

EPS HEP MARSEILLE 2025 THE LOHENGRIN EXPERIMENT AT THE ELSA ACCELERATOR

Matthias Hamer for the Lohengrin Study Group

Philip Bechtle¹, Christian Bespin¹, Dominique Breton², Cedric Breuning¹, Carlos Orero Canet⁴, Klaus Desch¹, Herbi Dreiner¹, Oliver Freyermuth¹, Rhorry Gauld^{1,3}, Markus Gruber¹, Cesar Blanch Gutierrey⁴, Hayem Hajjar¹, Matthias Hamer¹, Jan-Eric Heinrichs¹, Adrian Irles⁴, Jochen Kaminski¹, Laney Klipphahn¹, Hans Krüger¹, Michael Lupberger¹, Jihane Maalmi², Roman Pöschl², Dennis Proft¹, Leonie Richarz^{1,6}, Tobias Schiffer¹, Patrick Schwäbig¹, Martin Schürmann¹, Dirk Zerwas⁵

1 Physikalisches Institut, University of Bonn | 2 IJCLab Orsay | 3 Werner-Heisenberg-Institute, MPP Garching 4 IFIC, Valencia | 5 DMLab, DESY/IN2P3/CNRS | 6 NTNU Norway

• Motivation for Lohengrin: Light Dark Matter

General Principle of Lohengrin

• Design of the Lohengrin Experiment

• Expected Sensitivity of the Lohengrin Experiment

• The Way Forward

DARK MATTER – WISPS AND LDM

- light dark matter?
 - interaction between dark matter and standard model
 - portals: tune coupling for right relic density
- simple model: massive boson from spontaneously broken $U(1)_D$ as portal \rightarrow "dark photon"
- minimal model: SM + DM + U(1)_D \rightarrow introduce coupling between DS and SM through kinetic mixing

DARK MATTER – DARK PHOTONS

- "invisible" dark photons: $m_{A'} > 2m_{\chi}$:
 - dark matter annihilation through s-channel A' into fermions
 - production of dark photon at accelerators: **no visible signal**

- collider searches, beam dump experiments (with and without direct detection) and direct detection experiments
- in particles for DM masses < 1 GeV (m_{A'} < 3 GeV):
 sizeable gap to relic target

inspired by the LDMX experiment: arXiv:1808.05219

- electron beam on fixed target
- SM processes:
 - bremsstrahlung
 - electro-nuclear reaction
 - photo-nuclear reaction
- depending on m_{A'} and ε: occasional radiation of dark photon: dark bremsstrahlung with large energy loss

ELSA – ELEKTRONEN STRETCHER ANLAGE

DARK PHOTON PRODUCTION AT ELSA

tungsten target, thickness: 0.1 X₀

relic target predicts coupling strength between 10⁻¹² and 10⁻⁷
 for dark photon masses between 1 MeV and 1 GeV

mA' [MeV]	ε² (scalar χ)	ε² (majorana χ)	ε² (pseudo-dirac χ)
4.5	4.3 x 10 ⁻¹¹	2.2 x 10 ⁻¹¹	2.9 x 10 ⁻¹²
10	2.0 x 10 ⁻¹⁰	9.8 x 10 ⁻¹¹	1.3 x 10 ⁻¹¹
100	2.6 x 10⁻ ⁸	1.2 x 10 ⁻⁸	1.2 x 10 ⁻⁹
1000	5.4 x 10 ⁻⁷	2.7 x 10 ⁻⁷	2.5 x 10 ⁻⁸

- need high rate of electrons on target, **O(100 MHz)**:
- can expect between 100 and a O(1000) dark photon events for masses up to 100 MeV during 100 days of beam time at ELSA
- need excellent background rejection

WHERE TO LOOK FOR DARK PHOTONS?

- target interval for mA': 10 MeV 100 MeV
- assuming basic ECAL veto and only dominant SM BG

$$E = 3.2 \,\text{GeV}, \ \Phi^+ = {}^{184}_{74} \text{W}$$
$$e^- \Phi^+ \to e^- \Phi^+ A' \text{ in } \mathcal{Q} = \mathcal{Q}^e_{\text{bin}} \cup \mathcal{Q}^{\Phi}_{\text{tot}} \cup \mathcal{Q}^{A'}_{\text{tot}}$$
$$e^- \Phi^+ \to e^- \Phi^+ \gamma \text{ in } \mathcal{Q} = \mathcal{Q}^e_{\text{bin}} \cup \mathcal{Q}^{\Phi}_{\text{tot}} \cup \mathcal{Q}^{\gamma}_{\overline{\text{ECAL} + \text{IRc}}}$$

- should look in final states with electrons that lost most of their energy in the target
 - use low momentum electron trigger!

UNIVERSITÄT BONN

LAYOUT OPTIMISATION

- ECAL used as **photon veto**

- high rate of photons in the same cells

- baseline choice: CALICE SiW ECAL

- max hit rate per cell: **40 MHz** in central cells
 - mostly low energy photons
 - need to identify low rate high energy photons in those cells

→ need **fast signal processing** in ECAL

- idealized assumptions for readout ASIC: fast preamplifier, discharged after each event
- otherwise, SCIROC2A like characteristics, in particular CRRC shaper (time constant τ)

- ε = 81%

- ε = 68%

TRACKING DETECTOR

tracking detector

- reasonable per pixel hit rate
- low material budget is key for tracking low momentum electrons
- estimated performance using TJ Monopix2 like tracking ASICs
 - DMAPS in Tower Jazz 180nm technology
 - **33.04 x 33.04 μm²** pixels
 - can be thinned to $\textbf{50-100}\;\mu\textbf{m}$
 - 2x2 ASICs per tracking plane
- tracking performance estimated using ACTS for a telescope geometry

Layer	Target	1	2	3	4	5	6	7	8	9
z Position [mm]	2000	1810	1840	1900	2010	2030	2045	2070	2100	2130

- tracker performance (single events)
 - visible branch due to hard scattering in tracking planes \rightarrow importance of thin tracker!
 - reasonable efficiency down to 25 MeV → vanilla algorithm, improvements may be possible

candidate signal region

- ==1 electron in initial state
- ==1 charged track, compatible with electron hypothesis with 25 MeV < E_e < 75 MeV, in final state
- no significant energy deposition above background level in ECAL
- no significant energy deposited in hadron calorimeters
- considering **baseline magnet scenario** with **baseline ECAL scenario**
 - main background expected to stem from out-of-acceptance SM QED
 - hadronic backgrounds are difficult to estimate → next slides

$4 \cdot 10^{14}$ EoT	number of γ	$\begin{array}{l} m_{A'} = 1 {\rm MeV} \\ \varepsilon = 1.2 \cdot 10^{-6} \end{array}$	$\begin{array}{l} m_{A^{\prime}} = 10 \mathrm{MeV} \\ \varepsilon = 1.4 \cdot 10^{-5} \end{array}$	$\begin{array}{l} m_{A^{\prime}} = 100 \mathrm{MeV} \\ \varepsilon = 1.6 \cdot 10^{-4} \end{array}$
total $\xi < 0.95$	$3.1 \cdot 10^{14}$	26	80	27
$p_e < 75 \mathrm{MeV}, \theta_e < 0.25 \mathrm{rad}$	$1.0\cdot 10^{12}$	1.3	26	5.1
$E^{\gamma}(\theta_{\gamma} < 0.07) < 640 \mathrm{MeV}$	293	1.3	26	5.1

HADRONIC BACKGROUNDS

- limited sample size MC
 - 10⁷ electron-nuclear and 10⁷ photon-nuclear interactions
 - no events survive all SR cuts
- estimate is limited by the sample size & issues found with Geant4
 - FLUKA as an alternative to Geant4
- expect somewhat isotropic distribution of FS hadrons
 - set the expectation to 10 events in the SR (arbitrary number)
 - very conservative compared to LDMX for example

$$\begin{array}{ll} \bullet & e^{-} + \mathcal{H} \to e^{-} + \mathcal{H}' + \pi^{0} + 3n + 5\gamma & , \\ \bullet & e^{-} + \mathcal{H} \to e^{-} + \mathcal{H}' + \gamma + 8n + 2p + 7\gamma & , \\ \bullet & e^{-} + \mathcal{H} \to e^{-} + \mathcal{H}' + \pi^{-} + 3p + 4n + 6\gamma & , \\ \bullet & e^{-} + \mathcal{H} \to e^{-} + \mathcal{H}' + 2\pi^{0} + \pi^{+} + K^{0} + \Lambda + 31n + 9p + 5\gamma \end{array}$$

- signal selection efficiency, including
 - trigger efficiency
 - electron reconstruction efficiency
 - calorimeter veto efficiency
 - offline cuts
- achieve reasonable signal efficiency for targeted mass interval

- conservative estimates:

- sensitivity approaches relic target for scalar dark matter with 4x10¹⁴ electrons on target
- reduction of out-of-acceptance backgrounds
 - could expand the reach beyond relic target for scalar and majorana DM
- comparison to similar proposed experiments:
 - lower center of mass energy at ELSA

possible improvements

- moderate increase in luminosity
- low momentum electron reconstruction
- enhanced coverage for veto calorimeters

LOHENGRIN – STATUS

- feasibility study published in EPJC Eur. Phys. J. C (2025) 85: 600
- currently **running beam test** for second trigger stage
 - test pattern recognition and rate capabilities
 - inclusion of target in the setup —
- improving estimates:
 - virtual compton scattering
 - hadronic backgrounds —

LOHENGRIN - ROADMAP

phased setup of experiment at ELSA, starting with components from existing hardware

- **phase 1:** (low-rate) test to establish the (non)relevance of VCS
- phase 2: (medium-rate) test with hadron counter to support estimation of hadronic backgrounds
- **phase 3:** first dark photon search run

- offline integration, layout and design optimisation

- finalise requirements for tracker and ECAL
- improvement of tracking algorithm
- investigation of alternative triggering strategies
- design and test of suitable tracker, ECAL and HCAL

existing components

requires detector R&D

backup

- dominant process by far: SM bremsstrahlung
 - about 1% of all events with a hard photon

- rare electro-nuclear and photo-nuclear events:
 - rate about 10⁻⁶: **1-2 high energy hadrons**, many low energy photons

LOHENGRIN – CONCEPTION OF LAYOUT AND OPTIMISATION

overall layout

- trackers in strong magnetic field
- high Z, 10% X₀ target (tungsten)
- ECAL veto for high energy photons
- HCAL veto for hadrons
- event rate: single electrons on target at 100 MHz
- general requirements
 - high resolution, fast and thin tracker
 - calorimeter with fast signal processing
 - highly efficient hadron calorimeter

LAYOUT OPTIMISATION

Magnet scenarios:

- **pessimistic:** $B = 0.7 \text{ T}, z_B = 0.6 \text{ m}$
- baseline: $B = 0.9 \text{ T}, z_B = 1.0 \text{ m}$
- optimistic: $B = 1.2 \text{ T}, z_B = 1.2 \text{ m}$

- extract electrons from ELSA at a rate of up to 500 MHz
- high energy resolution, 0.08%
- extract on average one electron every 5th cycle, v_{eff} = 100 MHz
- beamspot on target: $\sigma_x = \sigma_y = 1$ mm, $\sigma'_x = \sigma'_y = 0.8$ mrad

TRIGGER SYSTEM

- TJ Monopix2 has a fast hit-or signal
 - sensitive part of pixel matrix can be configured
 - could be used for a low energy electron trigger
 - hit in plane at z=<u>1cm</u>
 AND
 - hit in plane at z=7cm with x > 3.1mm

OR

- hit in plane at z=<u>4.5cm</u> with x > <u>2.3mm</u>
 OR
- hit in plane at z=<u>3cm</u> with x > 1.99 mm
- Total Rate: 1.7 MHz

- estimated trigger efficiency
 - good efficiency for low energy electrons, but slow turn-off
 - structure in scattering angles due to magnetic field

