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Source selection
•Target source: TXS 0506+056 — 3.75Gyr away 

•Jet composition: Only blazar linked to IceCube 
neutrinos → evidence for hadronic processes 

•Interaction assumed: Proton–WIMP → same 
interaction at source and detector 

•Motivation: Matches Xenon-based nuclear 
recoil assumption (WIMP–nucleon) 

•Dominant process: Hadronic > leptonic 
luminosity in jets 

•Modeling advantage: TXS 0506+056 is bright 
and well-constrained observationally
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Dark Matter Profile

We consider a 3-zone model: 

•NFW at high radii 

•Gondolo-Silk Spike at 
intermediate radii 

•A flattening from baryonic 
effects at low radii (at very 
small radii, capture by the 
black hole leads to a loss of 
dark matter).

3-zone model Our DM density

Our integrated column density

NFW

Gondolo-Silk
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DM flux on Earth as a function of DM kinetic energy for different DM masses. 

Blazar Boosted Dark Matter on Earth



Earth attenuation



Earth attenuation  cm , =100 MeVσχp = 10−31 2 mχ
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Earth attenuation

Boosted DM flux vs kinetic energy Tχ 
•Black: unattenuated flux 
•Blue dashed: analytical method 
•Red dashed: numerical method

 cm , =100 MeVσχp = 10−31 2 mχ
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Earth attenuation

Boosted DM flux vs kinetic energy Tχ 
•Black: unattenuated flux 
•Blue dashed: analytical method 
•Red dashed: numerical method

Both approaches predict attenuation 
effect to vanish near σχp ∼ 10−31cm2

 cm , =100 MeVσχp = 10−31 2 mχ
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Predicted rate vs recoil energy at detector

Kinetic 
Energy 
(Tχ) Nuclear 

Recoil 
Energy
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Simple approach to approximate recasting

Takes experimental limit at one WIMP 
mass (200 GeV) → "excludes Rate" 
Applies same Rate to all BBDM masses:  
"what cross-section gives that same excluded 
rate?" 

Fast but ignores detector spectral response 
information.

Rexcl = σlimit
WIMP(200 GeV) × ΦWIMP × εROI

Rate-matching constraint: For each BBDM mass, find sigma such that:

RBBDM(m, σ) = Rexcl
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Exclusion limits in XENON1T

•Dotted: previous BBDM study by 
 JW Wang et al. (2021) 

•Dotted-dashed: simple “recast 
method” + updated DM profile and 
corrected detector efficiency 

•Solid: full detector response 
included 

Exclusion upper bound (“blind spots”)
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Given what the detector 
observed (and our model), we 
can rule out anything within 
this region at 90% 
confidence.
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Exclusion limits in XENON1T vs LZ

•Solid red: LZ - EFT/matching 
•Solid blue: XENON1T - full 
detector response included
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•Dotted: XENON1T - previous 
BBDM study by  JW Wang et al. 
(2021) 

•Dotted-dashed: XENON1T -  
simple “recast method” + updated 
DM profile and corrected detector 
efficiency 

•Solid: XENON1T - full detector 
response included 

•Solid red: LZ - EFT/matching

Preliminary 

All together…

ALL PLOTS USE PUBLIC AVAILABLE DATA
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Questions
1.Why are your limits generally “worse” than previous works?


2.Why are LZ limits better than XENON?


3.What did you learn?


4.Is BBDM an effective way to search for sub-GeV DM?


5.What's the role of the DM profile in your analysis?


6.When are you going to publish this work?


7.Can you explain again…?
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