not be perturbed by χ free-streaming at $z < 10^5$ $\longrightarrow \langle \Gamma(\chi\chi \leftrightarrow \chi\chi) \rangle < H(T = 23 \text{ eV})$

$$\Delta N_{eff} \simeq 0.014 \sum_{\chi=1}^{N_{\chi}} \frac{|\theta_{e\chi}|^2 + 0.8(|\theta_{\mu\chi}|^2 + |\theta_{\tau\chi}|^2)}{10^{-6}} \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right) < 0$$

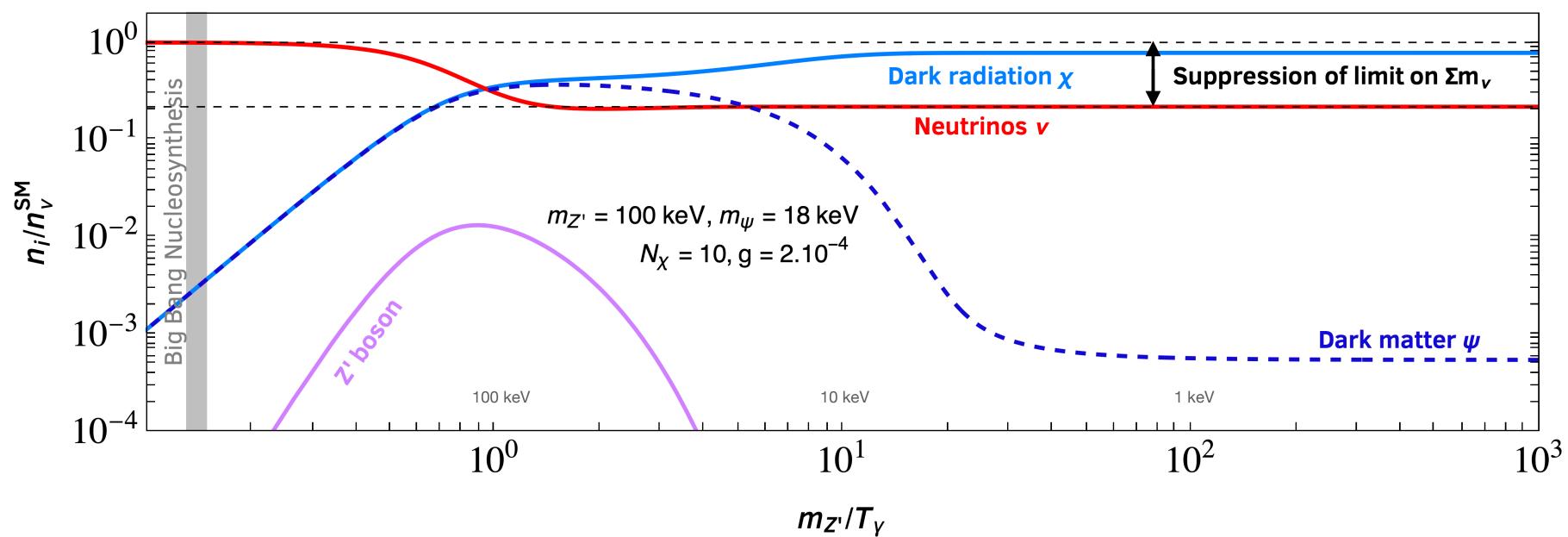
INTRODUCTION & MOTIVATIONS

- Standard Model is great <u>but</u> it does not explain (at least) two puzzles of Nature: - active neutrino masses \longrightarrow seesaw mechanism (3 heavy RH Majorana neutrinos N)

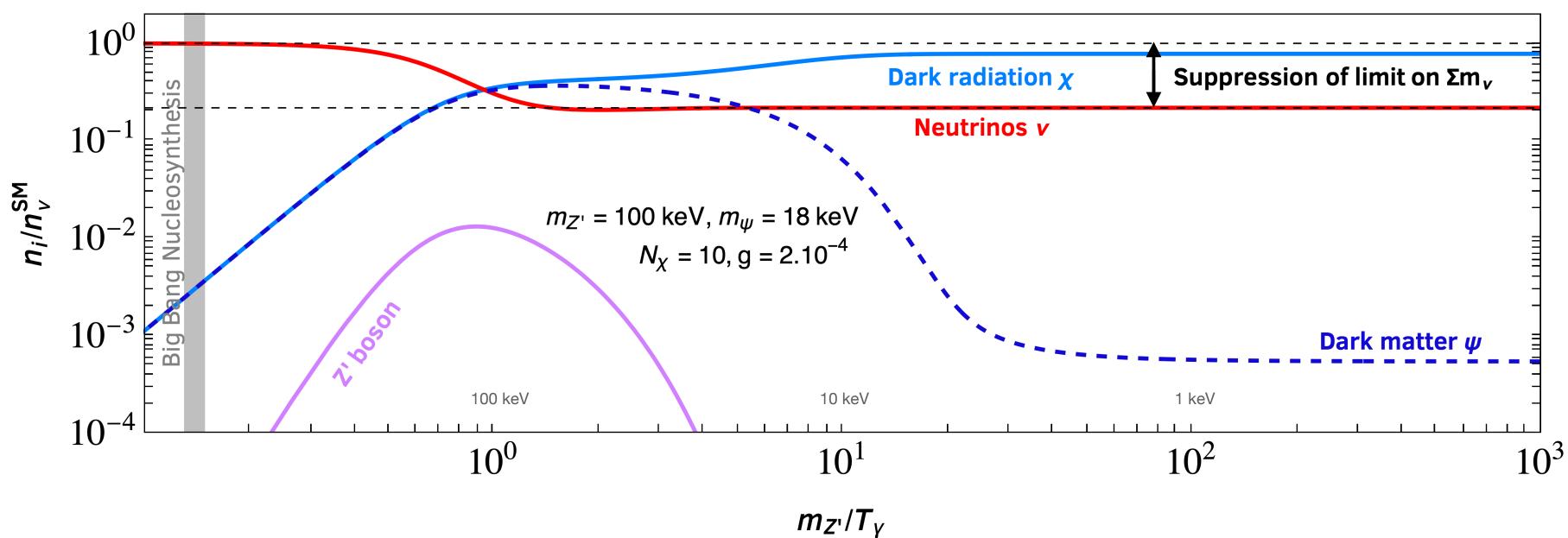
 - dark matter \longrightarrow sterile neutrino DM (ψ)
- Lab. experiments aim to measure directly the small value of active neutrino masses: - KATRIN aims to measure the effective electron antineutrino mass $m_{\nu_e} = \sqrt{\Sigma |U_{ei}|^2 m_{\nu_i}^2}$ current upper limit $m_{\nu_e} < 0.45$ eV *, expected final reach $m_{\nu_e} = 0.3$ eV; - Oscillation data put a lower limit on the sum of neutrino masses:

- $\Sigma m_{\nu} > 0.058 (0.098)$ eV for normal (inverted) neutrino mass ordering. **
- Cosmological observations set stringent constraints on the sum of active neutrino masses, assuming $\Lambda {\sf CDM}$: for example, DESI established an upper bound of $\Sigma m_{\nu} < 0.064$ eV ***
- What if KATRIN measures something? How could laboratory results be reconciled with cosmological limits?
- Is it possible that the same dark sector that makes laboratory measurement compatible with cosmological limits provides also a viable dark matter candidate?

* KATRIN Collaboration, [2406.13516 [nucl-ex]] ** I. Esteban et al, [2410.05380 [hep-ph]]

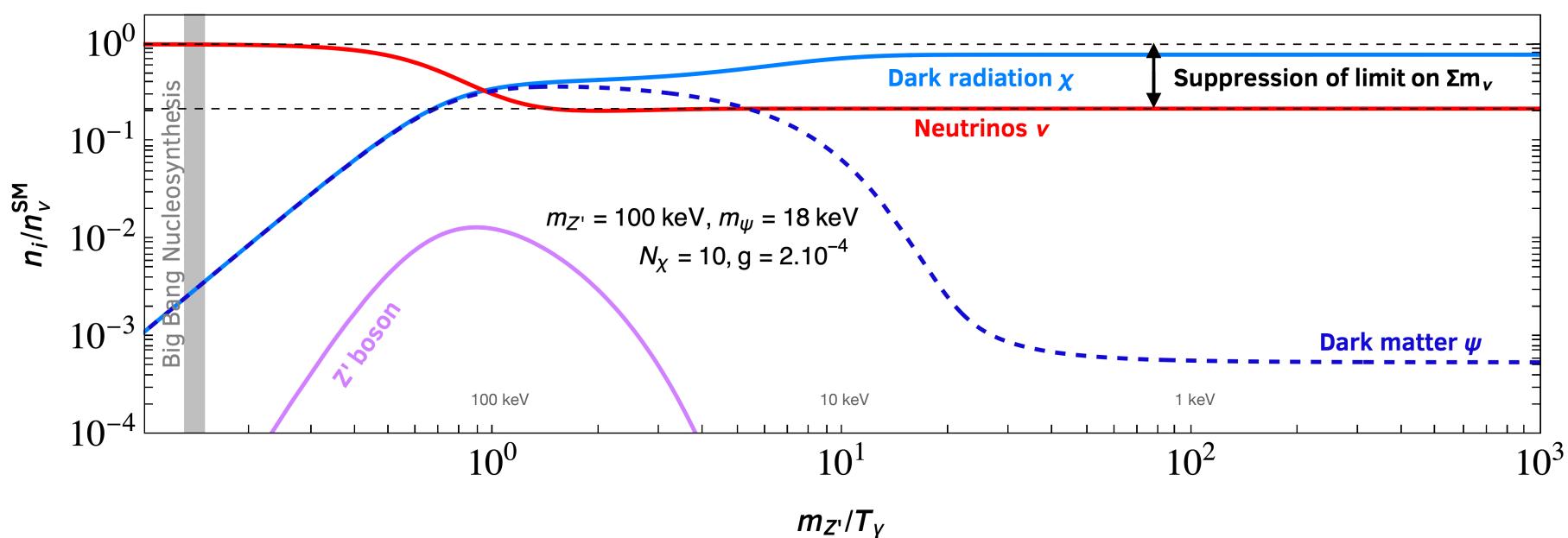

cristina.benso@kit.edu

^{***}DESI Collaboration, [2503.14738 [astro-ph.CO]]



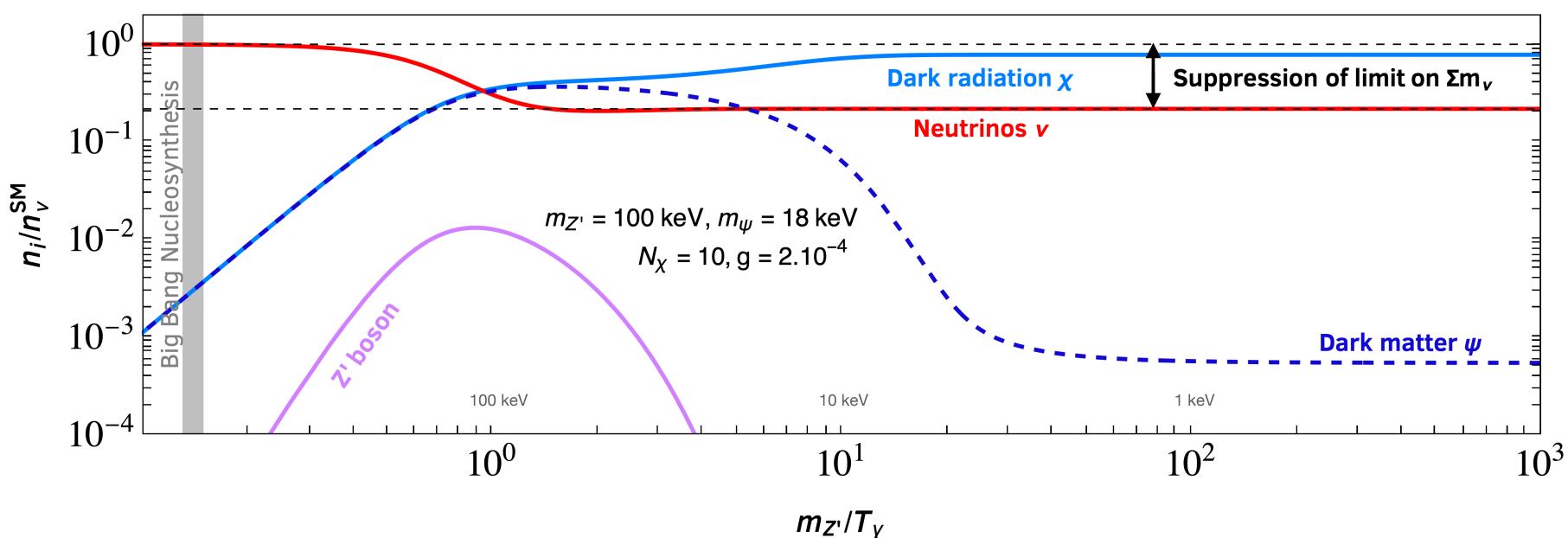
CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

• At early times, DM produced from decay of N and N' (little abundance)



CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

- At early times, DM produced from decay of N and N' (little abundance)
- (reaches equilibrium abundance thermalising in the dark sector)



CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

• Once the population of Z' becomes relevant, DM mainly produced from Z' decays, or $Z'Z' \leftrightarrow \psi \psi$, and $\chi \chi \leftrightarrow \psi \psi$

- At early times, DM produced from decay of N and N' (little abundance)
- (reaches equilibrium abundance thermalising in the dark sector)
- At late times, DM freezes-out via annihilations $\psi \psi \rightarrow \chi \chi$ (possibly avoiding DM overproduction)

CB, T. Schwetz, D. Vatsyayan, [2410.23926 [hep-ph]]

• Once the population of Z' becomes relevant, DM mainly produced from Z' decays, or $Z'Z' \leftrightarrow \psi \psi$, and $\chi \chi \leftrightarrow \psi \psi$

